JPS6340230A - Manufacture of heater of indirectly heated cathode - Google Patents

Manufacture of heater of indirectly heated cathode

Info

Publication number
JPS6340230A
JPS6340230A JP18261486A JP18261486A JPS6340230A JP S6340230 A JPS6340230 A JP S6340230A JP 18261486 A JP18261486 A JP 18261486A JP 18261486 A JP18261486 A JP 18261486A JP S6340230 A JPS6340230 A JP S6340230A
Authority
JP
Japan
Prior art keywords
tungsten
heater
powder
average particle
core wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18261486A
Other languages
Japanese (ja)
Inventor
Osamu Yamada
修 山田
Takeshi Yoshii
好井 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18261486A priority Critical patent/JPS6340230A/en
Publication of JPS6340230A publication Critical patent/JPS6340230A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heater preventing deterioration and thermal deformation of its core wire, by heating a coated body in a reducing atmosphere and forming thereon an insulation layer consisting of an alumina powder sintered stuff containing a specified wt % of tungsten powder. CONSTITUTION:In the case of tungsten ratio of 3%, 38,8g of an alpha type alumina powder with average particle diameter of 3mum, and 1.2g of the tungsten powder with average particle diameter of 0.8mum are used to form an insulation layer. And in the case of the tungsten ration of 20%, 32g of the alpha type alumina with average particle diameter of 3mum, and 8g of the tungsten powder with average particle diameter of 0.8mum are used, and a suspension is formed under exactly the same condition as the case of the tungsten ratio of 3%. Then, after the surface of a filament which is made of 3% of rhenium contained tungsten core wire and wound in a coil form is coated with the each suspension by means of spray, it is heat treated in a hydrogen furnace for about 5 minutes at about 1680 deg.C, then a molybdenum core metal of the filament is fused and eliminated in the mixed acid, thus a heater is formed. This heater is prevented from deterioration and deformation of its core wire.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は傍熱型陰極に利用するヒータへの絶縁物形成に
関し、特に芯線の劣化を防ぎかつヒータの熱変形が小さ
くかつ、低コストのヒータを提供する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to the formation of an insulator on a heater used in an indirectly heated cathode, and in particular to prevent deterioration of the core wire and minimize thermal deformation of the heater. Moreover, a low-cost heater is provided.

(従来の技術) 電子管の電子放射源として機能する傍熱型陰極はヒータ
を内挿したカソードスリーブ外表面に電子放射物質を被
覆し、このヒータの通電によって発生する輻射を主とす
る加熱によって、この電子放射物質から熱電子が放出さ
れ、このヒータはタングステンを主成分とする芯線に絶
縁物としてアルミナを被覆して作られる。このような傍
熱型陰極ではその加熱効率を向上するためにヒータに発
生した熱を効率良くカソードスリーブを介して電子放射
物質に伝達するため、着色ヒータが使用されている。
(Prior art) In an indirectly heated cathode that functions as an electron radiation source for an electron tube, the outer surface of a cathode sleeve into which a heater is inserted is coated with an electron radiation material, and heating mainly by radiation generated by energization of this heater causes Thermionic electrons are emitted from this electron emitting material, and this heater is made by coating a core wire mainly made of tungsten with alumina as an insulator. In such an indirectly heated cathode, a colored heater is used in order to efficiently transfer the heat generated by the heater to the electron emitting material through the cathode sleeve in order to improve the heating efficiency.

この着色ヒータとしては、特開昭51−139251号
公報に示されるように、タングステン芯線を被覆するア
ルミナ層にす03 等のタングステン酸化物を主とする
着色層を設ける構造、特開昭50−52962号公報に
開示された技術はタングステン芯線にアルミナ層を被着
後タングステンアンモニウム溶液を含浸する方法、更に
特公昭40−9219号公報によるアルミナ層とタング
ステン層を交互に3層以上積層する構造などが知られて
いる。
This colored heater has a structure in which a colored layer mainly made of tungsten oxide such as SU03 is provided on an alumina layer covering a tungsten core wire, as shown in JP-A-51-139251. The techniques disclosed in Japanese Patent Publication No. 52962 include a method in which a tungsten core wire is coated with an alumina layer and then impregnated with a tungsten ammonium solution, and a structure in which three or more alumina layers and tungsten layers are alternately laminated according to Japanese Patent Publication No. 40-9219. It has been known.

