JPS59176904A - Power distributing and synthesizing device - Google Patents

Power distributing and synthesizing device

Info

Publication number
JPS59176904A
JPS59176904A JP5128683A JP5128683A JPS59176904A JP S59176904 A JPS59176904 A JP S59176904A JP 5128683 A JP5128683 A JP 5128683A JP 5128683 A JP5128683 A JP 5128683A JP S59176904 A JPS59176904 A JP S59176904A
Authority
JP
Japan
Prior art keywords
loop
resonator
curve
thickness
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128683A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kaneko
金子 良明
Toshiyuki Saito
俊幸 斉藤
Hisafumi Okubo
大久保 尚史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5128683A priority Critical patent/JPS59176904A/en
Publication of JPS59176904A publication Critical patent/JPS59176904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To facilitate the distribution and synthesization of superhigh frequency power with a large coupling degree and a wide band, by setting the thickness of both a resonator and a magnetic field coupling loop at a level within a specific range respectively. CONSTITUTION:In a TM020 mode, the distribution of internal field intensity is shown by dotted lines for a cavity resonator 1, and a magnetic field coupling loop 3 is set at a position close to the maximum value of the field intensity. Then the loop 3 is set at a position close to the maximum value of internal field intensity and the thickness (h) of the resonator 1 is set within a range of lambda/25- lambda/6 together with the thickness (d) of the loop 3 set within a range of lambda/16- lambda/pi with the radius (a) of the resonator 1, the distance (r) from the center of the loop 3, i.e., the radius of the loop position and the wavelength respectively. As a result, the area between the resonator 1 and the loop 3 is increased. This reduces the effect of self-inductance and increases the coupling degree.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、円筒型高次TMOm(+モード共振器を用い
て、超高周波電力を分配又は合成する電力分配合成器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a power distribution/synthesizer that distributes or combines ultra-high frequency power using a cylindrical high-order TMOm (+ mode resonator).

従来技術と問題点 超高周波電力を分配又は合成する為に、円筒型高次TM
omoモード共振器の中心部分に電界結合のアンテナを
設け、その共振器の周辺部分に複数の磁界結合のループ
を設けて、アンテナから入力した超高周波電力を複数の
ループにより分配出力し、又は複数のループに入力した
超高周波電力をアンテナから合成して出力する電力分配
合成器が知られている。このような電力分配合成器は、
従来、発振器の出力の分配等に使用されているもので、
その出力及び入力の結合度については余り考慮されてい
なかった。又使用帯域幅が非雷に狭いものであり、広帯
域の超高周波電力の分配又は合成には使用することがで
きなかった。
Conventional technology and problems In order to distribute or combine ultra-high frequency power, cylindrical high-order TM
An electric field coupling antenna is provided in the center part of the omo mode resonator, and a plurality of magnetic field coupling loops are provided in the peripheral part of the resonator, and the super high frequency power input from the antenna is distributed and outputted by the plurality of loops. A power distribution/combiner is known that combines ultra-high frequency power input into a loop from an antenna and outputs the result. Such a power distribution combiner is
Traditionally used for distributing oscillator output, etc.
Not much consideration was given to the degree of coupling between output and input. In addition, the usable bandwidth is narrower than that of lightning, and it cannot be used for distributing or combining broadband ultra-high frequency power.

発明の目的 本発明は、結合度が大きく且つ広帯域の超高周波電力の
分配又は合成を容易に行うことができるようにすること
を目的とするものである。以下実施例について詳細に説
明する。
OBJECTS OF THE INVENTION It is an object of the present invention to easily distribute or combine ultrahigh frequency power with a high degree of coupling and a wide band. Examples will be described in detail below.

