JPS6339985A - Cooled coarse grain separation apparatus of slurry - Google Patents
Cooled coarse grain separation apparatus of slurryInfo
- Publication number
- JPS6339985A JPS6339985A JP18408086A JP18408086A JPS6339985A JP S6339985 A JPS6339985 A JP S6339985A JP 18408086 A JP18408086 A JP 18408086A JP 18408086 A JP18408086 A JP 18408086A JP S6339985 A JPS6339985 A JP S6339985A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- coarse particle
- coal
- remover
- coarse grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 96
- 238000000926 separation method Methods 0.000 title claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 239000002826 coolant Substances 0.000 claims abstract description 8
- 239000011362 coarse particle Substances 0.000 claims description 43
- 238000010008 shearing Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 29
- 239000003245 coal Substances 0.000 abstract description 18
- 239000002245 particle Substances 0.000 abstract description 18
- 238000003860 storage Methods 0.000 abstract description 6
- 239000000654 additive Substances 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Crushing And Grinding (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はスラリの冷却粗粒分離装置に係り、特に石炭−
水スラリの石炭粒子の粒径を安定に効率よ(調整し、輸
送及び燃焼に支障のない石炭−水スラリとするのに好適
な石炭−水スラリの冷却粗粒分離装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling coarse particle separation device for slurry, particularly for coal-
The present invention relates to a cooling coarse particle separation device for a coal-water slurry suitable for stably and efficiently adjusting the particle size of coal particles in a water slurry to produce a coal-water slurry that does not pose a problem in transportation and combustion.
従来、石炭−水スラリの製造−燃焼システムの例を第4
図に示す、第4図において、粉砕機3に投入される石炭
l及び水2と微量の添加剤17は、粉砕機3内で混合と
同時に粉砕され石炭水−スラリ (CWM)となろ、こ
の化スラリ4はバンファタンク5に入り、化スラリポン
プ6にて粗粒除去器7を通って製品スラリ8として貯蔵
タンクlOへ送られ、分離された粗粒スラリ9は粉砕機
3へ戻されて再粉砕される。貯蔵タンクlOからは製品
スラリポンプ1)にて燃焼用バーナ13へ燃焼用スラリ
12が供給されエネルギとして使用されろ。Conventionally, an example of a coal-water slurry production-combustion system is shown in the fourth example.
In FIG. 4, coal 1, water 2, and a small amount of additive 17, which are fed into the pulverizer 3, are mixed and pulverized in the pulverizer 3 at the same time to form a coal-water slurry (CWM). The chemical slurry 4 enters the Banfa tank 5, passes through the coarse particle remover 7 by the chemical slurry pump 6, and is sent to the storage tank IO as a product slurry 8, and the separated coarse particle slurry 9 is returned to the crusher 3. and then re-ground. A combustion slurry 12 is supplied from the storage tank IO to a combustion burner 13 by a product slurry pump 1) and used as energy.
この方式によるCWMの製造では、常温にて各物質が粉
砕1)13に供給されるが、粉砕機3に粉砕動力として
与えられる熱エネルギへの変化により粉砕機3の出口で
は、50〜70℃の高温の石炭−水スラリとなる。In the production of CWM using this method, each substance is supplied to the crusher 1) 13 at room temperature, but due to the change in thermal energy given to the crusher 3 as crushing power, the material is heated to 50 to 70°C at the outlet of the crusher 3. becomes a hot coal-water slurry.
