JPS6339646B2 - - Google Patents
Info
- Publication number
- JPS6339646B2 JPS6339646B2 JP57061806A JP6180682A JPS6339646B2 JP S6339646 B2 JPS6339646 B2 JP S6339646B2 JP 57061806 A JP57061806 A JP 57061806A JP 6180682 A JP6180682 A JP 6180682A JP S6339646 B2 JPS6339646 B2 JP S6339646B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- yield point
- less
- elongation
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000137 annealing Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 21
- 238000005096 rolling process Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000010960 cold rolled steel Substances 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000001259 photo etching Methods 0.000 description 5
- 229910000655 Killed steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001327 Rimmed steel Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910000840 Capped steel Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- ing And Chemical Polishing (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
Description
本発明は、カラーテレビブラウン管用シヤドウ
マスクの製造法に係り、特に冷間仕上圧延工程
後、フオトエツチング工程前に行なわれる焼鈍工
程を改善したシヤドウマスクの製造方法に関す
る。
従来、カラーテレビブラウン管用のシヤドウマ
スクは次のような諸工程を経て製造されていた。
素材圧延メーカーにおいて、低炭素鋼を圧下率が
40%以上で冷間仕上圧延し、板厚0.2mm以下の所
望板厚とする。そして、そのコイルをエツチング
穿孔メーカーに出荷する。エツチング穿孔メーカ
ーにおいては、コイル状のシヤドウマスク素材を
巻き戻しながら、脱脂など前処理をした後、両面
に感光液(レジスト)を塗布し、乾燥後、所定の
ドツト形状、あるいはスロツト形状が形成された
基準パターンを両面に密着させ、露光し、現像す
る。その後、レジスト膜を硬化させるため、約
200℃前後の温度でバーニング処理を施し、塩化
第二鉄液等のスプレー噴射によるエツチングで所
定の孔をあけ、残存するレジスト膜を除去したの
ち、一枚一枚のフラツトマスクとして、ブラウン
管メーカーに出荷される。次にブラウン管メーカ
ーにおいては、このエツチング穿孔されたフラツ
トマスクを焼鈍することによりプレス成形可能な
変形能を付与する。この焼鈍は、フラツトマスク
を重ねるかまたは吊り下げた状態で、通常750〜
900℃の高温で行なわれる。この焼鈍されたまま
の状態では、降伏点伸びが大きく、プレス成形の
際にストレツチヤーストレインが発生し、シヤド
ウマスクとして致命的な欠陥となるから、これを
防止する目的と、焼鈍によりフラツトマスクは平
坦性を失なつているからこれを矯正する目的と
で、プレス成形前にローラーレベラーを数回か
け、しかる後に所定の球面状にプレス成形され
る。その後、さらに黒化防錆処理によつてシヤド
ウマスク表面に酸化皮膜を形成し、完成品とな
る。
以上述べた従来の製造工程(以下ポストアニー
ル法という)において、特にブラウン管メーカー
の行なう焼鈍工程にいくつかの問題が顕在してい
る。
すなわち、この焼鈍工程は、前述の如くフラツ
トマスクを重ね合わせるかまたは吊り下げた状態
で焼鈍能率が極めて悪く焼鈍コストが多大になる
ばかりでなく、750〜900℃もの高温で焼鈍される
ため、フラツトマスク同志の密着焼付が多発し、
歩留を大きく低下させる原因となつている。また
密着焼付を発生しないフラツトマスクにおいて
も、この高温焼鈍により平滑性を失つており、の
ちに行なわれるローラーレベラーによつて穴の位
置ずれが発生し、平坦性が極度に悪いものはレベ
ラーによるシワが発生するなど、不良品を多発さ