発明の実施例 第1図は本発明の実施例の要部断面図であり、■は円筒
型のTMOい0モードの空胴共振器、2は電界結合のア
ンテナ、3は磁界結合のループであり、アンテナ2から
入力した超高周波電力を複数のループ3に分配して出力
することができ、又複数のループ3にそれぞれ超高周波
電力を入力すると、アンテナ2から合成した超高周波電
力を出力することができる。TMO2Gモードの場合は
、空胴共振器1の内部電界強度の分布が点線で示すよう
になり、磁界結合のループ3は電界強度の極大値近傍に
配置するものである。共振器1の厚さをh、その半径を
a、磁界結合のループ3の中心からの距離即ちループ位
置の半径をr、磁界結合のループ3の太さをdとし、使
用波長をλとすると、ループ3を内部電界強度の極大値
近傍に配置し、共振器1の厚さhをλ/25〜λ/6の
範囲内とし、且つループ3の太さdをλ/16〜λ/π
の範囲内に設定するものである。
Embodiment of the Invention Figure 1 is a cross-sectional view of the main parts of an embodiment of the present invention, where ■ is a cylindrical TMO 0 mode cavity resonator, 2 is an electric field coupling antenna, and 3 is a magnetic field coupling loop. Yes, the ultra-high frequency power input from the antenna 2 can be distributed to multiple loops 3 and output, and when ultra-high frequency power is input to each of the multiple loops 3, the combined ultra-high frequency power is output from the antenna 2. be able to. In the case of the TMO2G mode, the distribution of the internal electric field strength of the cavity resonator 1 is shown by a dotted line, and the magnetic field coupling loop 3 is arranged near the maximum value of the electric field strength. If the thickness of the resonator 1 is h, its radius is a, the distance from the center of the magnetic coupling loop 3, that is, the radius of the loop position is r, the thickness of the magnetic coupling loop 3 is d, and the wavelength used is λ. , the loop 3 is arranged near the maximum value of the internal electric field strength, the thickness h of the resonator 1 is within the range of λ/25 to λ/6, and the thickness d of the loop 3 is within the range of λ/16 to λ/π
It shall be set within the range of .

又アンテナ2は、導波管や同軸線路と結合することがで
きるもので、例えば円筒型TMo+oモード共振器と共
振器1とをアンテナ2の代りに結合窓で結合する構成と
することも可能である。又共振器1に共振周波数の調整
用ねし等を設けることもできる。
Furthermore, the antenna 2 can be coupled to a waveguide or a coaxial line. For example, it is also possible to have a configuration in which a cylindrical TMo+o mode resonator and the resonator 1 are coupled by a coupling window instead of the antenna 2. be. Further, the resonator 1 may be provided with a screw or the like for adjusting the resonance frequency.

磁界結合のループ3を内部電界強度の極大値近傍に配置
すことにより、共振器1の側壁とループ3との間で形成
される面積が大きくとれるので、結合度を大きくするこ
とができる。又共振器1の厚さhをλ/25〜λ/6の
範囲内とすることにより、ループ3の自己インダクタン
スの影響を少なくし、結合度の低下を少なくすることが
できる。又Q、の低下による挿入損失の増大を防止する
ことができる。
By arranging the magnetic field coupling loop 3 near the maximum value of the internal electric field strength, the area formed between the side wall of the resonator 1 and the loop 3 can be increased, so that the degree of coupling can be increased. Furthermore, by setting the thickness h of the resonator 1 within the range of λ/25 to λ/6, it is possible to reduce the influence of the self-inductance of the loop 3 and reduce the decrease in the degree of coupling. Further, it is possible to prevent an increase in insertion loss due to a decrease in Q.