上記した従来の石炭−水スラリの製造−燃焼システムで
は粉砕機3から排出される高温CWMに対し、粉砕機3
の後流側にて何らの操作も加えない放冷系統となってい
る。このため、粉砕機3出、口側の粗粒除去器7へは粉
砕機3出口CWMとほぼ同温度の50〜70’Cの石炭
−水スラリか入ってきる。しかるに、粗粒除去器7では
、石炭粒子径に対するふるい目の開口通過面積が大きく
ないため、第5図に示すように石炭1の粒子が粗粒除去
器7の粗粒除去器エレメント18に引っががり、叉その
間の狭い通路を抜けるのにスラリの流動化が大きく影響
を与える。特にスラリの温度が高いと石炭粒子の流動化
のための媒体である水の粘度が下がり、石炭1の゛粒子
の間をすり抜けるように水だけが粗粒除去器エレメント
18の隙間を通って粒子が取り残され粗粒除去器ニレメ
ン)18通過後の製品としてのスラリ濃度が低くなった
り、粗粒除去器エレメント18に引っかかった石炭1の
粒子が流動化を失って内部で凝集現象を来す問題があっ
た。In the conventional coal-water slurry production-combustion system described above, the crusher 3
This is a cooling system that does not require any operation on the downstream side. Therefore, the coal-water slurry at 50 to 70'C, which is approximately the same temperature as the CWM at the outlet of the crusher 3, enters the coarse particle remover 7 on the outlet side of the crusher 3. However, in the coarse particle remover 7, since the passage area of the sieve openings is not large relative to the coal particle diameter, the particles of the coal 1 are attracted to the coarse particle remover element 18 of the coarse particle remover 7, as shown in FIG. The fluidization of the slurry has a great effect on its ability to pass through the narrow passages between the cracks and prongs. In particular, when the temperature of the slurry is high, the viscosity of water, which is a medium for fluidizing coal particles, decreases, and only the water passes through the gaps in the coarse particle remover element 18 to pass between the particles of coal 1. The problem is that the slurry concentration as a product after passing through the coarse grain remover element 18 becomes low due to the remaining particles left behind, and the particles of coal 1 caught in the coarse grain remover element 18 lose fluidity and cause agglomeration inside. was there.
本発明の目的は、上記した従来技術の問題点を解消し、
粗粒除去器内における石炭粒子と水との分離現象を防止
し、粗粒除去器の安定した運転を可能にするとともに粗
粒除去器から取り出される製品スラリの濃度を所定範囲
とすることができる石炭−水スラリの冷却粗粒分離装置
に関する。The purpose of the present invention is to solve the problems of the prior art described above,
It is possible to prevent separation of coal particles and water in the coarse grain remover, enable stable operation of the coarse grain remover, and keep the concentration of the product slurry taken out from the coarse grain remover within a predetermined range. The present invention relates to a cooling coarse particle separation device for coal-water slurry.
〔問題点を解決するための手段〕 ゛上記し
た目的は、粉砕機出口の高温の被冷却スラリを、粗粒除
去器内部叉の低温スラリを冷却媒体として冷却する閉サ
イクル手段により達成される。[Means for Solving the Problems] The above object is achieved by a closed cycle means for cooling the high-temperature slurry to be cooled at the outlet of the crusher using the low-temperature slurry inside the coarse particle remover as a cooling medium.
粗粒除去器に導入されるスラリの温度を所定範囲に維持
できる。このため、スラリ中の石炭粒子と水との分離現
象が回避され、石炭粒子の表面に水が存在した状態で粗
粒除去器内のエレメントを通過し、スラリの通過率が向
上するとともにエレメント周辺に石炭粒子の凝集現象が
防止され、粗粒除去器の運転が安定する。高温の被冷却
スラリを冷却して再昇温されたスラリかバーナ等の燃焼
装置に導入される。The temperature of the slurry introduced into the coarse particle remover can be maintained within a predetermined range. Therefore, the separation phenomenon between coal particles and water in the slurry is avoided, and the coal particles pass through the element in the coarse particle remover with water present on the surface, improving the passage rate of the slurry and This prevents the agglomeration of coal particles and stabilizes the operation of the coarse particle remover. The high-temperature slurry to be cooled is cooled and the slurry is heated again and introduced into a combustion device such as a burner.
以下、図面に基づいて本発明の実施例を詳細に説明する
。第1図は本発明の一実施例を示す系統図である。第1
図において、バッファタンク5と粗粒除去器7とを接続
する石炭−水スラリ輸送配管の途中に熱交換器14が設
置されている。この熱交換器14には貯蔵タンクlOか
ら燃焼用スラリ輸送配管12を介して燃焼用スラリか供
給され、燃焼用スラリ輸送配管12を経た製品スラリか
燃焼用バーナ13に供給されるようになっている。Embodiments of the present invention will be described in detail below based on the drawings. FIG. 1 is a system diagram showing one embodiment of the present invention. 1st
In the figure, a heat exchanger 14 is installed in the middle of a coal-water slurry transport pipe that connects a buffer tank 5 and a coarse particle remover 7. Combustion slurry is supplied to the heat exchanger 14 from the storage tank IO via the combustion slurry transport pipe 12, and product slurry that has passed through the combustion slurry transport pipe 12 is supplied to the combustion burner 13. There is.