せる要因を内蔵している。また、シヤドウマスク
の素材である低炭素鋼は、高温焼鈍されることに
より鋼中の炭素が拡散し鋼板表面近くに凝集する
が、この凝集にムラが生じ、プレス成形で均一な
伸びを与えることができる、したがつてプレス成
形後に発見される不良品も認められている。
これらの問題のうち、密着焼付、熱変形、製品
ムラなどは、すべて高温焼鈍であるが故に波及す
る現象であり、焼鈍温度の低下がこれらの問題解
決に大きい効果を有することは容易に考えられ
る。ブラウン管メーカーもこの考え方で焼鈍温度
の低下が試みられたことがあつた。しかし、密着
焼付の防止、熱変形の防止が可能となる程度に温
度を低下させた場合、結晶粒度が細粒となり、そ
の結果、降伏点伸びが増大し、降伏点伸びを消滅
させるためのレベラー回数を作業能率上不可能な
程度まで増大させねばならなかつた。
そこで、低炭素鋼を冷間仕上圧延において圧下
率10〜35%で冷延して板厚0.2mm以下の製品板厚
とし、冷延鋼帯をタイトコイルのまま520〜600℃
の温度で焼鈍したあと調質圧延し、次にエツチン
グ穿孔工程、レベラー通板工程、プレス成形工程
を経ることからなるカラーテレビブラウン管用シ
ヤドウマスクの製造方法(これをプレアニール法
という)が提案されている。このプレアニール法
に従えば、ブラウン管メーカーにおいて、ポスト
アニール法では必須であつた焼鈍が省略可能であ
り、素材メーカーでの高能率低コストの焼鈍で安
定したプレス成形性が得られる。
しかし、従来提案されたこのプレアニール法に
も以下の問題点があつた。つまり、素材メーカー
で焼鈍後、調質圧延により、降伏点伸びが抑制さ
れていても、フオトエツチングの工程で、約200
℃のバーニング処理が行なわれるためここで時効
が起こり、再び降伏点伸びが発生する。このた
め、レベラー回数の増加及びプレス切れなどの問
題点が生じていた。
本発明は、このような従来のシヤドウマスク製
造上の問題の解決を主目的としてなされたもので
ある。この目的において本発明は、素材として
OCA(オープンコイル焼鈍)で脱炭した極低炭素
アルミキルド冷延鋼板を使用し、これによつて孔
形状不良の問題を回避すると共に、焼鈍雰囲気を
適切に調整することによつて、フオトエツチング
工程でバーニング処理を行なつても、時効による
降伏点伸びの発生をほぼ完全に抑制し、安定した
プレス成形性を得るのに成功したものである。す
なわち、本発明は、プレアニール法に従うシヤド
ウマスクの製造法において、素材として、0.2mm
以下の板厚にまで冷間圧延された、C;0.004%
以下、sol.Al;0.01〜0.08%、Mn;0.15〜0.40%、
N;100ppm以下、残部が鉄および製造上の不可
避的不純物からなるアルミキルド冷延鋼板を使用
し、これをタイトコイルのまま520〜650℃の温度
で、しかも、CO+CO2;15ppm(容量基準)以
下、H2;0.5%(容量基準)以上、残部が実質上
N2およびH2Oからなる雰囲気中で焼鈍処理する
ことを特徴とする。
一般に、アルミキルド鋼はリムド鋼やキヤプド
鋼に比べて鋼の清浄度が良好であり、非金属介在
物による孔形状不良を回避できるし、また鋼中の
固容NをAlNとして固定することによつて降伏
点伸びの低減を図ることができる。そして、この
冷延鋼板製造過程におけるOCA工程で脱炭する
と一層降伏点伸びを低下させることができる。こ
のことはある程度公知である。
しかし、このような鋼製造上の過程でいかなる
降伏点伸び抑制手段を講じても、素材メーカーで
行なわれる最終焼鈍の条件次第では、著しく降伏
点伸びが発生することがある。
本発明者らは、素材メーカーで行なわれる最終
焼鈍時(冷間仕上圧延後、フオトエツチング前の
焼鈍)において、降伏点伸びを防止するのに有利
な条件を見い出すべく鋭意研究した結果、CO+
CO2;15ppm(容量基準)以下、H2;0.5%(容量
基準)以上、残部が実質上N2およびH2Oからな
る雰囲気中で焼鈍を行なうと、この焼鈍によつて
も降伏点伸びが発生せず、フオトエツチング工程
でのバーニング処理で、時効が進行することによ
る降伏点伸びの発生も極めて少なく、安定したプ
レス成形性が得られることがわかつた。しかもこ
の場合の焼鈍温度は、520〜650℃の低温でよく、
かつ、この低温においても、降伏点伸びが発生す
ることなく、十分な焼鈍ができる領域が存在する
ことが明らかとなつた。したがつて、本発明によ
る焼鈍条件に従えば、ブラウン管メーカーでの高
温焼鈍が不要となり、素材メーカーでの高能率低
コストの焼鈍を実施することにより、省エネルギ
ー・コストの低減が図られるばかりか、フラツト
マスクの成形時の成形性が極めて安定するという
効果が得られる。なお、この効果は、この焼鈍後
に圧下率0.3〜1.2%の調質圧延を施しても何ら影
響されず、この調質圧延を行つておくと、その後
のシヤドウマスク製品に至るまでの諸工程におい
て取扱い上並びに表面性状や平坦性確保の上で有
利である。
以下に、代表的試験結果に基づき、本発明を具