第2図乃至第6図は、m=2即ちTMO20モード共振
器を用い、周波数を6.15GHzとしたときの前述の
条件を説明する為の曲線図である。第2図は縦軸をEz
/Eo(Ezは内部電界強度)とし、横軸をループ3位
置の半径r(mm)として示す内部電界強度分布曲線図
であり、r#30mm付近に内部電界強度の極大値が存
在する。又第3図は縦軸を外部負荷QであるQeとし、
横軸をループ3位置の半径r(mm)として示すループ
位置と外部負荷QであるQeとの関係曲線図であり、曲
線(alは、h=8mm、d=3mm、曲線(blは、
h = 8 mm、  d = 2 mm、曲線(C)
は、h−8mm、d=4mm、曲線(dlは、h=6m
m、d=3mm、曲線te+は、h=10mm、d=3
mmの場合について示すものである。
FIGS. 2 to 6 are curve diagrams for explaining the above-mentioned conditions when m=2, that is, a TMO20 mode resonator is used, and the frequency is 6.15 GHz. In Figure 2, the vertical axis is Ez
/Eo (Ez is the internal electric field strength), and the horizontal axis is the radius r (mm) of the loop 3 position. The maximum value of the internal electric field strength exists near r#30 mm. In addition, in Fig. 3, the vertical axis is Qe, which is the external load Q, and
It is a relationship curve diagram between the loop position and Qe, which is the external load Q, where the horizontal axis is the radius r (mm) of the loop 3 position, and the curve (al is h = 8 mm, d = 3 mm, the curve (bl is
h = 8 mm, d = 2 mm, curve (C)
is h-8mm, d=4mm, curve (dl is h=6m
m, d=3mm, curve te+, h=10mm, d=3
This is shown for the case of mm.

又第4図は縦軸をQeとし、横軸をループ3の直径d 
 (mm)としたQeと直径dとの関係曲線図であり、
曲線(alは、h=8mm、r=31mm、曲線fb)
は、h=3mm、r=37mm、曲線fc)は、h=8
mm、r=26mm、曲線fdlは、h−6mm、r=
31mm、曲線(e)は、tl=10mm、r=31m
mの場合についてのものである。又第5図は共振器1の
厚さh(mm)とQeとの関係を示す曲線図であり、曲
線+alは、d=3mm。
In addition, in Fig. 4, the vertical axis is Qe, and the horizontal axis is the diameter d of loop 3.
It is a relationship curve diagram between Qe and diameter d (mm),
Curve (al is h=8mm, r=31mm, curve fb)
is h=3mm, r=37mm, curve fc) is h=8
mm, r=26mm, curve fdl is h-6mm, r=
31mm, curve (e) is tl=10mm, r=31m
This is about the case of m. Further, FIG. 5 is a curve diagram showing the relationship between the thickness h (mm) of the resonator 1 and Qe, and the curve +al is d=3 mm.

r=31mm、曲線fblは、d=3m、m、r=37
mm、曲線(C1は、d = 3 mm、  r = 
26 mm、曲線(dlは、d=2mm、r=31mm
、曲線telは、d=4mm、r=31mmの場合につ
いて示すものである。
r=31mm, curve fbl is d=3m, m, r=37
mm, curve (C1, d = 3 mm, r =
26 mm, curve (dl, d=2mm, r=31mm
, the curve tel is shown for the case where d=4 mm and r=31 mm.

又第6図は共振器の厚さh (mm)と挿入損失(dB
)との関係を示す曲線図であって、曲線(alは、d=
3mm、r=31mm、曲線(blは、d−3mm、r
=37mm、曲線(C)ば、d=3mm。
Figure 6 also shows the thickness h (mm) of the resonator and the insertion loss (dB
) is a curve diagram showing the relationship between the curve (al is d=
3mm, r=31mm, curve (bl is d-3mm, r
= 37 mm, curve (C), d = 3 mm.

r=26mm、曲線fd)は、d=2mm、r=31m
m、曲線(elは、d=4mm、r=31mmの場合に
ついて示すものである。
r=26mm, curve fd) is d=2mm, r=31m
m, curve (el is shown for the case where d=4 mm and r=31 mm.