これらは、アルミナ絶縁層と着色層を2層以上交互に積
層するA方式と、着色物質源となるタングステンアンモ
ニヤ等の塩類や酸化物をアルミナ層に含浸させてから還
元処理によって、金属タングステンにするB方式に大別
でき、何れも傍熱陰極の加熱効率を向上するものである
These are method A, in which two or more alumina insulating layers and colored layers are alternately laminated, and the alumina layer is impregnated with salts or oxides such as tungsten ammonia, which serve as a source of coloring substances, and then converted into metallic tungsten by reduction treatment. It can be roughly divided into Type B, and all of them improve the heating efficiency of the indirectly heated cathode.

(発明が解決しようとする問題点) 前述のA方式は、互に性質の異なるアルミナ層とタング
ステン層が積層する構造が採用されているために、この
積層構造を1680℃10分間保持する高温処理や、カ
ラテレビのように、1000℃以上の状態を5〜10年
間断続的に繰返して使用すると、両層境界部には歪によ
って制御できない複雑な変形を生じてヒータの寿命を短
くする欠点がある。
(Problems to be Solved by the Invention) The above-mentioned method A employs a structure in which an alumina layer and a tungsten layer, which have different properties, are laminated. When used intermittently for 5 to 10 years at a temperature of 1000°C or higher, such as in a color TV, a complicated deformation that cannot be controlled due to strain occurs at the boundary between the two layers, which shortens the life of the heater. be.

そのうえ、この各層は別々に形成するので、工数増加か
らコストが割高になることは否めない。
Moreover, since each layer is formed separately, it is undeniable that the cost becomes relatively high due to the increased number of man-hours.

一方、B方式では、タングステン酸化物やタングステン
アンモニウム等から金属タングステンに還元するのに水
素炉等を利用する高温還元焼結処理(1600〜170
0℃)が不可欠であるが、これらタングステン化合物か
らの分解ガス02.N2ならびにNH,等が芯線である
タングステンもしくはモリブデン製マンドレルと高温で
反応して脆化をもたらし、ひいては、ヒータ芯線の寿命
が短くなる難点がある。
On the other hand, in Method B, a high temperature reduction sintering process (1600 to 170
0℃) is essential, but the decomposition gas from these tungsten compounds 02. N2, NH, etc. react with the tungsten or molybdenum core mandrel at high temperatures, causing embrittlement, which in turn shortens the life of the heater core wire.

前記分解ガスに関してはNASA Tech Note
 (D −1581) 1963等に記載されており、
又タングステンならびにモリブデンは高温処理によって
再結晶して脆くなる現象及び不純物の影響により再結晶
温度が低下する事実も知られている。
Regarding the cracked gas, see NASA Tech Note
(D-1581) 1963 etc.,
It is also known that tungsten and molybdenum recrystallize and become brittle due to high-temperature treatment, and that the recrystallization temperature decreases due to the influence of impurities.

本発明の目的は上記難点を克服する新規な傍熱型陰極用
ヒータの製造方法を提供し、特に芯線の劣化ならびに熱
変形を防止するものである。
An object of the present invention is to provide a novel method for manufacturing an indirectly heated cathode heater that overcomes the above-mentioned difficulties, and in particular prevents deterioration and thermal deformation of the core wire.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この目的を達成するために、本発明ではアルミナ粉末よ
り平均粒径と同等以下のタングステン粉末を使用し、更
にその3〜20重量%をアルミナ粉末と共に適当な粘結
剤で懸濁液を作成し、これをヒータ芯線に単層で被着後
還元雰囲気中でシンクする手段を採用した。
(Means for solving the problem) In order to achieve this object, in the present invention, tungsten powder having an average particle size equal to or smaller than that of alumina powder is used, and 3 to 20% by weight of the tungsten powder is added along with the alumina powder to an appropriate amount. A method was adopted in which a suspension was created using a binder, the suspension was deposited in a single layer on the heater core wire, and then the suspension was sinked in a reducing atmosphere.

(作  用) ヒータ芯線に被着するアルミナ粉末の平均粒径は経験則
から1μl乃至5μlが一般に採用されており、このア
ルミナ粉末の平均粒径のそれと同等以下のタングステン
粉末は、その比表面積が大きくなるので、熱効率上有利
であるばかりでなく、ヒータ芯線を被覆する絶縁膜の焼
結に必要な熱負荷もこの表面エネルギの増加によって抑
制できる。
(Function) The average particle size of the alumina powder that adheres to the heater core wire is generally 1 μl to 5 μl as a rule of thumb, and the specific surface area of tungsten powder that is equal to or smaller than the average particle size of the alumina powder is This increase in surface energy is not only advantageous in terms of thermal efficiency, but also reduces the thermal load necessary for sintering the insulating film covering the heater core wire.

この焼結温度が1800℃以上になると、ヒータ芯線で
あるタングステンの高温脆化をもたらしたり炉の寿命も
短くすることになる。このような問題が起り難い温度1
700℃で充分な焼結を得るために、本発明ではタング
ステン粉末の平均粒径をアルミナ粉末のそれより小さい
ものを選定し、特にアルミナ粉末の平均粒径の1/2以
下が好ましい。勿論この混合粉末を利用して通常の吹付
法、電着法ならびに沈降法でヒータ芯線に被覆後還元雰
囲気で焼結して得られるヒータ芯線被覆層でも、このタ
ングステン粒子はアルミナ粒子中にはゾ均一に分散され
ている。
If the sintering temperature exceeds 1800° C., the tungsten core wire of the heater becomes brittle at high temperatures and the life of the furnace is shortened. Temperature 1 at which such problems are unlikely to occur
In order to obtain sufficient sintering at 700°C, in the present invention, the average particle size of the tungsten powder is selected to be smaller than that of the alumina powder, and in particular, it is preferably 1/2 or less of the average particle size of the alumina powder. Of course, even in the heater core wire coating layer obtained by coating the heater core wire with this mixed powder using the usual spraying method, electrodeposition method, or precipitation method and then sintering it in a reducing atmosphere, the tungsten particles are not dissolved in the alumina particles. Evenly distributed.

しかし、タングステン粒子/アルミナ粒子比を変えて、
タングステン粒子を多くすると、より黒っぽい外観とな
って陰極への熱効率は向上するものの、タングステン粒
子同志が連結し易くなリヒータと陰極間の絶縁性が低下
する。
However, by changing the tungsten particle/alumina particle ratio,
If the number of tungsten particles is increased, the appearance becomes darker and the heat efficiency to the cathode is improved, but the insulation between the reheater and the cathode, where the tungsten particles tend to connect with each other, is reduced.

逆にタングステン粒子を少なくし過ぎると外観は白っぽ
くなりその絶縁性は向上するが、陰極への熱効率はかえ
って悪化しヒータ温度の上昇を招いて絶縁性が落る。
On the other hand, if the amount of tungsten particles is too small, the appearance becomes whitish and the insulation improves, but the thermal efficiency to the cathode deteriorates, leading to an increase in the heater temperature, and the insulation deteriorates.

この関係を詳細に検討したところ、アルミナ粉末へのタ
ングステン粉末の混合率を5〜10重量%とするのが最
も良く、3重量%未満では熱効率が悪くなってヒータ温
度上昇をもたらし絶縁性が低下し、又20重量%を越え
た混合粉末を使用するとヒータ芯線に被着したタングス
テン粒子同志が連結して前述の碓点をもたらす。
After examining this relationship in detail, we found that it is best to mix the tungsten powder with the alumina powder at a mixing ratio of 5 to 10% by weight; if it is less than 3% by weight, the thermal efficiency deteriorates, causing the heater temperature to rise and the insulation to deteriorate. However, if a mixed powder exceeding 20% by weight is used, the tungsten particles adhering to the heater core wire will connect with each other, resulting in the above-mentioned point.

この゛関係を横軸にタングステン粉末とアルミナ粒末の
配合比率(%)を、縦軸にヒータの絶縁破壊電圧を採っ
た第1図により示す。
This relationship is shown in FIG. 1, where the horizontal axis represents the blending ratio (%) of tungsten powder and alumina powder, and the vertical axis represents the dielectric breakdown voltage of the heater.

この混合粉末を吹付法、沈降法もしくは電着法等でヒー
タ芯線に被着してヒータを完成後、速動型陰極と共にカ
ラーブラウン管に組込んで、このヒータ表面温度を10
90’ Kと従来ヒータと同様に調整する。そしてカラ
ーブラウン管に定格の150%電流を付勢し、カソード
ヒータ間に直流電圧を印加してヒータが絶縁破壊を起す
電圧を調査したのが第1図である。
After completing the heater by applying this mixed powder to the heater core wire by spraying, precipitation, or electrodeposition, the heater is assembled into a color cathode ray tube together with a fast-acting cathode, and the surface temperature of the heater is increased to 10
Adjust to 90'K in the same way as a conventional heater. Figure 1 shows that the color cathode ray tube was energized with 150% of its rated current, a DC voltage was applied across the cathode heater, and the voltage at which dielectric breakdown occurred in the heater was investigated.