体的に説明する。
第1図は、C;0.003%、sol.Al;0.04%を含有
する鋼を焼鈍温度600℃で焼鈍した場合に、その
水素濃度(容量%)と露点とが鋼のバーニング処
理(200℃×3分)後の降伏点伸びにどのように
影響するかを調べた結果を示したものである。雰
囲気中のCO+CO2は6ppm(容量基準)の条件で
試験したものであるが、この結果から、降伏点伸
びの発生しない領域が存在することがまず明らか
である。
第2図は、C;0.003%、sol.Al;0.04%を含有
する鋼を焼鈍温度600℃、露点0℃、水素濃度10
%(容量基準)の雰囲気において、CO+CO2濃
度とバーニング処理(200℃×3分)後の降伏点
伸びとの関係を調べたものである。第2図から明
らかなように、CO+CO2が15ppm(容量基準)以
下では、降伏点伸びは実質上発生しない。しか
し、15ppm(容量基準)を超えると降伏点伸びは
急激に増大するようになる。
これらの試験結果から、フラツトマスクをプレ
ス成形するさいに降伏点伸びに起因するストレツ
チヤー・ストレインの発生を防止するには、素材
メーカーでの焼鈍雰囲気を、CO+CO2を15ppm
(容量基準)以下とし、かつ、水素濃度は、0.5%
(容量基準)以上とすることが望ましいことが明
らかである。
水素濃度が0.5%(容量基準)未満であれば、
第1図に示すように、降伏点伸びの発生しない領
域が、急激に狭くなり、実操業が困難となる。ま
た、焼鈍温度は、520〜650℃で十分である。520
℃より低い焼鈍温度では、再結晶が起らず、プレ
スができなくなる。また、650℃を超える焼鈍温
度ではタイト焼鈍による密着焼付の問題が生じ
る。
なお、本発明を適用する極低炭素アルミキルド
鋼板の成分値については、C;0.004%以下、sol.
Al;0.01〜0.08%、Mn;0.15〜0.40%、N;
100ppm以下のものを使用するのがよい。Cが
0.004%を超えると、プレス成形時にストレツチ
ヤー・ストレインが発生しやすくなる。Nは降伏
点伸びを増加させる原因となるため、できるだけ
少ない方がよく、多量に含むと、AlNの量が多
くなり、結晶粒の成長を抑制するので、焼鈍温度
の低温化をさまたげる。このようなことから、N
は100ppm以下とするのがよい。Alは製鋼の脱酸
剤であり、鋼中の非金属介在物の低減に必要な量
であつて、かつ降伏点伸びの原因となる固溶Nを
AlNとして固定させるに必要な量を添加すれば
よい。これには、鋼中sol.Alとして0.01〜0.08%
の範囲が適当である。またMnは、Sによる熱間
脆性を防止する上でMn/S>15を満足させる量
で含有させるのがよく、また結晶粒の成長性を考
慮すれば0.15%以上含有するのがよい。しかし、
その上限は、リムド鋼と同一水準の0.40%程度で
よい。
実施例
供試材は、150トン転炉により溶製した低炭素
アルミキルド鋼(C;0.07%、Mn;0.25%、
P;0.0014%、S;0.008%、Si;0.014%、sol.
Al;0.04%)の溶鋼を、連続鋳造→熱間圧延(板
厚2.5mm、巻取温度570℃)→酸洗→冷間圧延
(0.42mm)→オープンコイル焼鈍(C;0.003%に
まで脱炭)→仕上圧延(0.17mm)→タイト焼鈍
(再結晶温度以上)→スキンパス1.0%の工程で製
造された極低炭素アルミキルド冷延鋼板である。
この供試材はC;0.003%、Si;0.014%、Mn;
0.25%、sol.Al;0.04%、N;45ppmの組成を有
する。この供試材の種々の露点、水素濃度、CO
+CO2濃度の雰囲気で焼鈍し、フオトエツチング
工程でバーニング処理後の特性値、およびプレス
成形性を調査した。その結果を第1表に示す。
第1表の結果から本発明に従う範囲の焼鈍雰囲
気においては、降伏点伸びが発生せず、発生した
としても比較例に比して極めて僅少であることが
わかる。したがつて、本発明によると、フラツト
マスクの安定したプレス成形性が得られると共
に、省エネルギーやコスト面で多大の効果を享受
できる。
The present invention relates to a method of manufacturing a shadow mask for a color television cathode ray tube, and more particularly to a method of manufacturing a shadow mask that improves the annealing step performed after the cold finish rolling step and before the photoetching step. Conventionally, shadow masks for color television cathode ray tubes have been manufactured through the following steps.