外部負荷QであるQeと、結合度との間には、反比例の
関係があるので、Qeの極小値となる点が結合度の極大
値を示すことになり、高次モードの次数に対応してQe
の極小値の数が決るものである。第2図と第3図とを参
照すれば明らかなように、内部電界強度の極大値(dE
z/dr−0)付近(r=30mm)に於てQeが極小
値をとることが判る。この場合、電界強度の極大値の位
置よりも、ループの直径dの半分程外周へループ3を設
定することが最も好適である。
Since there is an inversely proportional relationship between Qe, which is the external load Q, and the degree of coupling, the point where the minimum value of Qe is the maximum value of the degree of coupling, which corresponds to the order of the higher mode. TeQe
The number of minimum values of is determined. As is clear from FIGS. 2 and 3, the maximum value of the internal electric field strength (dE
It can be seen that Qe takes a minimum value near z/dr-0) (r=30 mm). In this case, it is most preferable to set the loop 3 at the outer periphery, which is about half the diameter d of the loop, rather than the position of the maximum value of the electric field strength.

又第5図と第6図とから共振器1の厚さhを決める条件
が求まる。即ち第5図からQeを小さくする厚さhの最
適値があることが判る。厚さhが20mm以上ではQe
は非常に小さくなるが、高次モード(この場合TE、口
モード)が発生ずるので、厚さhを大きくすることは不
適当である。
Further, the conditions for determining the thickness h of the resonator 1 can be found from FIGS. 5 and 6. That is, it can be seen from FIG. 5 that there is an optimum value for the thickness h that reduces Qe. If the thickness h is 20mm or more, Qe
becomes very small, but higher-order modes (TE, mouth mode in this case) will occur, so it is inappropriate to increase the thickness h.

従って厚さhは10mm以下にする必要がある。Therefore, the thickness h needs to be 10 mm or less.

又第6図の挿入損失特性をみると、ループ3の直径dを
後述のように3mm以上とする必要があるところから、
曲線(al及びtelの条件に於て、挿入損失を0. 
’15 d B以下とする為には、共振器lの厚さhを
、約2〜8mrnとする必要がある。周波数を6.15
 G Hzとした場合であるから、波長λは約43.8
m mとなり、従って共振器1の厚さhは、λ/25〜
λ/6の範囲とする必要があることが判る。なお曲線f
blは、r=37mmの場合であって、内部電界強度の
極大値のr#30mmからずれているので、挿入損失が
大きくなり、又曲線(clは、r=26mmの場合であ
るから、この場合も内部電界強度の極大値からずれてい
るので、挿入損失が大きくなる。又曲線(dlは、ルー
プ3の直i予dが’l m mで最適値より細いので、
挿入損失が大きくなる。
Also, looking at the insertion loss characteristics in Figure 6, the diameter d of the loop 3 needs to be 3 mm or more as described later.
curve (under the conditions of al and tel, the insertion loss is 0.
In order to make it 15 dB or less, the thickness h of the resonator l needs to be about 2 to 8 mrn. frequency 6.15
GHz, the wavelength λ is approximately 43.8
Therefore, the thickness h of the resonator 1 is λ/25~
It can be seen that the range needs to be λ/6. Note that the curve f
bl is for r=37mm and is deviated from r#30mm, the maximum value of the internal electric field strength, so the insertion loss is large, and the curve (cl is for r=26mm, so this In this case, the insertion loss increases because the internal electric field strength deviates from the maximum value.Also, the curve (dl) is thinner than the optimum value because the straight line d of loop 3 is 'l m m,
Insertion loss increases.

又第4図に於て、ループ3の直径dを大き(するに従っ
てQeが小さくなることが判るが、前述の2≦h≦8及
びr=30mmの条件から、曲線(al及び(dlによ
り考えると、Qeが急激に増大しない為には、直径dは
3mm以上であることが必要となる。又ループ3の直径
dを大きくして、その外周が波長λ以上となると高次モ
ードが生じるので、直径dの大きさには限度があり、λ
/π以下の直径dとする必要がある。即ちループ3の直
径dは、λ/16(3mm)〜λ/ π(15mm)の
範囲とする必要がある。
Also, in Fig. 4, it can be seen that as the diameter d of the loop 3 increases, Qe becomes smaller, but from the conditions of 2≦h≦8 and r=30 mm, considering the curves (al and (dl) In order to prevent Qe from increasing rapidly, the diameter d needs to be 3 mm or more.Also, if the diameter d of the loop 3 is increased and its outer circumference becomes longer than the wavelength λ, a higher-order mode will occur. , there is a limit to the size of the diameter d, and λ
The diameter d must be less than /π. That is, the diameter d of the loop 3 needs to be in the range of λ/16 (3 mm) to λ/π (15 mm).

