JPS633965B2 - - Google Patents

Info

Publication number
JPS633965B2
JPS633965B2 JP59116526A JP11652684A JPS633965B2 JP S633965 B2 JPS633965 B2 JP S633965B2 JP 59116526 A JP59116526 A JP 59116526A JP 11652684 A JP11652684 A JP 11652684A JP S633965 B2 JPS633965 B2 JP S633965B2
Authority
JP
Japan
Prior art keywords
weight
parts
thiabendazole
fibers
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59116526A
Other languages
Japanese (ja)
Other versions
JPS61616A (en
Inventor
Tomoyuki Saito
Hiroshi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11652684A priority Critical patent/JPS61616A/en
Publication of JPS61616A publication Critical patent/JPS61616A/en
Publication of JPS633965B2 publication Critical patent/JPS633965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は風合の良好な抗菌性繊維及びその製造
方法に関するものである。 従来の技術 アクリル系合成繊維は衣料用、寝装用に幅広く
使用されているが近年サニタリー分野で利用され
るマツトやカーペツト類又は人体より分泌される
汗と接触するスポーツ衣料、靴下、肌着、シー
ツ、毛布等に抗菌性、防臭性を有しているものが
要求されるようになつた。 従来、天然又は合成繊維に抗菌力を持つ化合物
を塗布又はスプレーしたり、化合物溶液に繊維を
含浸せしめる方法が知られているが、かかる方法
ではその効力に持続性がなく、その後の洗濯等に
よつて容易に付着せしめた抗菌剤が脱落するとい
う欠点を有するものである。また繊維に耐洗濯性
を付与るために抗菌剤を添加した樹脂を用いて樹
脂加工すれば繊維風合を損うという欠点を有して
いる。 一方サイアベンダゾールは微量でも多くの微生
物に対して強い抗菌作用を示し、かつ毒性は殆ん
ど無く米国では食品添加物としても認可されてい
るほどである。 しかしこのサイアベンダゾールは高価であり、
アクリル系重合体の多くの有機溶剤に溶け易く、
通常のアクリル系重合体との有機溶剤溶液を湿式
紡糸すると紡糸時に紡浴中に溶出するサイアベン
ダゾールが多いため繊維中に含有されるサイアベ
ンダゾールの歩留りが悪くコストアツプになると
いう欠点を有している。 本発明者らはかかる欠点を改善すべく鋭意研究
の結果サイアベンダゾールを可塑剤に分散させた
ものをアクリロニトル系重合体に混合することに
よつて、風合や物性を悪化させることなく耐洗濯
性の良好な抗菌性を有するという知見を得た。 発明が解決しようとする問題点 本発明の目的は優れた抗菌性、防臭性を有し、
低毒性で皮膚、粘膜への刺激が少なく、かつ耐洗
濯性を有し風合や物性の悪化しない抗菌性アクリ
ル系合成繊維を提供するにある。他の目的はかか
るアクリル系合成繊維を工業的容易に、かつ安価
に製造する方法を提供するにある。 問題点を解決するための手段 本発明の要旨は次のとおりである。 (1) アクリロニトリル系重合体100重量部に対し
一般式、 で示されるサイアベンダゾールの0.05〜3重量
部が分散されている無機系溶剤に不溶な可塑剤
の0.05〜20重量部を、該アクリロニトリル系重
合体中に分散してなることを特徴とする風合の
良好な抗菌性繊維 (2) アクリロニトリル系重合体100重量部に対し
一般式、 で示されるサイアベンダゾールの0.05〜3重量
部を無機系溶剤に不溶な可塑剤中に分散せし
め、次いで該無機系溶剤に不溶な可塑剤の0.05
〜20重量部を予め無機系溶剤溶液に溶解されて
いるアクリロニトリル系重合体に添加、分散せ
しめて紡糸原液となし、常法により紡糸するこ
とを特徴とする風合の良好な抗菌性繊維の製造
方法。 本発明に使用するアクリル系重合体は少なくと
も60重量%のアクリロニトリルを含有するもので
あつて、他の重合し得るビニル系モノマーとのア
クリロニトリル共重合体並びに他の重合体との混
合重合体を意味する。 他の重合しうるビニルモノマーとは、酢酸ビニ
ル、塩化ビニル、塩化ビニリデン、アクリル酸、
アクリル酸エステル類、メタクリル酸、メタクリ
ル酸エステル類、アクリルアミド、メタクリルア
ミド、およびそれらのモノアルキル置換体、ビニ
ルスルホン酸、アリルスルホン酸、メタリルスル
ン酸およびそれらの塩類等のビニル化合物等アク
リロニトリルと共重合しうるすべてのモノマーを
いう。 本発明に使用する可塑剤は塩化パラフイン、リ
ン酸エステル、フタル酸エステル、脂肪族―塩基
酸エステル、脂肪族二塩基酸エステル、二価アル
コールエステル等からなる群から選ばれた少なく
とも1種のものである。 本発明で採用する紡糸方法は濃硝酸、濃硫酸等
の濃厚な無機酸及びロダン塩、塩化亜鉛等の濃厚
無機塩水溶液を溶剤とした湿式紡糸方法であり、
従来公知の紡糸、水洗、延伸、乾燥等の方法が適
用でき、特に限定する必要はない。無機系溶剤の
湿式紡糸を採用することにより、サイアベンダゾ
ールの紡糸浴中への溶出は完全に防ぐことができ
る。 本発明でいうサイアベンダゾールの化学名は2
―(4―チアゾリール)―ベンツイミダゾールで
あり、アクリロニトリル系重合体100重量部に対
して0.05〜3重量部が分散れていることが好まし
い。サイアベンダゾールの含有量が0.05重量部以
下では抗菌性効果に乏しい。また抗菌性効果で3
重量部以上は必要としない。 なお、さらに他の公知の抗菌又は防黴性物質と
併用しても良い。 紡糸に用いる重合体の無機系溶剤溶液の濃度は
通常10〜20重量%である。サイアベンダゾールは
予め可塑剤に分散させておき、アクリロニトリル
系重合体を前記無機系溶剤に溶解した後に添加
し、充分撹拌して微小粒状に分散させればよい。
可塑剤の分散は繊維形成が可能な程度に細かく分
散させる必要がある。 実施例 1 アクリロニトリル93.1重量%、アクリル酸メチ
ル6.3重量%、メタリルスルホン酸ソーダ0.6重量
%からなる共重合体を、69.0重量%の濃硝酸に溶
解して15.3重量%の共重合体濃度を有する溶液を
調製し、該溶液に共重体重量100部に対して、塩
化度40%の塩化パラフイン及びサイアベンダゾー
ルを表―1の組成で予め混合、分散した液を添加
し、30分撹拌・脱泡したものを紡糸原液とした。
これを従来公知の方法で、紡糸、水洗、延伸、乾
燥、弛緩熱処理等の工程を経て繊維形成を行つ
た。 得られた繊維で編地を作成し、これを5cm×5
cmの大きさに切り寒天培地の上に置き、黴の混合
胞子懸濁液を撒きかけ、28℃で14日間培養を行つ
た。編地周辺での菌の生育が認められなかつたも
のを(−)、生育の認められたものを(+)とし
た。その結果を表―1に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an antibacterial fiber with good texture and a method for producing the same. Conventional technology Acrylic synthetic fibers are widely used for clothing and bedding, but in recent years they have been used in the sanitary field such as mats and carpets, as well as sports clothing, socks, underwear, sheets, etc. that come in contact with sweat secreted by the human body. BACKGROUND ART Blankets and the like have come to be required to have antibacterial and deodorizing properties. Conventionally, methods have been known in which natural or synthetic fibers are coated or sprayed with antibacterial compounds, or the fibers are impregnated with a compound solution, but these methods do not maintain their effectiveness long-term and do not last long after washing, etc. This has the disadvantage that the antibacterial agent that has been attached easily falls off. Furthermore, if the fibers are processed with a resin containing an antibacterial agent in order to impart washing resistance to the fibers, the texture of the fibers will be impaired. On the other hand, thiabendazole exhibits a strong antibacterial effect against many microorganisms even in minute amounts, and has almost no toxicity, so it is even approved as a food additive in the United States. However, this thiabendazole is expensive;
Acrylic polymers are easily soluble in many organic solvents,
When wet-spinning a conventional organic solvent solution with an acrylic polymer, a large amount of thiabendazole is eluted into the spinning bath during spinning, resulting in poor yield of thiabendazole contained in the fiber and increased costs. ing. The inventors of the present invention have conducted extensive research in order to improve these drawbacks. By mixing thiabendazole dispersed in a plasticizer with an acrylonitrile polymer, we have developed a method that provides washing resistance without deteriorating the texture or physical properties. We obtained the knowledge that it has good antibacterial properties. Problems to be Solved by the Invention The purpose of the present invention is to have excellent antibacterial and deodorizing properties,
To provide an antibacterial acrylic synthetic fiber with low toxicity, less irritation to the skin and mucous membranes, wash resistance, and no deterioration in texture or physical properties. Another object is to provide a method for manufacturing such acrylic synthetic fibers industrially easily and at low cost. Means for Solving the Problems The gist of the present invention is as follows. (1) General formula for 100 parts by weight of acrylonitrile polymer, 0.05 to 20 parts by weight of a plasticizer insoluble in an inorganic solvent in which 0.05 to 3 parts by weight of thiabendazole represented by is dispersed in the acrylonitrile polymer. Antibacterial fiber with good combination (2) General formula for 100 parts by weight of acrylonitrile polymer: 0.05 to 3 parts by weight of thiabendazole represented by is dispersed in a plasticizer insoluble in an inorganic solvent, and then 0.05 parts by weight of the plasticizer insoluble in the inorganic solvent is dispersed.
Production of antibacterial fiber with good texture by adding ~20 parts by weight to an acrylonitrile polymer previously dissolved in an inorganic solvent solution and dispersing it to prepare a spinning stock solution, which is then spun using a conventional method. Method. The acrylic polymer used in the present invention contains at least 60% by weight of acrylonitrile, and refers to acrylonitrile copolymers with other polymerizable vinyl monomers and mixed polymers with other polymers. do. Other polymerizable vinyl monomers include vinyl acetate, vinyl chloride, vinylidene chloride, acrylic acid,
Copolymerized with acrylonitrile, such as acrylic esters, methacrylic acid, methacrylic esters, acrylamide, methacrylamide, monoalkyl substituted products thereof, vinyl compounds such as vinyl sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, and their salts. Refers to all monomers that can be used. The plasticizer used in the present invention is at least one selected from the group consisting of chlorinated paraffin, phosphate ester, phthalate ester, aliphatic-basic acid ester, aliphatic dibasic acid ester, dihydric alcohol ester, etc. It is. The spinning method adopted in the present invention is a wet spinning method using a concentrated inorganic acid such as concentrated nitric acid or concentrated sulfuric acid, and a concentrated aqueous solution of an inorganic salt such as Rodan salt or zinc chloride as a solvent.
Conventionally known methods such as spinning, washing with water, stretching, drying, etc. can be applied, and there is no need to specifically limit the method. By employing wet spinning using an inorganic solvent, elution of thiabendazole into the spinning bath can be completely prevented. The chemical name of thiabendazole in the present invention is 2
-(4-thiazolyl)-benzimidazole, and preferably 0.05 to 3 parts by weight is dispersed per 100 parts by weight of the acrylonitrile polymer. If the content of thiabendazole is less than 0.05 part by weight, the antibacterial effect will be poor. It also has an antibacterial effect.
No more than part by weight is required. In addition, it may be used in combination with other known antibacterial or antifungal substances. The concentration of the inorganic solvent solution of the polymer used for spinning is usually 10 to 20% by weight. Thiabendazole may be dispersed in a plasticizer in advance, added after dissolving the acrylonitrile polymer in the inorganic solvent, and sufficiently stirred to disperse into fine particles.
The plasticizer must be dispersed finely enough to form fibers. Example 1 A copolymer consisting of 93.1% by weight of acrylonitrile, 6.3% by weight of methyl acrylate, and 0.6% by weight of sodium methallylsulfonate was dissolved in 69.0% by weight of concentrated nitric acid to have a copolymer concentration of 15.3% by weight. A solution was prepared, and a solution in which chlorinated paraffin and thiabendazole with a chloride degree of 40% were mixed and dispersed in the composition shown in Table 1 was added to the solution based on 100 parts of the coweight, and the mixture was stirred and desorbed for 30 minutes. The foamed material was used as a spinning dope.
This was formed into fibers by a conventionally known method through steps such as spinning, water washing, stretching, drying, and relaxation heat treatment. Create a knitted fabric with the obtained fibers and divide it into 5cm x 5
The pieces were cut into cm-sized pieces and placed on an agar medium, sprinkled with a mixed mold spore suspension, and cultured at 28°C for 14 days. A sample in which no bacterial growth was observed around the knitted fabric was graded as (-), and a sample in which growth was observed was graded as (+). The results are shown in Table-1.

【表】 繊維中のサイアベンダゾール濃度は、試料を
DNFに溶解させガスクロマトグラフイーにより
分析した。添加量に対するロスは殆んど無いこと
がわかる。 実施例 2 実施例1で製造した繊維のうち表―1に示すNo.
4のものにつき編地を作成し、この編地の洗濯
0,5,10,15,20回後の抗菌性を実施例1と同
様に調べた。その結果を表―2に示す。
[Table] The concentration of thiabendazole in the fiber is determined by
It was dissolved in DNF and analyzed by gas chromatography. It can be seen that there is almost no loss with respect to the amount added. Example 2 Among the fibers produced in Example 1, No. 1 shown in Table 1 was used.
A knitted fabric was prepared for No. 4, and the antibacterial properties of this knitted fabric after washing 0, 5, 10, 15, and 20 times were examined in the same manner as in Example 1. The results are shown in Table-2.

【表】 実施例 3 実施例1で製造した繊維のうち表―1に示すNo.
4のものにつき編地を作成し、この編地をAとす
る。又表―1に示すNo.1の無添加の繊維より作成
した編地に、抗菌剤を添加した樹脂の2.0%水洗
液で浸漬10,0%絞り後乾燥キユアリングした樹
脂加工を施したものをBとする。無添加の繊維よ
り作成し樹脂加工を行わない編地をCとして、C
に対してA,Bの風合いを20人に比較させたとこ
ろ表―3のような結果を得た。
[Table] Example 3 Among the fibers produced in Example 1, the No. 1 fibers shown in Table 1.
A knitted fabric was created for item 4, and this knitted fabric was designated as A. In addition, a knitted fabric made from the No. 1 additive-free fiber shown in Table 1 was treated with a resin treatment by soaking it in a 2.0% washing solution of a resin containing an antibacterial agent, squeezing it 10.0%, and then drying and curing it. Let it be B. A knitted fabric made from additive-free fibers and without resin processing is designated as C.
When 20 people compared the textures of A and B, the results shown in Table 3 were obtained.

【表】 実施例 4 アクリロニトリル89.8重量%、アクリル酸メチ
ル3.5重量%、アクリルアミド6.3重量%、メタリ
ルスルホン酸ソーダ0.4重量%からなる共重合体
を調製し、実施例1と同様にして、リン酸トリク
レジルを共重合体重量に対して2.5%、サイアベ
ンダゾールを共重合体重量に対して0.5%となる
ように予め分散したものを添加・紡糸して繊維を
作成した。この繊維から編地を作成し実施例1と
同様に抗菌性を調べたところ、黴の生育は認めら
れなかつた。 実施例 5 実施例1で製造した繊維のうち表―1に示すNo.
1の無添加のものをA、No.4のものをB、サイア
ベンダゾールのみを共重合体重量に対して0.5重
量%となるように実施例1と同様の共重合体濃硝
酸溶液に添加・分散させて紡糸した繊維をCとす
る。各繊維の物性値の比較を行つた。その結果を
表―4に示す。
[Table] Example 4 A copolymer consisting of 89.8% by weight of acrylonitrile, 3.5% by weight of methyl acrylate, 6.3% by weight of acrylamide, and 0.4% by weight of sodium methallylsulfonate was prepared, and in the same manner as in Example 1, phosphoric acid was added. Fibers were prepared by adding and spinning tricresyl and thiabendazole at 2.5% and 0.5%, respectively, based on the weight of the copolymer. When a knitted fabric was made from this fiber and its antibacterial properties were examined in the same manner as in Example 1, no mold growth was observed. Example 5 Among the fibers produced in Example 1, No. 1 shown in Table 1 was used.
No. 1 without additives was added to A, No. 4 was added to B, and only thiabendazole was added to the same copolymer concentrated nitric acid solution as in Example 1 so that the amount was 0.5% by weight based on the copolymer weight. - The dispersed and spun fibers are referred to as C. The physical properties of each fiber were compared. The results are shown in Table 4.

【表】 サイアベンダゾールを直接添加したものに比
べ、本発明の方法は繊維物性に殆んど影響を与え
ないことがわかる。 実施例に示す如く、本発明の方法により、風合
い、繊維物性を損なうことなく耐洗濯性に優れた
抗菌性のアクリル系繊維を、薬剤のロスなしに安
価に製造することが可能となつた。 発明の効果 本発明の抗菌性アクリル系合成繊維は各種の微
生物に対して強い抗菌作用を示し、かつ毒性は低
く極めて安全である。また抗菌剤を分散したた可
塑剤が繊維中に分散した状態で微量に存在するこ
とにより、通常のアクリル系繊維の繊維性能、風
合いをそのまま有すると共に洗濯によつて繊維表
面の抗菌剤を洗い落しても内部より抗菌剤を含ん
だ可塑剤が絶えずブリードアウトしてくるため、
繊維表面に再生されるので洗濯を何度繰返した後
も効力を失なうことがない。 本発明の抗菌性アクリル系合成繊維はそのまま
又は絹、ポリエステル等、他の繊維と併用して使
用することによつて抗菌性、抗黴性を有する靴
下、シーツ、スポーツ衣料、肌着等、幅広い用途
に使用することが出来るため産業上極めて有意義
なものである。 本発明の製造方法はアクリロニトリル系重合体
の無機系溶剤に不溶な可塑剤に予めサイアベンダ
ゾールを分散させたものを紡糸原液として湿式紡
糸しているため、紡糸時にサイアベンダゾールが
紡糸浴中に溶出することがなく有機溶剤湿式紡糸
の大きな欠点であつたサイアベンダゾールの歩留
りの悪さを解決した方法である。
[Table] It can be seen that the method of the present invention has almost no effect on the fiber properties compared to the method in which thiabendazole is directly added. As shown in the examples, the method of the present invention makes it possible to produce antibacterial acrylic fibers with excellent wash resistance without impairing the texture or physical properties of the fibers at low cost without loss of chemicals. Effects of the Invention The antibacterial acrylic synthetic fiber of the present invention exhibits a strong antibacterial effect against various microorganisms, and is extremely safe with low toxicity. In addition, because a small amount of plasticizer containing an antibacterial agent is dispersed in the fiber, it maintains the same fiber performance and texture as normal acrylic fiber, and the antibacterial agent on the surface of the fiber can be washed away by washing. However, plasticizer containing antibacterial agents constantly bleeds out from inside.
Since it is regenerated on the fiber surface, it will not lose its effectiveness even after repeated washing. The antibacterial acrylic synthetic fiber of the present invention can be used as it is or in combination with other fibers such as silk or polyester to have antibacterial and antifungal properties for a wide range of applications such as socks, sheets, sports clothing, and underwear. It is extremely meaningful industrially because it can be used for many purposes. In the production method of the present invention, thiabendazole is pre-dispersed in a plasticizer that is insoluble in an inorganic solvent of an acrylonitrile-based polymer, and wet spinning is performed as a spinning stock solution. This method solves the problem of poor yield of thiabendazole, which was a major drawback of organic solvent wet spinning because it does not elute.

Claims (1)

【特許請求の範囲】 1 アクリロニトリル系重合体100重量部に対し
一般式、 で示されるサイアベンダゾールの0.05〜3重量部
が分散されている無機系溶剤に不溶な可塑剤の
0.05〜20重量部を、該アクリロニトリル系重合体
中に分散してなることを特徴とする風合の良好な
抗菌性繊維。 2 アクリロニトリル系重合体100重量部に対し
一般式、 で示されるサイアベンダゾールの0.05〜3重量部
を無機系溶剤に不溶な可塑剤中に分散せしめ、次
いで該無機系溶剤に不溶な可塑剤の0.05〜20重量
部を予め無機系溶剤溶液に溶解されているアクリ
ロニトリル系重合体に添加、分散せしめて紡糸原
液となし、常法により紡糸することを特徴とする
風合の良好な抗菌性繊維の製造方法。
[Claims] 1. General formula for 100 parts by weight of acrylonitrile polymer, A plasticizer insoluble in an inorganic solvent in which 0.05 to 3 parts by weight of thiabendazole is dispersed.
An antibacterial fiber with good texture, characterized in that 0.05 to 20 parts by weight of the acrylonitrile polymer is dispersed in the acrylonitrile polymer. 2 General formula for 100 parts by weight of acrylonitrile polymer, 0.05 to 3 parts by weight of thiabendazole represented by is dispersed in a plasticizer insoluble in an inorganic solvent, and then 0.05 to 20 parts by weight of the plasticizer insoluble in the inorganic solvent is dissolved in advance in the inorganic solvent solution. A method for producing antibacterial fibers with good texture, which comprises adding and dispersing acrylonitrile-based polymers to prepare a spinning stock solution, and spinning the fibers by a conventional method.
JP11652684A 1984-06-08 1984-06-08 Antimicrobial yarn having good feeling and its preparation Granted JPS61616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11652684A JPS61616A (en) 1984-06-08 1984-06-08 Antimicrobial yarn having good feeling and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11652684A JPS61616A (en) 1984-06-08 1984-06-08 Antimicrobial yarn having good feeling and its preparation

Publications (2)

Publication Number Publication Date
JPS61616A JPS61616A (en) 1986-01-06
JPS633965B2 true JPS633965B2 (en) 1988-01-27

Family

ID=14689308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11652684A Granted JPS61616A (en) 1984-06-08 1984-06-08 Antimicrobial yarn having good feeling and its preparation

Country Status (1)

Country Link
JP (1) JPS61616A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9702831D0 (en) * 1997-02-12 1997-04-02 Courtaulds Plc Manufacture of acrylic fibres
US20120164449A1 (en) * 2010-12-23 2012-06-28 Stephen Woodrow Foss Fibers with improving anti-microbial performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107325A (en) * 1976-02-27 1977-09-08 Asahi Chem Ind Co Ltd Production of porous acrilyl fibers
JPS5551817A (en) * 1978-10-02 1980-04-15 Mitsubishi Rayon Co Ltd Fiber of polyvinyl alcohol
JPS58136822A (en) * 1982-02-02 1983-08-15 Kanebo Ltd Antimicrobial acrylic synthetic fiber and preparation thereof
JPS58149319A (en) * 1982-03-03 1983-09-05 Teijin Ltd Preparation of antifungal polyamide fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107325A (en) * 1976-02-27 1977-09-08 Asahi Chem Ind Co Ltd Production of porous acrilyl fibers
JPS5551817A (en) * 1978-10-02 1980-04-15 Mitsubishi Rayon Co Ltd Fiber of polyvinyl alcohol
JPS58136822A (en) * 1982-02-02 1983-08-15 Kanebo Ltd Antimicrobial acrylic synthetic fiber and preparation thereof
JPS58149319A (en) * 1982-03-03 1983-09-05 Teijin Ltd Preparation of antifungal polyamide fiber

Also Published As

Publication number Publication date
JPS61616A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
KR100441358B1 (en) Chitosan-containing acrylic fibers and process for preparing the same
JP6819686B2 (en) Modified acrylonitrile fiber, manufacturing method of the fiber, and fiber structure containing the fiber
DE2903267A1 (en) METHOD FOR THE PRODUCTION OF ACRYLIC POLYMERS WITH HIGH WATER SOURCE CAPABILITY AND THE USE THEREOF
JPS633965B2 (en)
JPS633964B2 (en)
JPH09273075A (en) Production of fiber having biological resistance
JPH05311509A (en) Insecticidal acrylic synthetic yarn and its production
GB2309461A (en) Manufacture of acrylic fibre
JPH0114324B2 (en)
JPS58115116A (en) Preparation of antimicrobial acrylic fiber
JPS58136822A (en) Antimicrobial acrylic synthetic fiber and preparation thereof
JPS61282475A (en) Antibacterial and antifungal processing of acrylic syntheticfiber
JP2628496B2 (en) Antibacterial acrylic synthetic fiber
JPS58191224A (en) Manufacture of antimicrobial acrylic synthetic fiber
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JP2005179839A (en) Acrylic synthetic fiber and method for producing the same
JP2001089968A (en) Antimicrobial acrylonitrile-based fiber having photocatalytic activity
JP3544825B2 (en) Antimicrobial acrylic fiber and method for producing same
JP2849754B2 (en) Method for producing bactericidal acrylic fiber
JPH0255527B2 (en)
JPS62141128A (en) Deodorizing acrylic synthetic fiber and production thereof
JPH07197312A (en) Antimicrobial fiber
JPH0424220A (en) Insect-proof acrylic synthetic fiber
JPS61258076A (en) Synthetic fiber excellent in antibacterial and antifungal property and its production
JPH0331806B2 (en)