Material rolling manufacturers are increasing the rolling reduction rate of low carbon steel.
Cold finish rolling is performed at 40% or more to obtain the desired thickness of 0.2 mm or less. The coil is then shipped to an etching perforation manufacturer. At etching perforation manufacturers, the coiled shadow mask material is unwound and subjected to pretreatment such as degreasing, then a photosensitive liquid (resist) is applied to both sides, and after drying, a predetermined dot shape or slot shape is formed. A reference pattern is brought into close contact with both sides, exposed, and developed. After that, in order to harden the resist film, approximately
Burning treatment is performed at a temperature of around 200℃, predetermined holes are made by etching with a spray of ferric chloride liquid, etc., and the remaining resist film is removed, after which each mask is shipped to a cathode ray tube manufacturer as a flat mask. be done. Next, the cathode ray tube manufacturer applies deformability to enable press molding by annealing the etched and perforated flat mask. This annealing is typically performed from 750 to
It is carried out at a high temperature of 900℃. In this as-annealed state, the yield point elongation is large, and stretch strain occurs during press forming, which can be a fatal defect in the shadow mask. In order to correct the loss of its properties, it is run through a roller leveler several times before press molding, and then press molded into a predetermined spherical shape. Thereafter, an oxide film is formed on the surface of the shadow mask through blackening and anti-corrosion treatment, resulting in a finished product. In the conventional manufacturing process (hereinafter referred to as post-annealing method) described above, several problems have emerged, particularly in the annealing process performed by cathode ray tube manufacturers. In other words, in this annealing process, not only is the annealing efficiency extremely poor and the annealing cost is high because the flat masks are stacked or suspended as described above, but also the flat masks are annealed at a high temperature of 750 to 900°C. Frequent adhesion of
This causes a significant decrease in yield. Furthermore, even in flat masks that do not cause adhesion seizure, they lose their smoothness due to this high-temperature annealing, and the roller leveler that is performed later causes the holes to become misaligned, and if the flatness is extremely poor, wrinkles are caused by the leveler. It has built-in factors that cause a high number of defective products. In addition, when low carbon steel, which is the material of the shadow mask, is annealed at high temperatures, the carbon in the steel diffuses and aggregates near the surface of the steel plate, but this agglomeration is uneven, making it difficult to give uniform elongation during press forming. Therefore, defective products discovered after press molding are also recognized. Among these problems, adhesion seizure, thermal deformation, product unevenness, etc. are all phenomena that spread due to high-temperature annealing, and it is easy to think that lowering the annealing temperature will have a large effect on solving these problems. . Cathode ray tube manufacturers have also attempted to lower the annealing temperature based on this idea. However, if the temperature is lowered to the extent that it is possible to prevent adhesion seizure and thermal deformation, the grain size becomes finer, and as a result, the yield point elongation increases, and a leveler is required to eliminate the yield point elongation. The number of repetitions had to be increased to an extent that was impossible in terms of work efficiency. Therefore, low-carbon steel is cold-rolled at a reduction rate of 10-35% in cold finish rolling to obtain a product with a thickness of 0.2 mm or less, and the cold-rolled steel strip is heated to 520-600℃ as a tight coil.
A method for producing a shadow mask for a color television cathode ray tube (this is called the pre-annealing method) has been proposed, which involves annealing at a temperature of , followed by temper rolling, followed by an etching perforation process, a leveler threading process, and a press forming process. . By following this pre-annealing method, cathode ray tube manufacturers can omit annealing, which is essential in post-annealing methods, and material manufacturers can obtain stable press formability through high-efficiency, low-cost annealing. However, this previously proposed pre-annealing method also has the following problems. In other words, even if the yield point elongation is suppressed by temper rolling after annealing at the material manufacturer, approximately 200
Since the burning process is carried out at 100°C, aging occurs and yield point elongation occurs again. This has caused problems such as an increase in the number of levelers and press breakage. The present invention has been made primarily to solve these problems in manufacturing conventional shadow masks. For this purpose, the invention provides that as a material
By using ultra-low carbon cold-rolled aluminum-killed steel sheets that have been decarburized by OCA (open coil annealing), we can avoid the problem of poor hole shape, and by appropriately adjusting the annealing atmosphere, we can improve the photo-etching process. Even when subjected to burning treatment, the yield point elongation due to aging was almost completely suppressed, and stable press formability was successfully obtained. That is, the present invention provides a method for manufacturing a shadow mask according to the pre-annealing method, in which the material is 0.2 mm.
Cold rolled to the following plate thickness, C; 0.004%
Below, sol.Al; 0.01~0.08%, Mn; 0.15~0.40%,
N: 100 ppm or less, the balance is iron and unavoidable manufacturing impurities using an aluminum killed cold-rolled steel sheet, which is kept as a tight coil at a temperature of 520 to 650°C, and CO + CO 2 : 15 ppm or less (capacity standard) , H 2 ; 0.5% (capacity basis) or more, the remainder being substantially
It is characterized by annealing in an atmosphere consisting of N 2 and H 2 O. In general, aluminum-killed steel has better cleanliness than rimmed steel or capped steel, can avoid poor hole shape due to non-metallic inclusions, and can fix the solid N in the steel as AlN. As a result, the elongation at yield point can be reduced. If decarburization is performed in the OCA step in the production process of cold rolled steel sheets, the elongation at yield point can be further reduced. This is known to some extent. However, no matter what measures are taken to suppress elongation at yield point during the steel manufacturing process, elongation at yield point may significantly increase depending on the final annealing conditions performed by the material manufacturer. The inventors of the present invention have conducted intensive research to find conditions that are advantageous for preventing yield point elongation during final annealing (annealing after cold finish rolling and before photo etching) performed at material manufacturers.
If annealing is performed in an atmosphere consisting of CO 2 ; 15 ppm or less (by volume), H 2 ; 0.5% (by volume) or more, and the balance substantially consisting of N 2 and H 2 O, the yield point elongation will also be reduced by this annealing. It was found that stable press formability was obtained, with no occurrence of yield point elongation due to aging during the burning process during the photoetching process. Moreover, the annealing temperature in this case may be as low as 520 to 650°C.
Moreover, it has become clear that even at this low temperature, there is a region where sufficient annealing can be performed without yield point elongation occurring. Therefore, if the annealing conditions according to the present invention are followed, high-temperature annealing at the cathode ray tube manufacturer is no longer necessary, and by performing high-efficiency, low-cost annealing at the material manufacturer, not only is it possible to save energy and reduce costs, The effect of extremely stable moldability during molding of a flat mask can be obtained. This effect is not affected by temper rolling at a reduction rate of 0.3 to 1.2% after this annealing. This is advantageous in terms of surface quality and flatness. The present invention will be specifically explained below based on representative test results. Figure 1 shows that when steel containing 0.003% C and 0.04% sol.Al is annealed at an annealing temperature of 600°C, the hydrogen concentration (volume %) and dew point of the steel during the burning process (200°C x This figure shows the results of an investigation into how it affects the elongation at yield point after 3 minutes). The test was conducted under the condition that CO + CO 2 in the atmosphere was 6 ppm (capacity basis), and it is clear from these results that there is a region where no elongation at yield point occurs. Figure 2 shows steel containing 0.003% C, 0.04% sol.Al, annealed at 600°C, dew point 0°C, and hydrogen concentration 10°C.
% (capacity basis) atmosphere, the relationship between CO + CO 2 concentration and elongation at yield point after burning treatment (200°C x 3 minutes) was investigated. As is clear from FIG. 2, when CO+CO 2 is below 15 ppm (capacity basis), elongation at yield point does not substantially occur. However, when it exceeds 15 ppm (capacity standard), the yield point elongation increases rapidly. From these test results, in order to prevent the occurrence of stretcher strain caused by yield point elongation when press forming flat masks, the annealing atmosphere at the material manufacturer should be adjusted to 15ppm of CO + CO 2 .
(capacity standard) or less, and the hydrogen concentration is 0.5%
(capacity standard) or more is clearly desirable. If the hydrogen concentration is less than 0.5% (volume standard),
As shown in FIG. 1, the region where no yield point elongation occurs rapidly becomes narrower, making actual operation difficult. Further, an annealing temperature of 520 to 650°C is sufficient. 520
At an annealing temperature lower than °C, recrystallization does not occur and pressing becomes impossible. Furthermore, at an annealing temperature exceeding 650°C, a problem of adhesion seizure due to tight annealing occurs. In addition, regarding the component values of the ultra-low carbon aluminum killed steel sheet to which the present invention is applied, C: 0.004% or less, sol.
Al; 0.01-0.08%, Mn; 0.15-0.40%, N;
It is best to use one with a content of 100ppm or less. C is
If it exceeds 0.004%, stretcher strain tends to occur during press molding. Since N causes an increase in elongation at yield point, it is better to have as little as possible, and if it is included in a large amount, the amount of AlN increases and suppresses the growth of crystal grains, which prevents the annealing temperature from lowering. Because of this, N
It is best to keep it below 100ppm. Al is a deoxidizing agent in steelmaking, and the amount is necessary to reduce nonmetallic inclusions in steel, and it also eliminates solid solution N, which causes elongation at yield point.
It is sufficient to add the amount necessary to fix it as AlN. This includes 0.01-0.08% as sol.Al in steel
A range of is appropriate. Further, Mn is preferably contained in an amount that satisfies Mn/S>15 in order to prevent hot embrittlement due to S, and in consideration of crystal grain growth, it is preferably contained in an amount of 0.15% or more. but,
The upper limit may be around 0.40%, which is the same level as rimmed steel. Example The test material was low carbon aluminum killed steel (C: 0.07%, Mn: 0.25%,
P; 0.0014%, S; 0.008%, Si; 0.014%, sol.
Continuous casting → hot rolling (plate thickness 2.5 mm, coiling temperature 570°C) → pickling → cold rolling (0.42 mm) → open coil annealing (C: 0.003%). This is an ultra-low carbon aluminum killed cold-rolled steel sheet manufactured using the process of charcoal) → finish rolling (0.17 mm) → tight annealing (above the recrystallization temperature) → skin pass 1.0%.
This sample material had C; 0.003%, Si; 0.014%, Mn;
It has a composition of 0.25%, sol.Al; 0.04%, N; 45ppm. Various dew points, hydrogen concentrations, CO
The specimens were annealed in an atmosphere with a +CO 2 concentration, and the characteristic values and press formability after burning treatment in the photoetching process were investigated. The results are shown in Table 1. From the results in Table 1, it can be seen that in the annealing atmosphere within the range according to the present invention, yield point elongation does not occur, and even if it occurs, it is extremely small compared to the comparative example. Therefore, according to the present invention, stable press moldability of the flat mask can be obtained, and great effects can be obtained in terms of energy saving and cost.
【表】【table】
第1図は、焼鈍温度600℃、CO+CO2;6ppm
(容量基準)の条件下での、露点、水素濃度と降
伏点伸びの関係図、第2図は、焼鈍温度600℃、
露点0℃、水素濃度10%(容量基準)の雰囲気中
で、C;0.003%、sol.Al;0.04%を含有する鋼を
焼鈍する場合のCO+CO2濃度と降伏点伸びとの
関係図である。
Figure 1 shows annealing temperature 600℃, CO + CO 2 ; 6ppm
Figure 2 shows the relationship between dew point, hydrogen concentration and yield point elongation under the conditions of (capacity basis), annealing temperature of 600℃,
It is a relationship diagram between CO + CO 2 concentration and yield point elongation when steel containing 0.003% C and 0.04% sol.Al is annealed in an atmosphere with a dew point of 0°C and a hydrogen concentration of 10% (by volume). .