第7図乃至第12図は、m=4即ちTMO40モード共
振器を用いて、周波数を6.15GHzとした場合につ
いてのものである。第7図は第2図と同様に内部電界強
度分布を示し、電界強度の極大値は、約30mm、55
mm、80mmの半径rの位置に生じることになる。第
8図はループ位置の半径rとQeとの関係を示す曲線図
あり、h=8mm、d=3mmとした場合についてのも
のであって、内部電界強度の極大値に対応した位置に、
Qeの極小値があることが判る。
7 to 12 show the case where m=4, that is, a TMO40 mode resonator is used and the frequency is 6.15 GHz. Figure 7 shows the internal electric field strength distribution similarly to Figure 2, and the maximum value of the electric field strength is approximately 30 mm, 55 mm.
mm, and will occur at a position with a radius r of 80 mm. FIG. 8 is a curve diagram showing the relationship between the radius r of the loop position and Qe, and is for the case where h = 8 mm and d = 3 mm. At the position corresponding to the maximum value of the internal electric field strength,
It can be seen that there is a minimum value of Qe.

第9図は、ループ3の位置の半径r (mm)とQeと
の関係を示す曲線図あり、曲線+a)は、h−8mm、
d=3mm、曲線(blは、h=8mm、d−2mm、
曲線(C1は、h=8mm、d=4mm、曲線+d+は
、h=6mm、d=3mm、ループ3位置の半fX 1
を75〜90mmの範囲について示すものである。従っ
て内部電界強度の極大値に対応してQeの極小値が得ら
れ、曲線(blの場合のように、ループ3の直径dが2
mmの場合は、Qeが大きくなり、曲線(C)の場合の
ように、ループ3の直径dが4mmの場合は、Qeが小
さくなる。
FIG. 9 is a curve diagram showing the relationship between the radius r (mm) of the position of loop 3 and Qe, where the curve +a) is h-8mm,
d=3mm, curve (bl is h=8mm, d-2mm,
Curve (C1 is h=8mm, d=4mm, curve +d+ is h=6mm, d=3mm, half fX 1 of loop 3 position
is shown for a range of 75 to 90 mm. Therefore, the minimum value of Qe is obtained corresponding to the maximum value of the internal electric field strength, and the diameter d of the loop 3 is 2 as in the case of the curve (bl).
If the diameter d of the loop 3 is 4 mm, as in the case of curve (C), Qe becomes small.

又第10図はループ3の直径dとQeとの関係を示す曲
線図であり、曲線(a)は、h78mm、r=81mm
、曲線(blは、h=8mm、r=78mm、曲線(C
)は、h=8mm、r=84mm、曲線(dlは、h=
6mm、r=81mm、曲線(e)は、h=10mm、
r=81mmの場合についてのものである。第4図につ
いて説明したと同様に、ループ3の直径dは、3〜15
mmの範囲、即ちλ/16〜λ/πの範囲とする必要が
あることが判る。なお曲線(bl及び(e)のように、
前述の条件からずれている場合にはQeは大きくなる。
Moreover, FIG. 10 is a curve diagram showing the relationship between the diameter d of the loop 3 and Qe, and the curve (a) is h78mm, r=81mm.
, curve (bl is h = 8 mm, r = 78 mm, curve (C
) is h=8mm, r=84mm, curve (dl is h=
6mm, r=81mm, curve (e), h=10mm,
This is for the case where r=81 mm. As explained in connection with FIG. 4, the diameter d of the loop 3 is between 3 and 15
It can be seen that it is necessary to set it in the range of mm, that is, in the range of λ/16 to λ/π. In addition, like the curves (bl and (e),
Qe increases if the conditions deviate from the above conditions.

