JPS6340234A - Magnetron - Google Patents

Magnetron

Info

Publication number
JPS6340234A
JPS6340234A JP18361486A JP18361486A JPS6340234A JP S6340234 A JPS6340234 A JP S6340234A JP 18361486 A JP18361486 A JP 18361486A JP 18361486 A JP18361486 A JP 18361486A JP S6340234 A JPS6340234 A JP S6340234A
Authority
JP
Japan
Prior art keywords
resonator
anode
row
anode resonator
separation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18361486A
Other languages
Japanese (ja)
Inventor
Norimoto Makino
牧野 紀元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18361486A priority Critical patent/JPS6340234A/en
Publication of JPS6340234A publication Critical patent/JPS6340234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To make a magnetron small-sized and lightweight, moreover to improve its efficiency and stability by arranging, above an anode resonator row, a cylindrical mode separation means joining with every other anode resonator in the anode resonator row. CONSTITUTION:A cylindrical mode separation means 30 is arranged on the surface of every other anode resonator in an anode resonator row 20. The anode resonator row 20 is designed in coupliance with a resonator system having a low frequency of a rising sun method and every other anode resonator joining with the mode separation means 30, in the anode resonator row 20, is adjusted in the length (d) of its cylinder so as to accord with the resonator system having high frequency of the rising sun method. Further, depending on the shape of the mode separation means 30, the same construction is also arranged below the anode resonator row 20 to adjust the resonation frequency on both sides. Said constitution makes it possible to separate the mode and to obtain the stable pi mode oscillation since Q of the resonator is relatively high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多分割陽極マグネトロンに関し、特にモード分
離手段を有る多分割陽極マグネトロンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-segmented anode magnetron, and more particularly to a multi-segmented anode magnetron with mode separation means.

〔従来の技術〕[Conventional technology]

従来の多分割陽極マグネトロンのモード分離手段として
は、公知のストラッピングリング(均圧環)構造のもの
とライジングサン(橋形)構造のものとがあり、周知の
同軸マグネトロン構造のものは、ライジングサン構造の
ものが発展した一変形である。
Conventional mode separation means for multi-segmented anode magnetrons include those with a well-known strapping ring (pressure equalizing ring) structure and those with a rising sun (bridge) structure. This is a modified version of the structure.

マグネトロンとしては、陽極共振器系の1個おきの共振
器を同軸円筒空胴と結合させる方式の同軸マグネトロン
がモード分離・周波数安定性・効率等の性能で優れてい
るが、構造が大形で複雑であり、また陽極共振器系の冷
却が難しい等の欠点を有するため、特に小形・軽量を要
請される航空機あるいはロケット搭載用としては不適当
である。
As for magnetrons, coaxial magnetrons, which combine every other resonator of an anode resonator system with a coaxial cylindrical cavity, have excellent performance in terms of mode separation, frequency stability, efficiency, etc., but they have a large structure. Since it is complicated and has drawbacks such as difficulty in cooling the anode resonator system, it is unsuitable for use in aircraft or rockets, which require particularly small size and light weight.

マグネトロンを小形・軽量化するためには、従来のいわ
ゆる多分割陽極マグネトロンが適しているが、ストラッ
ピング構造のものは、各陽極共振器に容量を付加するた
め、相対的に共振器を小さく(イダクタンスを小さく)
設計する必要があり、共振器のQを下げる欠点がある。
Conventional so-called multi-segmented anode magnetrons are suitable for making magnetrons smaller and lighter; however, strapping structures add capacitance to each anode resonator, making the resonator relatively small ( (lower inductance)
However, it has the disadvantage of lowering the Q of the resonator.