前記熱交換器14に対し、燃焼用スラリ輸送配管12の
バイパス管15が設けられ、このバイパス管15の途中
に流I1)整弁16が設置されている。この流ttW整
弁I6は、熱交換器14の下流側で、且つ粗粒除去器7
の上流側に設置された温度コントローラ20からの信号
に基づいて作動するようになっている。また、粗粒除去
器ニレメン)18を通過する前の粗粒除去器内のスラリ
←剪断力を与えるための攪拌1)19が設けられている
。A bypass pipe 15 of the combustion slurry transport pipe 12 is provided to the heat exchanger 14, and a flow I1) regulating valve 16 is installed in the middle of the bypass pipe 15. This flow ttW regulating valve I6 is located downstream of the heat exchanger 14 and at the coarse particle remover 7.
It operates based on a signal from a temperature controller 20 installed upstream of the temperature controller 20. Further, a stirring 1) 19 is provided for applying a shearing force to the slurry in the coarse grain remover before passing through the coarse grain remover 18.
なお、第1図における上記以外の構成部分は第4図に示
す従来の図と実質的に同一であるので同一符号で示し、
詳細な説明は省略する。Note that the constituent parts in FIG. 1 other than those mentioned above are substantially the same as those in the conventional diagram shown in FIG.
Detailed explanation will be omitted.
次に上記のように構成される石炭−水スラリの冷却粗粒
分離装置の作用について説明する。Next, the operation of the coal-water slurry cooling coarse particle separation apparatus constructed as described above will be explained.
粉砕機3からの50〜70℃程度の高温の化スラリ4は
、バッファタンク5に一旦貯留された後、生スラリポン
プ6を介して粗粒除去器7内に導入される前に熱交換器
L4にて冷却される。The slurry 4 at a high temperature of about 50 to 70°C from the crusher 3 is temporarily stored in a buffer tank 5 and then passed through a heat exchanger before being introduced into a coarse particle remover 7 via a raw slurry pump 6. It is cooled at L4.
熱交換器14には粗粒除去器7の後流側で大気熱放散等
により比較的低い温度となっている製品スラリか燃焼用
スラリ輸送配管12を介して供給される。この製品スラ
リの一部は熱交換器14に供給されることなくバイパス
管15を介して直接燃焼用バーナ13側に導入される。The product slurry, which has a relatively low temperature due to atmospheric heat dissipation on the downstream side of the coarse particle remover 7, is supplied to the heat exchanger 14 via the combustion slurry transport pipe 12. A part of this product slurry is directly introduced into the combustion burner 13 via the bypass pipe 15 without being supplied to the heat exchanger 14 .
したがって熱交換器14に供給される製品スラリの流量
は、バイパス管15に設置された流量1Jf4整弁16
の開度調整により制御される。流量調整弁16の開度調
整は、温度コントローラ20により粗粒除去器7に導入
される前の化スラリの温度を計測し、この計測値と、化
スラリの設定温度値の偏差に基づいて流量調整弁16に
開度制御信号が出力される。Therefore, the flow rate of the product slurry supplied to the heat exchanger 14 is determined by the flow rate 1Jf4 regulating valve 16 installed in the bypass pipe 15.
Controlled by adjusting the opening. The opening degree of the flow rate adjustment valve 16 is adjusted by measuring the temperature of the chemical slurry before it is introduced into the coarse particle remover 7 by the temperature controller 20, and adjusting the flow rate based on the deviation between this measured value and the set temperature value of the chemical slurry. An opening control signal is output to the regulating valve 16.
このようにして所定の温度に冷却された化スラリは、粗
粒除去器7に導入される。粗粒除去器7において、化ス
ラリ中の石炭粒子と水の粘性の過度の上昇が防止される
。The slurry thus cooled to a predetermined temperature is introduced into the coarse particle remover 7. In the coarse particle remover 7, the viscosity of coal particles and water in the slurry is prevented from increasing excessively.