この表から明らかなように、タングステン含有量7.5
%では最も良好な値を示し、3%ならびに20%では無
着色ヒータと同等を値を示しており、この結果から本発
明ではタングステン粉末の含有量を3%〜20%に限定
する。しかし5〜10%が確実に問題を生じない範囲で
ある。
As is clear from this table, the tungsten content is 7.5
% shows the best value, and 3% and 20% show values equivalent to non-colored heaters. Based on these results, in the present invention, the content of tungsten powder is limited to 3% to 20%. However, 5 to 10% is definitely within the range that does not cause any problems.

(実 施 例) 第2図a、bならびに第3図により本発明を詳述する。(Example) The invention will be explained in detail with reference to FIGS. 2a, b and 3. FIG.

ヒータを吹付法で形成する例で説明するが、必要な懸濁
液組成を先ず示す。平均粒径3虜のα型アルミナ粉末3
7g、平均粒径0.8μmのタングステン粉末3g(タ
ングステン比7.5%)、酢酸ブチル59gならびにニ
トロセルローズ1gを50On++2容器に添加して、
 40rpmで5時間撹拌して、懸濁液を形成する。
An example in which the heater is formed by a spraying method will be explained, but the necessary suspension composition will be shown first. α-type alumina powder 3 with average particle size 3
7 g, 3 g of tungsten powder with an average particle size of 0.8 μm (tungsten ratio 7.5%), 59 g of butyl acetate and 1 g of nitrocellulose were added to a 50On++2 container,
Stir at 40 rpm for 5 hours to form a suspension.

タングステン比3%では、平均粒径3μmのα型アルミ
ナ粉末38.8g、平均粒径0.8μsのタングステン
粉末1.2gを使用し、タングステン比20%の場合に
は、平均粒径3虜のα型アルミナ粉末32gと平均粒径
0.8/ffiのタングステン粉末8gを使用し、更に
、タングステン比5%の際と全く同様の条件で懸濁液を
形成する。
When the tungsten ratio is 3%, 38.8 g of α-type alumina powder with an average particle size of 3 μm and 1.2 g of tungsten powder with an average particle size of 0.8 μs are used, and when the tungsten ratio is 20%, the average particle size is 3 μm. Using 32 g of α-type alumina powder and 8 g of tungsten powder with an average particle size of 0.8/ffi, a suspension was further formed under exactly the same conditions as when the tungsten ratio was 5%.

次に、3%レニウム入りタングステン芯線をコイル状に
捲回したフィラメント表面に、各懸濁液を吹付法で厚さ
100μs被着後、1680℃の水素炉で5分間処理後
通常通り混酸でモリブデン芯金を溶解除去してヒータを
形成する。
Next, each suspension was applied to the surface of a filament made by winding a 3% rhenium-containing tungsten core wire into a coil shape by spraying to a thickness of 100 μs, and then treated in a hydrogen furnace at 1680°C for 5 minutes, and then mixed with molybdenum in a mixed acid as usual. The core metal is melted and removed to form a heater.

このレニウム入りタングステン芯線に被着したタングス
テン入りアルミナ層はは一′均一に分散したタングステ
ン粉末のため暗灰色にみえるが、その断面模型を第2図
a、bに示したにの芯線1を被覆するタングステンアル
ミナ層2では粒径の小さいタングステン粒子3がアルミ
ナ粒子4に均一に分散されており、このヒータ形状は1
680℃で熱処理工程前と比べても殆んど変形がみられ
ず、従来の2層型ヒータより明らかに差があった。
The tungsten-containing alumina layer deposited on this rhenium-containing tungsten core wire looks dark gray because of the uniformly dispersed tungsten powder, but its cross-sectional model is shown in Figures 2a and b. In the tungsten alumina layer 2, small-sized tungsten particles 3 are uniformly dispersed in the alumina particles 4, and the heater shape is 1.
At 680°C, almost no deformation was observed compared to before the heat treatment process, and there was a clear difference from the conventional two-layer heater.

〔発明の効果〕〔Effect of the invention〕

このヒータを使用した連動型陰極をカラーブラウン管に
組込み、この管球に定格の150%のヒータ電流を付勢
し、カソードヒータ間に210Vの電位差を印加した状
態で、90秒ON/90秒OFFのテストを各5本(ヒ
ータは各15本) 、 5000時間試験を行い、ヒー
タ/カソード間で絶縁破壊したヒータ本数を第6図に示
した。
An interlocking cathode using this heater is installed in a color cathode ray tube, and the tube is energized with a heater current of 150% of the rated value, and with a potential difference of 210V applied between the cathode heater, 90 seconds ON/90 seconds OFF. The test was carried out for 5,000 hours with 5 heaters each (15 heaters each), and the number of heaters that suffered dielectric breakdown between the heater/cathode is shown in Figure 6.

この図では横軸にタングステン/アルミナ比を縦軸にこ
の試験で絶縁破壊を起したヒータ本数を採ったもので、
タングステン比3%ならびに20%では僅かしか、絶縁
破壊が発生せず、5〜15%では何等問題は起らない。
In this figure, the horizontal axis shows the tungsten/alumina ratio, and the vertical axis shows the number of heaters that caused dielectric breakdown in this test.
At tungsten ratios of 3% and 20%, dielectric breakdown occurs only slightly, and at 5-15%, no problem occurs.

この点からも本願の有効性は明らかである。From this point as well, the effectiveness of the present application is clear.

又絶縁破壊を起こしたヒータをwi察したところ変形の
程度は、従来の2層ヒータに比べて明らかに小さいこと
が判明した。
Furthermore, when we inspected the heater that had suffered dielectric breakdown, it was found that the degree of deformation was clearly smaller than that of a conventional two-layer heater.

:!k LZ e −−31’a m ? X l′M
 ’14. yr< t 、    。
:! k LZ e --31'a m? X l'M
'14. yr<t, .

タングステン75%入りのヒータを使用した速度V型陰
極をカラーブラウン管に組込み、これに定格の200%
のヒータ電流を10秒ON/10秒OFF付勢して、断
線した時間を、タングステン酸アンモニウム溶液を使用
して作成したヒータと比較した。
A speed V-type cathode using a heater containing 75% tungsten is incorporated into a color cathode ray tube, and this
The heater current was turned ON for 10 seconds and OFF for 10 seconds, and the time taken for disconnection was compared with that of a heater made using an ammonium tungstate solution.

この結果、本発明ヒータは200時間で0/10.30
0時間で1710を示したのに対して、従来品は200
時間3/10.300時間4/11となり明らかに本発
明ヒータの優位性を示すものである。又この両ヒータを
1700℃10分の水素処理後に90°反復折り曲げ断
線テストを行ったところ従来品て=3回(1〜16)本
発明ヒータテ=10回(8〜14)と、この試験でも優
位であった。
As a result, the heater of the present invention was 0/10.30 in 200 hours.
The conventional product showed 1710 at 0 hours, while the conventional product showed 200.
Time: 3/10.300 hours: 4/11, which clearly shows the superiority of the heater of the present invention. In addition, when both heaters were subjected to a 90° repeated bending disconnection test after hydrogen treatment at 1700°C for 10 minutes, the results were 3 times (1 to 16) for the conventional product and 10 times (8 to 14) for the inventive heater. It was an advantage.

これらの結果は、本発明ヒータは従来品よりタングステ
ンの結晶成長が明らかに少なかったことからも理解でき
ることである。
These results can be understood from the fact that the heater of the present invention had clearly less tungsten crystal growth than the conventional heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、タングステン含有率とヒータの絶縁破壊電圧
の関係を示す図、第2図aは本発明ヒータ断面図、bは
、その粒子断面を模型的に示す図、第3図は、タングス
テン含有率とヒータの絶縁破壊本数を示す図である。
FIG. 1 is a diagram showing the relationship between tungsten content and dielectric breakdown voltage of the heater, FIG. It is a figure which shows a content rate and the number of dielectric breakdowns of a heater.

Claims (2)

【特許請求の範囲】[Claims] (1)ヒータ芯線の周囲にタングステン粉末を含むアル
ミナ粉末を主成分とする絶縁層形成材料を被覆し、この
被覆体を還元雰囲気中で加熱して、3〜20重量%のタ
ングステン粉末を含むアルミナ粉末焼結体よりなる絶縁
層を形成することを特徴とする傍熱形陰極用ヒータの製
造方法。
(1) The heater core wire is coated with an insulating layer-forming material mainly composed of alumina powder containing tungsten powder, and this coating is heated in a reducing atmosphere to form alumina powder containing 3 to 20% by weight of tungsten powder. A method for manufacturing an indirectly heated cathode heater, comprising forming an insulating layer made of a powder sintered body.
(2)タングステン粉末の平均粒径がアルミナ粉末の平
均粒径より小さいことを特徴とする特許請求の範囲第1
項記載の傍熱型陰極用ヒータの製造方法。
(2) Claim 1, characterized in that the average particle size of the tungsten powder is smaller than the average particle size of the alumina powder.
A method for manufacturing an indirectly heated cathode heater as described in .
JP18261486A 1986-08-05 1986-08-05 Manufacture of heater of indirectly heated cathode Pending JPS6340230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18261486A JPS6340230A (en) 1986-08-05 1986-08-05 Manufacture of heater of indirectly heated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18261486A JPS6340230A (en) 1986-08-05 1986-08-05 Manufacture of heater of indirectly heated cathode

Publications (1)

Publication Number Publication Date
JPS6340230A true JPS6340230A (en) 1988-02-20

Family

ID=16121368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18261486A Pending JPS6340230A (en) 1986-08-05 1986-08-05 Manufacture of heater of indirectly heated cathode

Country Status (1)

Country Link
JP (1) JPS6340230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616353A2 (en) * 1993-03-17 1994-09-21 Kabushiki Kaisha Toshiba Cathode assembly and method of manufacturing the same
US6485092B2 (en) 2000-04-28 2002-11-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Automotive light transmitting panel mounting structure
KR100396667B1 (en) * 2001-04-23 2003-09-02 엘지전자 주식회사 heater for heating cathode of color cathede ray tube and the manufacturing method
CN110676137A (en) * 2019-09-16 2020-01-10 九江学院 Preparation method of cathode for magnetron

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616353A2 (en) * 1993-03-17 1994-09-21 Kabushiki Kaisha Toshiba Cathode assembly and method of manufacturing the same
EP0616353A3 (en) * 1993-03-17 1994-11-09 Toshiba Kk Cathode assembly and method of manufacturing the same.
US5543682A (en) * 1993-03-17 1996-08-06 Kabushiki Kaisha Toshiba Cathode assembly incorporating a black layer formed from particles having a specified average particle size
US5762997A (en) * 1993-03-17 1998-06-09 Kabushiki Kaisha Toshiba Method of manufacturing a cathode assembly
US6485092B2 (en) 2000-04-28 2002-11-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Automotive light transmitting panel mounting structure
KR100396667B1 (en) * 2001-04-23 2003-09-02 엘지전자 주식회사 heater for heating cathode of color cathede ray tube and the manufacturing method
CN110676137A (en) * 2019-09-16 2020-01-10 九江学院 Preparation method of cathode for magnetron
CN110676137B (en) * 2019-09-16 2022-05-27 九江学院 Preparation method of cathode for magnetron

Similar Documents

Publication Publication Date Title
US2287460A (en) Insulated heater and method of manufacture
JPS6340230A (en) Manufacture of heater of indirectly heated cathode
US3737714A (en) Dark coated heater for vacuum tube cathode
US3246197A (en) Cathode heater having an aluminum oxide and tungesten coating
JP2839542B2 (en) Vibration-resistant tungsten wire, filament and halogen bulb using the same
EP0592915B1 (en) Low-pressure discharge lamp and process for producing a low-pressure discharge lamp
US5785731A (en) Process of making a non-sag tungsten wire for electric lamps
US5795366A (en) Method of manufacturing a non-sag tungsten wire for electric lamps
EP0421521A2 (en) X-ray tube anode with oxide layer
US3837909A (en) Coated coil emissive electrode
US2950993A (en) Oxide coated cathodes and method of manufacture
US6190466B1 (en) Non-sag tungsten wire
US2798010A (en) Method of manufacturing indirectly heated cathodes
US1461118A (en) Filament
US1149701A (en) Ductile filament.
US1123625A (en) Glower for electrical incandescent lamps.
US3206329A (en) Insulation coating for indirectly heated cathode heaters
US4745325A (en) Heater for indirect-heated cathode
US2076381A (en) Process for manufacturing metal bodies
JPS5936381B2 (en) Manufacturing method for electron tube heater
US1658712A (en) Zirconium alloy
US2202108A (en) Refractory metal composition
US1074333A (en) Glower for electrical incandescent lamps.
JPH06223776A (en) Electrode for fluorescent lamp
US1461117A (en) Filamentary body for electric lamps and method of making the same