第11図は共振器1の厚さり、!=Qeとの関係を示す
曲線図であり、曲線(alは、d=3mm、r−81m
m、曲線(blは、d=3mm、r=78mm、曲線(
C)は、d=3mm、r=84mm、曲線+dlは、d
=2mm、r=81mm、曲線(e)は、d−4mm、
  r = 81 mmの場合についてのものである。
Figure 11 shows the thickness of resonator 1,! It is a curve diagram showing the relationship between =Qe and the curve (al is d=3mm, r-81m
m, curve (bl is d=3mm, r=78mm, curve (
C) is d=3mm, r=84mm, curve +dl is d
=2mm, r=81mm, curve (e) is d-4mm,
This is for the case of r = 81 mm.

共振器1の厚さhが15mm以上では前述のように高次
モードの発生がある為、厚さhは10mm以下とする必
要があり、挿入損失との関係から約8mm以下とするも
のである。
If the thickness h of the resonator 1 is 15 mm or more, higher-order modes will occur as described above, so the thickness h must be 10 mm or less, and should be approximately 8 mm or less in view of the insertion loss. .

第12図は共振器1の厚さhと挿入損失(dB)との関
係を示す曲線図であり、曲線+alは、d=3mm、r
=81mm、曲線(blは、d=3mm。
FIG. 12 is a curve diagram showing the relationship between the thickness h of the resonator 1 and the insertion loss (dB).
=81mm, curve (bl, d=3mm.

r=78mm、曲線(C1は、d=3mm、r=84m
m、曲線(dlは、d=2mm、r=81mm、曲線t
elは、d=4mm、r=81mmの場合についてのも
のである。第11図及び第12図から判るように、共振
器1の厚さhは、2〜8mmが最適であり、波長λとの
関係で示すと、λ/25〜λ/6となる。なおm=4の
場合は、ループ位置の半径「を81mmとしているので
、m=2の場合に比較して、ループ3と共振器1の側壁
との間で形成される相対的な面積が小さくなり、Qeは
大きくなる。従って第12図に於ては、挿入損失を0、
6 d B以下とするように、共振器1の厚さhを選定
することになる。ループ位置の半径rを81mm以外の
他の内部電界強度の極大値とすることも可能であるが、
ループ3の配置間隔を考えると半径rを大きくした方が
、ループ3の配置が容易となるものである。
r=78mm, curve (C1 is d=3mm, r=84m
m, curve (dl is d=2mm, r=81mm, curve t
el is for the case where d=4 mm and r=81 mm. As can be seen from FIGS. 11 and 12, the optimal thickness h of the resonator 1 is 2 to 8 mm, and when expressed in relation to the wavelength λ, it is λ/25 to λ/6. Note that in the case of m=4, the radius of the loop position is 81 mm, so the relative area formed between the loop 3 and the side wall of the resonator 1 is smaller than in the case of m=2. Therefore, in Fig. 12, the insertion loss is set to 0, and Qe becomes large.
The thickness h of the resonator 1 is selected to be 6 dB or less. Although it is possible to set the radius r of the loop position to a maximum value of the internal electric field strength other than 81 mm,
Considering the arrangement interval of the loops 3, the larger the radius r, the easier the arrangement of the loops 3 will be.

前述の実施例は、TMomoのmを2及び4とした場合
についてのものであるが、mを他の値とした場合につい
ても、同様な傾向を示すので、共振器1の厚さh及びル
ープ3の直径dを、前述の条件を満足するように選定す
ることにより、結合度を大きくし且つ広帯域のtll高
周波電力の分配又は合成を行わせることができる。
The above embodiments are for the cases where m of TMomo is 2 and 4, but the same tendency is shown when m is set to other values, so the thickness h of the resonator 1 and the loop By selecting the diameter d of No. 3 so as to satisfy the above-mentioned conditions, it is possible to increase the degree of coupling and to distribute or combine broadband Tll high frequency power.

発明の詳細 な説明したように、本発明は、円筒型高次TM(1+v
B)モード共振器を用いた電力分配合成器に於て、内部
電界の極大値近傍に複数の磁界結合のループ3を設け、
共振器1の厚さをλ/25〜λ/6の範囲内とし、且つ
ループ3の直径をλ/16〜λ/πの範囲内に選定する
ことにより、結合度が大きく且つ広帯域の超高周波電力
の分配又は合成を行うことができる電力分配合成器を提
供することができる利点がある。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention provides a cylindrical high-order TM (1+v
B) In a power distribution combiner using a mode resonator, a plurality of magnetic field coupling loops 3 are provided near the maximum value of the internal electric field,
By selecting the thickness of the resonator 1 within the range of λ/25 to λ/6 and the diameter of the loop 3 within the range of λ/16 to λ/π, it is possible to achieve ultra-high frequency waves with a high degree of coupling and a wide band. It is advantageous to provide a power distribution combiner that can perform power distribution or combination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の要部断面図、第2図乃至第6
図はTMonxoモードのm=2の場合の曲線図で、第
2図は内部電界強度分布曲線図、第3図はループ位置半
径とQeとの関係を示す曲線図、第4図はループの直径
とQeとの関係を示す曲線図、第5図は共振器の厚さと
Qeとの関係を示す曲線図、第6図は共振器の厚さと挿
入損失との関係を示す曲線図、第7図乃至第12図はm
=4の場合の曲線図で、第7図は内部電界強度分布曲線
図、第8図及び第9図はループ位置半径とQeとの関係
を示す曲線図、第10図はループ直径とQeとの関係を
示す曲線図、第11図は共振器の■は共振器、2は電界
結合のアンテナ、3は磁界結合のループである。 特許出願人  富士通株式会社 代理人弁理士 玉蟲久五部  外3老 死 1 図 −−−。具 第 4 図 )  \。 \ 00 (ゝ Qe    、S、、  (8)\、。 00 1・、3 さ   エ ペ  ヨシし ゛・1,5.\、゛′\ −・− 1\   \ 1慕1 じ:重工 (h::、:: (?二22:: (?二31:: (P二s’t mm 客べ覧姐爾 ロ            り           
 ロ            d−〇 溝                        
 1第9図 r(myn) 第10図 ループの直径 d(mm)
FIG. 1 is a sectional view of essential parts of an embodiment of the present invention, and FIGS.
The figure shows a curve diagram for m=2 in TMonxo mode, Figure 2 is an internal electric field strength distribution curve diagram, Figure 3 is a curve diagram showing the relationship between the loop position radius and Qe, and Figure 4 is the loop diameter. Figure 5 is a curve diagram showing the relationship between resonator thickness and Qe, Figure 6 is a curve diagram showing the relationship between resonator thickness and insertion loss, Figure 7 is a curve diagram showing the relationship between resonator thickness and Qe. From Figure 12, m
= 4. Figure 7 is an internal electric field strength distribution curve diagram, Figures 8 and 9 are curve diagrams showing the relationship between loop position radius and Qe, and Figure 10 is a diagram showing the relationship between loop diameter and Qe. FIG. 11 is a curve diagram showing the relationship between the resonators, 2 is the resonator, 2 is the electric field coupling antenna, and 3 is the magnetic field coupling loop. Patent applicant Fujitsu Ltd. Representative Patent Attorney Gobe Tamamushi 3 Old age and death 1 Figure ---. Figure 4) \. \ 00 (ゝQe、S、、 (8)\、。 00 1・、3 SA Epe Yoshishi゛・1、5.\、゛′\ −・− 1\ \ 1柕1 ji: Heavy industry (h:: , :: (?222:: (?231:: (P2s't mm)
B d-○ groove
1 Figure 9 r (myn) Figure 10 Diameter of loop d (mm)

Claims (1)

【特許請求の範囲】[Claims] 円筒型高次’r M OmOモード共振器を用いた電力
分配合成器に於て、内部電界の極大値近傍に複数の磁界
結合のループを設け、前記共振器の厚さをλ/25〜λ
/6 (λ−波長)の範囲内とし、且つ前記磁界結合の
ループの太さをλ/16〜λ/πの範囲内に選定したこ
とを特徴とする電力分配合成器。
In a power distribution combiner using a cylindrical high-order 'r M OmO mode resonator, a plurality of magnetic field coupling loops are provided near the maximum value of the internal electric field, and the thickness of the resonator is set to λ/25 to λ.
/6 (λ-wavelength), and the thickness of the magnetic field coupling loop is selected to be within the range of λ/16 to λ/π.
JP5128683A 1983-03-26 1983-03-26 Power distributing and synthesizing device Pending JPS59176904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128683A JPS59176904A (en) 1983-03-26 1983-03-26 Power distributing and synthesizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128683A JPS59176904A (en) 1983-03-26 1983-03-26 Power distributing and synthesizing device

Publications (1)

Publication Number Publication Date
JPS59176904A true JPS59176904A (en) 1984-10-06

Family

ID=12882683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128683A Pending JPS59176904A (en) 1983-03-26 1983-03-26 Power distributing and synthesizing device

Country Status (1)

Country Link
JP (1) JPS59176904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139101A (en) * 1984-12-11 1986-06-26 Nippon Hoso Kyokai <Nhk> Microwave power synthesizer
JPS63501675A (en) * 1985-10-03 1988-06-23 ヒユ−ズ・エアクラフト・カンパニ− Broadband high isolation radial line power splitter/combiner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139101A (en) * 1984-12-11 1986-06-26 Nippon Hoso Kyokai <Nhk> Microwave power synthesizer
JPS63501675A (en) * 1985-10-03 1988-06-23 ヒユ−ズ・エアクラフト・カンパニ− Broadband high isolation radial line power splitter/combiner

Similar Documents

Publication Publication Date Title
US4807232A (en) Phase locked staggered dielectric ridge array waveguide gas laser
EP0423114B1 (en) Microwave multiplexer with multimode filter
EP0518423A1 (en) Microstrip coupler with maximal directivity
US6218915B1 (en) Dual-mode ring resonator
US6943651B2 (en) Dielectric resonator device, high frequency filter, and high frequency oscillator
CN108777361B (en) Differential dual-mode dual-polarized dielectric resonator antenna
JP3282003B2 (en) Waveguide coaxial converter and waveguide matching circuit
US6529094B1 (en) Dielectric resonance device, dielectric filter, composite dielectric filter device, dielectric duplexer, and communication apparatus
JPS59176904A (en) Power distributing and synthesizing device
US4025878A (en) Waveguide coupler having helically arranged coupling slots
JPS6319086B2 (en)
US5184144A (en) Ogival cross-section combined microwave waveguide for reflector antenna feed and spar support therefor
JP2546034B2 (en) Small antenna space matching method
JPS61127203A (en) Waveguide type power distributer
US5614877A (en) Biconical multimode resonator
US4303900A (en) Wide band waveguide with double polarization and ultra-high frequency circuit incorporating such a waveguide
JPH07202515A (en) Cylindrical waveguide resonator filter part with bandwidth increased
EP0404905A1 (en) Improved feed waveguide for an array antenna
JPH0732324B2 (en) Multimode horn antenna
JPH09167902A (en) Dielectric filter
JPH0434564Y2 (en)
US3839688A (en) Directional filter
US3436594A (en) Slow wave circuit having an array of half wave resonators coupled via an array of quarter wave resonators
JP2023101456A (en) antenna device
JPH01146407A (en) Uhf and vhf shared antenna