粗粒除去器7内に取り付けられた攪拌機19は、スラリ
が粗粒除去器エレメント18を通過する前に剪断力を与
えるため、チクソトロピンク性を有するスラリでは通過
時の見掛は粘度を下げる効果があり、粗粒除去器エレメ
ント1Bの通過性・処理能力の向上が図られる。The agitator 19 installed in the coarse grain remover 7 applies shearing force to the slurry before it passes through the coarse grain remover element 18, which reduces the apparent viscosity of the slurry having thixotropic properties during passage. This is effective and improves the permeability and processing capacity of the coarse particle remover element 1B.
スラリに剪断力を与える手段は、粗粒除去器内部に限ら
ず、(1)配管系統上にラインミキサを設ける、(2)
バッファタンク5内に攪拌機を設ける、(3)スラリ処
理系統中に高剪断のかかるポンプを選定する等の手段を
採用しても同等の効果を図ることができる。Means for applying shearing force to the slurry are not limited to the inside of the coarse particle remover; (1) providing a line mixer on the piping system; (2)
The same effect can be achieved by adopting measures such as providing an agitator in the buffer tank 5 or (3) selecting a pump that applies high shear in the slurry processing system.
粗粒除去機エレメント18でのCWMの通過挙動は、ス
ラリとその構成される石炭・水の流動時の現象によって
理解される。第2図はCWMの一般的な流動特性として
非二ニートン流体のうちの擬塑性の流動特性の1例を示
す、Xは剪断速度、Yは粘度を示し、時間経過と共にa
−4bは初期の剪断増加、b→Cは剪断一定、C−4d
はその後の剪断減少とした時の状況を示している。この
特性は、同一剪断速度にて時間経過により粘度が下がる
傾向(チクソトロピンク性)を示しており、この様なス
ラリでは粗粒除去器エレメント1Bを通過する場合に出
来るだけ時間をかけて予め剪断をスラリに加えることに
よって粘度が下がるため、容易にスラリか通過できるよ
うになる。The passage behavior of the CWM in the grit remover element 18 can be understood by the phenomena during flow of the slurry and its constituent coal/water. Figure 2 shows an example of the pseudoplastic flow characteristics of a non-diniton fluid as a general flow characteristic of CWM.
-4b is initial shear increase, b→C is constant shear, C-4d
shows the situation when the shear is reduced after that. This characteristic indicates a tendency for the viscosity to decrease over time at the same shear rate (thixotropic property), and in this kind of slurry, it takes as much time as possible before passing through the coarse particle remover element 1B. Applying shear to the slurry reduces its viscosity, allowing it to pass through the slurry more easily.
次に第3図は温度Tに対するスラリ中の石炭の通過率P
を示す、温度が低いと凍結したりスラリの粘性が高く、
粗粒除去器エレメント1Bを通過し難い、又、温度が高
過ぎるとスラリの粘性は低くなるが、水の粘性も同時に
下がるため水だけが選択的に粗粒除去器エレメント1B
を通過して、石炭粒子が取り残されるため通過率が悪い
、結局温度的には、ある範囲Aで通過率が最大となる最
適値が存在し、この範囲に入る様、スラリを温度調節す
ることによって粗粒除去器エレメント18内の水分離現
象あるいは石炭粒子凝集現象を防止することができる。Next, Figure 3 shows the passage rate P of coal in the slurry with respect to temperature T.
If the temperature is low, the slurry may freeze or the viscosity of the slurry may be high.
If it is difficult for the slurry to pass through the coarse particle remover element 1B, and if the temperature is too high, the viscosity of the slurry will decrease, but the viscosity of water will also decrease at the same time, so only water will selectively pass through the coarse particle remover element 1B.
The passing rate is poor because the coal particles are left behind.In the end, there is an optimum temperature value where the passing rate is maximum in a certain range A, and the temperature of the slurry must be adjusted so that it falls within this range. This makes it possible to prevent water separation or coal particle aggregation within the coarse particle remover element 18.
この温度範囲Aは、スラリの種類等により異なるが、石
炭−水スラリの場合、20〜60℃、望★しくは30〜
50℃である。This temperature range A varies depending on the type of slurry, etc., but in the case of coal-water slurry, it is 20 to 60 °C, preferably 30 to
The temperature is 50°C.