一方ライジングサン構造のものは、1個おきの共振器系
が発振周波数より一定量だけ高い周波数の共振系と低い
周波数の共振系とで構成され、比較的共振器を大きくで
きるので、共振器のQ低下は防止できるが、高精度の加
工を要し、共振周波数の微調整が難しいという欠点を有
している。
On the other hand, in the rising sun structure, every other resonator system is composed of a resonant system with a frequency higher than the oscillation frequency by a certain amount and a resonant system with a lower frequency, which allows the resonator to be relatively large. Although Q reduction can be prevented, it requires high-precision machining and has the disadvantage that fine adjustment of the resonance frequency is difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点、換言すれば本発明の
目的は、上述のような従来のマグネトロンの欠点を除去
して、構造が簡単なため小形・軽量化が可能で、しかも
効率・安定性にすぐれたマグネトロンを提供することに
ある。
The problem to be solved by the present invention, in other words, the purpose of the present invention is to eliminate the drawbacks of the conventional magnetron as described above, and to make it possible to reduce the size and weight due to the simple structure, and to achieve efficiency and stability. Our goal is to provide magnetrons with excellent performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のマグネトロンは中央部に電子を放出する陰極を
設け、前記陰極と同軸の円周に複数個の陽極からなる陽
極共振器列を設け、前記陰極と前記陽極共振器列との間
に直交電磁界を印加するマグネトロンにおいて、前記陽
極共振器列の上方に前記陽極共振器列の1個おきの前記
陽極と結合する所定の長さの円柱状のモード分離用部材
を配設して構成される。
The magnetron of the present invention is provided with a cathode that emits electrons in the center, an anode resonator row consisting of a plurality of anodes on a circumference coaxial with the cathode, and orthogonal between the cathode and the anode resonator row. In a magnetron that applies an electromagnetic field, a cylindrical mode separation member of a predetermined length is disposed above the anode resonator row and coupled to every other anode of the anode resonator row. Ru.

〔実施例〕〔Example〕

本発明のマグネトロンの動作原理は、ライジングサン方
式と同様である。すなわち、先ずすべての陽極共振器を
ライジングサン方式の周波数の低い共振系に合わせ、次
に@極共振器列の1個おきの共振器と結合する円柱棒を
配置し、陽極共振器列との軸方向の距離を調整すること
によってライジングサン方式の周波数の高い共振系に合
わせてモード分離を行う。
The operating principle of the magnetron of the present invention is similar to the rising sun method. That is, first, all the anode resonators are tuned to the low-frequency resonance system of the rising sun method, and then cylindrical rods are placed to couple with every other resonator in the @pole resonator row, and the connection between the anode resonator row and the anode resonator row is By adjusting the distance in the axial direction, mode separation is performed to match the high frequency resonance system of the rising sun method.

以下、本発明の実施例について図面を参照して詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の縦断面図、第2図は第1図
のA−A断面図である。  。
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. .

第1図および第2図を参照するに、本実施例のマグネト
ロンは、円筒状の陰極10とこの陰極10と同軸の円周
上に陽極共振器列20とを備えており、陽極共振器列2
0の1個おきの陽極共振器の上面に円柱状のモード分離
手段30が配置されている。その他の構成要素について
は従来のマグネトロンと同様である。陽極共振器列20
は、ライジング方式の周波数の低い共振系に合わせて設
計し、またモード分離手段30と結合する陽極共振器列
20の1個おきの陽極共振器は、ライジングサン方式の
周波数の高い共振系と合致するように円柱の長さdを調
整する。なお、モード分離手段30の形状によっては、
同様の構造を陽極共振器列20の下方にも配置し、両方
で共振周波数を調整する。上述の構成により、モードの
分離が可能となり、共振器のQは比較的高いため、安定
なπモード発振が得られる。
Referring to FIGS. 1 and 2, the magnetron of this embodiment includes a cylindrical cathode 10 and an anode resonator array 20 on the circumference coaxial with the cathode 10. 2
A cylindrical mode separation means 30 is arranged on the upper surface of every other anode resonator. Other components are similar to conventional magnetrons. Anode resonator row 20
is designed to match the low frequency resonance system of the rising method, and every other anode resonator of the anode resonator array 20 coupled to the mode separation means 30 is designed to match the high frequency resonance system of the rising sun method. Adjust the length d of the cylinder so that Note that depending on the shape of the mode separation means 30,
A similar structure is also arranged below the anode resonator row 20, and the resonance frequency is adjusted in both. The above-described configuration enables mode separation, and since the Q of the resonator is relatively high, stable π mode oscillation can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明は陽極共振器列の上
方に陽極共振器列の1個おきの陽極共振器と結合する円
柱状のモード分離手段を配置することによって、ライジ
ングサン方式と同様のモード分離効果が得られ、しかも
構造が簡単であるなめ製造が容易であり、また共振周波
数の微調整が可能であるため、従来のマグネトロンに比
して小形・軽量であって、製造上の経済的効果が大きく
、安定性と効率にすぐれている。特に航空機またはロケ
ット搭載用として使用する場合は、特に本発明のマグネ
トロンの特徴が生がされ、その効果は絶大である。
As explained in detail above, the present invention is similar to the rising sun method by arranging a cylindrical mode separation means above the anode resonator row to couple with every other anode resonator of the anode resonator row. The mode separation effect is obtained, the structure is simple, it is easy to manufacture, and the resonant frequency can be finely adjusted. It has a large economic effect and is excellent in stability and efficiency. In particular, when the magnetron is used to be mounted on an aircraft or rocket, the characteristics of the magnetron of the present invention are particularly utilized, and its effects are tremendous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は第
1図のA−A断面図である。 図において、 10・・・陰極、20・・・陽極共振器列、3o・・・
モード分離手段。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. In the figure, 10... cathode, 20... anode resonator row, 3o...
Mode separation means.

Claims (1)

【特許請求の範囲】[Claims] 中央部に電子を放出する陰極を設け、前記陰極と同軸の
円周に複数個の陽極からなる陽極共振器列を設け、前記
陰極と前記陽極共振器列との間に直交電磁界を印加する
マグネトロンにおいて、前記陽極共振器列の上方に前記
陽極共振器列の1個おきの前記陽極と結合する所定の長
さの円柱状のモード分離用部材を配設したことを特徴と
するマグネトロン。
A cathode that emits electrons is provided in the center, an anode resonator row consisting of a plurality of anodes is provided on a circumference coaxial with the cathode, and an orthogonal electromagnetic field is applied between the cathode and the anode resonator row. A magnetron characterized in that a cylindrical mode separation member of a predetermined length is disposed above the anode resonator row and coupled to every other anode of the anode resonator row.
JP18361486A 1986-08-04 1986-08-04 Magnetron Pending JPS6340234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18361486A JPS6340234A (en) 1986-08-04 1986-08-04 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18361486A JPS6340234A (en) 1986-08-04 1986-08-04 Magnetron

Publications (1)

Publication Number Publication Date
JPS6340234A true JPS6340234A (en) 1988-02-20

Family

ID=16138867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18361486A Pending JPS6340234A (en) 1986-08-04 1986-08-04 Magnetron

Country Status (1)

Country Link
JP (1) JPS6340234A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372147A (en) * 2001-02-13 2002-08-14 Marconi Applied Techn Ltd Magnetron with radiation absorbing dielectric resonator
US7199525B2 (en) 2001-02-13 2007-04-03 E2V Technologies (Uk) Limited Strapped magnetron with a dielectric resonator for absorbing radiation
CN110534386A (en) * 2019-09-05 2019-12-03 电子科技大学 A kind of axial direction double structure double frequency output magnetron for microwave oven

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372147A (en) * 2001-02-13 2002-08-14 Marconi Applied Techn Ltd Magnetron with radiation absorbing dielectric resonator
US7199525B2 (en) 2001-02-13 2007-04-03 E2V Technologies (Uk) Limited Strapped magnetron with a dielectric resonator for absorbing radiation
CN110534386A (en) * 2019-09-05 2019-12-03 电子科技大学 A kind of axial direction double structure double frequency output magnetron for microwave oven

Similar Documents

Publication Publication Date Title
US3906300A (en) Multiperiodic accelerator structures for linear particle accelerators
EP0939450A1 (en) Resonator cavity end wall assembly
JPS6340234A (en) Magnetron
JPS6340235A (en) Magnetron
US4705398A (en) Pentagonal ring laser gyro design
EP0594832B1 (en) Klystron comprising a tm01x mode (x 0) output resonant cavity
SU1646481A1 (en) Superconducting accelerating structure
US5828173A (en) Magnetic system for gyrotrons forming a wavy magnetic field
US5691602A (en) Multiple cavity klystron
JPH06333505A (en) High impedance anode structure for injection locked electromagnetic tube
JPH06139946A (en) Magnetron for microwave oven
JPH03152831A (en) Quasi-optical gyrotron
JPH0864142A (en) Magnetic field generating device for gyrotron
RU2822561C1 (en) Accelerating structure of linear resonance accelerator with combined electrodes
US2539985A (en) Velocity modulation electron discharge device of high power
JP2868803B2 (en) Magnetron tuning device
CN118486572A (en) Relativistic magnetron metamaterial beam wave interaction structure based on transparent anode
KR900002897B1 (en) Magnetrons coupling structure between anode vane and strap
RU1426377C (en) Ring slot resonator aerial
JPH02144827A (en) Magnetron
JPS62295336A (en) Large power klystron
JPH0636692A (en) Multi-cavity klystron
JPS6362859B2 (en)
JP2000299070A (en) Magnetron
SU934570A1 (en) Microwave oscillator