Claims (1)
Mn;0.15〜0.40%、N;100ppm以下、残部が鉄
及び不可避的不純物からなる板厚0.2mm以下の冷
延鋼帯を製造し、この冷延鋼帯をタイトコイルの
まま、520〜650℃の温度で、CO+CO2;15ppm
(容量基準)以下、H2;0.5%(容量基準)以上、
残部が実質上N2およびH2Oからなる雰囲気中で
焼鈍処理したあと、調質圧延し、次いでエツチン
グ穿孔工程、プレス成形工程を経ることからなる
カラーテレビブラウン管用シヤドウマスクの製造
方法。1 C; 0.004% or less, sol.Al; 0.01-0.08%,
A cold-rolled steel strip with a thickness of 0.2 mm or less is produced, consisting of Mn: 0.15 to 0.40%, N: 100 ppm or less, and the balance is iron and unavoidable impurities. This cold-rolled steel strip is kept as a tight coil at 520 to 650℃. At a temperature of , CO + CO 2 ; 15ppm
(capacity standard) or less, H 2 ; 0.5% (capacity standard) or more,
A method for producing a shadow mask for a color television cathode ray tube, which comprises annealing in an atmosphere in which the remainder is substantially composed of N 2 and H 2 O, followed by temper rolling, followed by an etching perforation process and a press molding process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6180682A JPS58181825A (en) | 1982-04-15 | 1982-04-15 | Manufacture of shadow mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6180682A JPS58181825A (en) | 1982-04-15 | 1982-04-15 | Manufacture of shadow mask |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58181825A JPS58181825A (en) | 1983-10-24 |
JPS6339646B2 true JPS6339646B2 (en) | 1988-08-05 |
Family
ID=13181696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6180682A Granted JPS58181825A (en) | 1982-04-15 | 1982-04-15 | Manufacture of shadow mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58181825A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03106437U (en) * | 1990-02-14 | 1991-11-01 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS596326A (en) * | 1982-07-03 | 1984-01-13 | Nisshin Steel Co Ltd | Manufacture of shadow mask |
JP2548133B2 (en) * | 1986-04-21 | 1996-10-30 | ソニー株式会社 | Cathode ray tube color selection mechanism |
WO1998053512A1 (en) * | 1997-05-20 | 1998-11-26 | Toyo Kohan Co., Ltd. | Method for manufacturing perforated steel sheets, cores for electrode plates of secondary cells, and secondary cell comprising the core |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553844A (en) * | 1978-10-18 | 1980-04-19 | Nisshin Steel Co Ltd | Manufacturing method of shadow mask for color television braun tube |
JPS56108822A (en) * | 1980-02-04 | 1981-08-28 | Nippon Kokan Kk <Nkk> | Manufacture of shadow mask blank |
-
1982
- 1982-04-15 JP JP6180682A patent/JPS58181825A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553844A (en) * | 1978-10-18 | 1980-04-19 | Nisshin Steel Co Ltd | Manufacturing method of shadow mask for color television braun tube |
JPS56108822A (en) * | 1980-02-04 | 1981-08-28 | Nippon Kokan Kk <Nkk> | Manufacture of shadow mask blank |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03106437U (en) * | 1990-02-14 | 1991-11-01 |
Also Published As
Publication number | Publication date |
---|---|
JPS58181825A (en) | 1983-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2602346B1 (en) | Directional magnetic steel plate and production method therefor | |
JPS5943974B2 (en) | How to make a shadow mask | |
JPS62185828A (en) | Manufacture of frame material for shadow mask | |
JPS6339646B2 (en) | ||
JPS6340848B2 (en) | ||
JPS607342B2 (en) | Manufacturing method of shadow mask for color TV cathode ray tube | |
JPS607343B2 (en) | Manufacturing method of shadow mask for color television cathode ray tube | |
TWI225101B (en) | Material for shadow mask, method for production thereof, shadow mask and image receiving tube | |
JPS641533B2 (en) | ||
JPS5938338A (en) | Production of ultra thin steel sheet having high yield strength and drawability | |
JPH04341543A (en) | Fe-ni shadow mask material excellent in blackening treatment | |
JPS641531B2 (en) | ||
JPS6249324B2 (en) | ||
JPS5938335A (en) | Production of shadow mask | |
JP3410873B2 (en) | Manufacturing method of shadow mask master by continuous annealing | |
JPH11158548A (en) | Hot rolled steel sheet for shrink band of tv cathode-ray tube and its production | |
JP3235954B2 (en) | Steel plate for shadow mask and method of manufacturing the same | |
JPS58133324A (en) | Preparation of shadow mask | |
JP3414919B2 (en) | Manufacturing method of shadow mask material | |
JPS58164754A (en) | Cold rolled thin steel strip for shadow mask and its manufacture | |
JPS58204129A (en) | Production of shadow mask | |
JPH08269627A (en) | Cold rolled steel sheet for shadow mask and its production | |
CN116219272A (en) | High-magnetic-induction oriented silicon steel and preparation method thereof | |
JPS5830929B2 (en) | How to make a shadow mask | |
JPS58136714A (en) | Annealing method in production of shadow mask |