さらに粉砕機3出口のスラリを、粉砕機3後流側で、且
つ粗粒除去器7の前流側で粗粒除去器7の後流側の低温
のスラリにより所定の温度範囲に冷却するという冷却−
加熱自己閉サイクルを採用している。したがって、他の
設備系統からのスラリ冷却用の冷却媒体を使用する必要
がない、また、熱交換器14において、粉砕機3出口の
スラリの冷却用に使用されたスラリは、粉砕機3出口の
スラリとほぼ同等の温度まで再昇温されて燃焼用バーナ
13に供給されるので燃焼時の着火性や熱回収による効
率向上を図ることができる。Further, the slurry at the outlet of the crusher 3 is cooled to a predetermined temperature range by the low-temperature slurry downstream of the coarse particle remover 7 on the downstream side of the crusher 3 and on the upstream side of the coarse particle remover 7. Cooling-
Adopts a heating self-closing cycle. Therefore, it is not necessary to use a cooling medium for slurry cooling from another equipment system, and in the heat exchanger 14, the slurry used for cooling the slurry at the outlet of the crusher 3 is Since it is heated again to almost the same temperature as the slurry and then supplied to the combustion burner 13, it is possible to improve the ignitability during combustion and the efficiency through heat recovery.
上記した実施例において、CWM製造設備における粗粒
分離と燃焼用バーナ系統とを直接連絡したシステムとし
て示したが、本発明は輸送、その他の系統中において、
スラリ中の粗粒分離を目的とする系統においても適用す
ることができる。またスラリは、石炭−水スラリに限ら
ず、他の固体−液体混合物に対しても通用可能である。In the above-mentioned embodiments, the coarse particle separation and combustion burner systems in the CWM production facility were shown as systems in direct communication, but the present invention also provides
It can also be applied to systems whose purpose is to separate coarse particles in slurry. Further, the slurry is not limited to coal-water slurry, but can also be used for other solid-liquid mixtures.
以上のように本発明によれば、粗粒除去器におけるスラ
リのエレメント通過時の処理能力の向上、固体粒子と水
との分離現象および固体粒子の凝集現象を防止できる。As described above, according to the present invention, it is possible to improve the processing capacity of the slurry when it passes through the element in the coarse particle remover, and to prevent the phenomenon of separation of solid particles and water and the phenomenon of agglomeration of solid particles.
このため、製品スラリの品質(t1度)の向上とスラリ
製造システムの安定運用を図ることができる。Therefore, it is possible to improve the quality (t1 degree) of the product slurry and to stably operate the slurry manufacturing system.
第1)!lは本発明にかかるスラリの冷却粗粒分離装置
の一実施例を示す系統図、第2図はスラリの流動特性図
、第3図はスラリ温度に対するエレメント通過率を示す
相関図、第4図は従来のスラリ製造設備の系統図、第5
図はね粒除去器内エレメント断面におけるスラリ通過状
況を示す説明図である。
3・・・・・・粉砕機、5・・・・・・バンファタンク
、7・・・・・・粗粒除去器、10・・・・・・貯蔵タ
ンク、13・・・・・・燃焼用バーナ、14・・・・・
・熱交換器、15・・・・・・バイパス管、16・・・
・・・流量調整弁、18・・・・・・粗粒除去器エレメ
ント、19・・・・・・攪拌機、20・・・・・・温度
コントローラ。
代理人 弁理士 西 元 勝 −
嬉1図
第2図 第3図
X呻 T−1st)! 1 is a system diagram showing an embodiment of the slurry cooling coarse particle separation device according to the present invention, FIG. 2 is a flow characteristic diagram of slurry, FIG. 3 is a correlation diagram showing element passage rate with respect to slurry temperature, and FIG. is a system diagram of conventional slurry manufacturing equipment, No. 5
The figure is an explanatory diagram showing a slurry passage situation in a cross section of an element in a slag remover. 3...Crusher, 5...Banpha tank, 7...Coarse particle remover, 10...Storage tank, 13... Combustion burner, 14...
・Heat exchanger, 15...Bypass pipe, 16...
... Flow rate adjustment valve, 18 ... Coarse particle remover element, 19 ... Stirrer, 20 ... Temperature controller. Agent Patent Attorney Masaru Nishimoto - Figure 1, Figure 2, Figure 3, Figure 3, T-
Claims (2)
この粉砕機の後流側に粉砕機で得られるスラリ中の粗粒
分を分離除去する粗粒除去器とを備えたものにおいて、
前記粉砕機出口の高温の被冷却スラリを、前記粗粒除去
器後流側の低温スラリを冷却媒体として冷却する閉サイ
クル手段を設けたことを特徴とするスラリの冷却粗粒分
離装置。(1) A crusher that crushes and manufactures a mixture of solid and liquid;
This pulverizer is equipped with a coarse particle remover on the downstream side for separating and removing coarse particles in the slurry obtained by the pulverizer,
A slurry cooling coarse particle separation apparatus, characterized in that a closed cycle means is provided for cooling the high temperature slurry to be cooled at the outlet of the crusher using the low temperature slurry downstream of the coarse particle remover as a cooling medium.
の熱交換器をバイパスする冷却媒体系統を設け、熱交換
器側に対する冷却媒体流量を調整する手段を設けたこと
を特徴とする特許請求の範囲第(1)項記載のスラリの
冷却粗粒分離装置、(3)前記粗粒除去器内部叉は上流
側にスラリに剪断力を与える手段を設けた特許請求の範
囲第(1)項記載のスラリの冷却粗粒分離装置。(2) A heat exchanger between the slurry to be cooled and a cooling medium, a cooling medium system that bypasses this heat exchanger, and means for adjusting the flow rate of the cooling medium to the heat exchanger side are provided. A cooling coarse particle separation device for slurry according to claim (1), (3) a means for applying shearing force to the slurry inside or on the upstream side of the coarse particle remover is provided. ) A cooling coarse particle separation device for slurry as described in item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18408086A JPH0762146B2 (en) | 1986-08-05 | 1986-08-05 | Coal-water slurry cooling coarse-grain separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18408086A JPH0762146B2 (en) | 1986-08-05 | 1986-08-05 | Coal-water slurry cooling coarse-grain separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6339985A true JPS6339985A (en) | 1988-02-20 |
JPH0762146B2 JPH0762146B2 (en) | 1995-07-05 |
Family
ID=16147041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18408086A Expired - Fee Related JPH0762146B2 (en) | 1986-08-05 | 1986-08-05 | Coal-water slurry cooling coarse-grain separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0762146B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5113360A (en) * | 1989-10-31 | 1992-05-12 | Kabushiki Kaisha Toshiba | Portable apparatus with a structure to secure a printed circuit board to a base unit |
-
1986
- 1986-08-05 JP JP18408086A patent/JPH0762146B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5113360A (en) * | 1989-10-31 | 1992-05-12 | Kabushiki Kaisha Toshiba | Portable apparatus with a structure to secure a printed circuit board to a base unit |
Also Published As
Publication number | Publication date |
---|---|
JPH0762146B2 (en) | 1995-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1257771A (en) | Process for producing a coal-water slurry | |
CA1188517A (en) | Aqueous phase continuous, coal fuel slurry and a method of its production | |
JP7295090B2 (en) | Method and apparatus for reforming fly ash | |
JPS6339985A (en) | Cooled coarse grain separation apparatus of slurry | |
JPH02232296A (en) | Preparation of coal-water slurry | |
JP2631623B2 (en) | Apparatus and method for producing coal / water slurry | |
JPS6220592A (en) | Production of coal water slurry in high concentration by wet process | |
RU2180891C1 (en) | Plant for production of highly condensed ammonium polyphosphate | |
JPS63315101A (en) | Drying method of fine powdery aqueous slurry | |
SU1333967A2 (en) | Method of preparing low-reaction coal for burning | |
JPS60843A (en) | Crushing dispersing machine | |
JPS6355560B2 (en) | ||
JP2511129B2 (en) | Method for producing high concentration coal water slurry | |
JPH10300020A (en) | Power generation system | |
JP3616110B2 (en) | Pasty fuel manufacturing method and apparatus | |
JPH0576991B2 (en) | ||
JPS6119694A (en) | Production of coal/water slurry having high coal content | |
JPH0552358B2 (en) | ||
JPS63282145A (en) | Method for removing unburned component in coal ash | |
JPH0576990B2 (en) | ||
JPH0552359B2 (en) | ||
JPH0429412B2 (en) | ||
JPH0671192A (en) | Cwm producing device | |
JPS6236492A (en) | Production of high-concentration coal-water slurry | |
JPS62116690A (en) | Production of coal-water slurry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |