JPS6339536B2 - - Google Patents

Info

Publication number
JPS6339536B2
JPS6339536B2 JP55130980A JP13098080A JPS6339536B2 JP S6339536 B2 JPS6339536 B2 JP S6339536B2 JP 55130980 A JP55130980 A JP 55130980A JP 13098080 A JP13098080 A JP 13098080A JP S6339536 B2 JPS6339536 B2 JP S6339536B2
Authority
JP
Japan
Prior art keywords
cement
particles
concrete
water
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55130980A
Other languages
Japanese (ja)
Other versions
JPS5756372A (en
Inventor
Nobuo Shinohara
Masayuki Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP13098080A priority Critical patent/JPS5756372A/en
Publication of JPS5756372A publication Critical patent/JPS5756372A/en
Publication of JPS6339536B2 publication Critical patent/JPS6339536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は軽量コンクリート用混和材に係り、特
にコンクリート中に混和する熱可塑性合成樹脂発
泡粒子を軽量骨材とした混和材に関する。 従来、軽量コンクリートはパーライト、バーミ
ツクライト、軽石、石炭スラグ、火山岩などを軽
量骨材としたものが多かつた。しかし、これらの
軽量骨材はいずれも多孔質で吸収性が大きくセメ
ントと水で混練して軽量コンクリートを作る時に
多量の水を入れないと流動性が出ないために、硬
化後の物性が悪い欠点がある。すなわち水、セメ
ント比が大きいために強度が小さい、乾燥収縮が
大きくヒビ割れが入る、吸水性が大きく熱伝導率
が悪い、硬化乾燥に時間がかかるなどの欠点があ
る。これに対して熱可塑性合成樹脂発泡粒子(例
えば発泡ポリスチレン粒子)を軽量骨材として用
いると発泡粒子は吸水性がほとんどないので前述
のような欠点は解決できるが、表面が疎水性であ
るためにセメントとの親和性が悪く、比重差が大
きいので、分離し易く硬化の際上部に浮き上り均
一な軽量コンクリートができない欠点がある。そ
こで発泡粒子の表面を親水性にするためにエポキ
シエマルジヨン、アクリルエマルジヨン、酢酸ビ
ニールエマルジヨン、エチレン酢酸ビニルエマル
ジヨン、合成ゴムラテツクス、アスフアルトエマ
ルジヨンなどをコーテイングして用いることが提
案されている。又、セメント分散材、セメント高
流動化剤を添加し、出来るだけ水、セメント比を
小さくして施工することは、粒子の浮きを無く
し、硬化後のあらゆる物性を良くするので各種添
加剤が使用されている。 しかし、セメント高流動化剤(例えば花王マイ
テー、メルメントなど)はコンクリートに投入後
短時間で変質し約30分以内しか有効でないので、
従来は発泡粒子、エマルジヨン、セメント、水そ
れにセメント高流動化剤を現場で配合し混合撹拌
していたが、セメント高流動化剤の計量作業ミス
による配合ミスが生じ易いばかりでなく、強力な
強制撹拌の可能なミキサーを必要とし、このよう
なミキサーを用いても十分な混合撹拌が行えず、
発泡粒子を均一に分散させかつセメントとの結合
もよいなど物性の良好な軽量コンクリートを得る
ことは難しい欠点がある。 本発明は上記の欠点を改良するためになされた
ものであつて、現場でセメント高流動化剤を配合
する必要がなく、予め作つておいたセメント及び
水、又はセメント、砂及び水或るいはセメント、
砂、砂利及び水の混合物に生コンクリートミキサ
ー車のミキサーで充分に混合撹拌して直ちにコン
クリート打ちができると共に物性の良好な軽量コ
ンクリートを得ることができる混和材を提供する
ものである。 本発明混合材は熱可塑性合成樹脂発泡粒子の表
面に、高分子エマルジヨン及びセメント高流動化
剤を付着させてなるものであり、本発明で付着と
は、発泡粒子の表面に上記所要の配合割合で高分
子エマルジヨンとセメント高流動化剤を混合して
または混合せずしてコーテイングし必要に応じて
無機粉末を付着して乾燥してある状態またはその
未乾燥状態をいう。 以下図面によつて本発明を詳細に説明する。 本発明に使用される熱可塑性合成樹脂発泡粒子
1としてはポリエチレン、ポリプロピレン、特に
ポリスチレンを用いて公知の方法で発泡し粒体を
成形することによつて得られたものが好適であ
る。この発泡粒子1は50〜70倍に発泡した球体
で、粒径が0.1〜5mmの間である程度粒度分布を
有するものが良いが無定形であつてもよい。0.1
mm以下のものが多いと施工時の流動性が悪く、5
mm以上のものは浮力が大きく均一なコンクリート
を作るのに好ましくない。また発泡倍率が小さい
と発泡粒子の強度はあるが経済的に好ましくな
く、大きいと経済性はあるが強度が弱くつぶれや
すくなる。従つてポリオレフインを用いるときは
1.5倍〜10倍、ポリスチレンを用いるときは20〜
70倍特に50〜70倍が望ましい。 上記の発泡粒子1の表面に例えば高分子エマル
ジヨンとセメント流動化剤よりなるコーテイング
材2をコーテイングして本発明混和材は構成され
る。コーテイング材2は、発泡粒子1の表面に良
くなじみコーテイングされるもので、しかもセメ
ントの硬化を阻害しない界面活性剤を用いたもの
を用いる。 高分子エマルジヨンとしては、エポキシ樹脂エ
マルジヨン、アクリル樹脂エマルジヨン、酢酸ビ
ニール樹脂エマルジヨン又は、これらの共重合
物、エチレン酢酸ビニールエマルジヨン、SBR
ラテツクス、NBRラテツクス、CRラテツクス及
びアスフアルトエマルジヨンのいずれか又はこれ
らの混合物が使用可能である。中でも、セメント
混和用に作つたアスフアルトエマルジヨンとアク
リル樹脂エマルジヨンの混合物が、発泡粒子の表
面への付着がよく、しかも経済性に秀れている。
高分子エマルジヨンの量は固形分50%のエマルジ
ヨンの場合で発泡粒子の嵩体積1m3に対して1〜
10Kgが好ましく、特に2〜5Kgが最適である。1
Kg以下では発泡粒子とのなじみが低く、10Kg以上
入れると、発泡粒子に均一にコーテイングされ
ず、塊状になりセメントペースト、モルタルまた
はコンクリートに分散しにくくなる。 高流動化剤はセメントと水、セメントと砂と
水、あるいはセメントと砂と砂利と水に混合する
際のセメントペースト、モルタルあるいはコンク
リートの流動性を向上するために用いるものをい
い、ナフタリンのスルフオン化物、メラミン誘導
体、又はリグニンスルフオン酸塩の中から単独又
はその混合物が用いられ、対セメントの規定量に
相当する量を高分子エマルジヨンに混合して用い
ればよい。また、高分子エマルジヨンを熱可塑性
合成樹脂粒子にコーテイングした後に高流動化剤
をコーテイングする方法も採ることができる。 なお、ナフタリンのスルフオン化物としては、
ナフタリンスルフオン酸とホルマリンの縮合反応
物で次式で表わされるものが好ましく、M(金属)
はナトリウム塩が好適である。 メラミン誘導体としては、メラミン樹脂のスル
フオン酸系、特にメチロール化メラミンのスルフ
オン酸塩が主に用いられ通常メラミンのアミノ基
を2〜3モル倍のホルマリンによりメチロール化
し、さらにこれをスルフオン酸塩により変性した
ものが好適である。スルフオン酸塩としては、本
発明にはNa塩が好ましい。高流動化剤の好まし
い使用量は発泡粒子の嵩体積1m3に対し1〜9Kg
であり、1Kg以下では不足、9Kg以上では多過ぎ
無駄になる。その他セメントペースト、モルタル
又はコンクリートに粘性を出す、ポリビニルアル
コール(PVA)、カルボキシメチルセルロース
(CMC)、メチルセルロース(MC)、マンナン、
ポリエチレンオキサイド、エステルガムなどをコ
ーテイングするものも補助的効果がある。 上記の如き構造の本発明混和材を製造するに
は、まず発泡粒子1を撹拌機に入れゆつくり撹拌
しながら高分子エマルジヨンを散布して、粒子表
面に均一にコーテイングする。次に高流動化剤及
び他の添加剤を散布して均一にコーテイングして
本発明混和材を得る。この混和剤は粒子と粒子が
接着しないように無機の微粉末、たとえば炭酸カ
ルシウム、硅石粉、タルク、ケイ藻士などにまぶ
しておくと良い。 なお、本混和材を前記発泡粒子、高分子エマル
ジヨン、高流動化剤の配合比の範囲内で製造すれ
ば、含まれる水に起因して発泡粒子表面から高分
子エマルジヨン等が流下分離して本混和材が不均
一になることはないので、必ずしも乾燥工程を設
ける必要はないが、強制乾燥させずに即ち未乾燥
状態で袋詰しておくと、セメントペースト、モル
タル又はコンクリートと混合する際、粒子が静電
気により付着し合つたり飛散するのを防止でき作
業性がよい。また乾燥させておけば、セメントペ
ースト、モルタル又はコンクリートと混合する際
に、粒子表面から高流動化剤は緩やかに溶け出す
が高分子エマルジヨンは離脱しにくく粒子表面に
残るので、結果として上記乾燥させない場合に比
べてより一層、粒子はセメントとの親和性を維持
し、セメントの乾燥後のセメントとの結合もより
強固になし得るものである。 セメントと発泡粒子の配合比は第1表に一例を
示す通り、目的の比重に応じて異なるが容積比で
1:0.5〜1:6で、1:3〜4が最適である。
The present invention relates to an admixture for lightweight concrete, and particularly to an admixture that uses foamed thermoplastic synthetic resin particles as a lightweight aggregate to be mixed into concrete. Conventionally, lightweight concrete has often been made using lightweight aggregates such as perlite, vermicrite, pumice, coal slag, and volcanic rock. However, all of these lightweight aggregates are porous and highly absorbent, and when mixing cement and water to make lightweight concrete, they do not have fluidity unless a large amount of water is added, resulting in poor physical properties after hardening. There are drawbacks. In other words, it has disadvantages such as low strength due to a large water/cement ratio, large drying shrinkage that causes cracks, high water absorption and poor thermal conductivity, and a long time required for curing and drying. On the other hand, if foamed thermoplastic synthetic resin particles (e.g. foamed polystyrene particles) are used as lightweight aggregates, the aforementioned disadvantages can be solved because the foamed particles have almost no water absorption, but since the surface is hydrophobic, Because it has poor affinity with cement and a large difference in specific gravity, it easily separates and rises to the top during hardening, making it impossible to form uniform lightweight concrete. Therefore, in order to make the surface of foamed particles hydrophilic, it has been proposed to coat them with epoxy emulsion, acrylic emulsion, vinyl acetate emulsion, ethylene vinyl acetate emulsion, synthetic rubber latex, asphalt emulsion, etc. In addition, adding cement dispersants and cement superfluidizers to minimize the water/cement ratio during construction eliminates floating particles and improves all physical properties after hardening, so various additives are used. has been done. However, cement superplasticizers (e.g. Kao Maite, Melment, etc.) deteriorate in a short time after being added to concrete and are only effective for about 30 minutes.
Conventionally, foamed particles, emulsion, cement, water, and a cement superplasticizer were mixed and stirred on site, but not only were mixing errors likely to occur due to mistakes in measuring the cement superplasticizer, but also strong force was required. A mixer capable of stirring is required, and even with such a mixer, sufficient mixing and stirring cannot be achieved.
It has the disadvantage that it is difficult to obtain lightweight concrete with good physical properties such as uniform dispersion of foam particles and good bonding with cement. The present invention has been made to improve the above-mentioned drawbacks, and there is no need to mix a cement superplasticizer on site, and it is possible to use pre-made cement and water, or cement, sand, and water, or cement, sand, and water. cement,
To provide an admixture that can be thoroughly mixed and stirred into a mixture of sand, gravel, and water using a mixer in a fresh concrete mixer truck to immediately cast concrete and to obtain lightweight concrete with good physical properties. The mixed material of the present invention is made by adhering a polymer emulsion and a cement high-flow agent to the surface of foamed thermoplastic synthetic resin particles, and in the present invention, adhesion means that the above-mentioned required blending ratio is applied to the surface of the foamed particles. It refers to the state in which a polymer emulsion and a cement high-flow agent are mixed or not coated, and if necessary, an inorganic powder is attached and dried or in an undried state. The present invention will be explained in detail below with reference to the drawings. The foamed thermoplastic synthetic resin particles 1 used in the present invention are preferably those obtained by foaming polyethylene, polypropylene, especially polystyrene by a known method and molding the particles. The foamed particles 1 are spheres expanded 50 to 70 times, and preferably have a particle size distribution of 0.1 to 5 mm to some extent, but may be amorphous. 0.1
If there are many particles smaller than mm, the fluidity during construction will be poor;
If it is larger than mm, it has a large buoyancy and is not suitable for making uniform concrete. Furthermore, if the expansion ratio is small, the foamed particles will have strength but are economically unfavorable, while if the expansion ratio is large, the foamed particles will be economically efficient but have weak strength and become easily crushed. Therefore, when using polyolefin
1.5 times - 10 times, 20 times - when using polystyrene
70 times, especially 50 to 70 times is desirable. The admixture of the present invention is constructed by coating the surface of the foamed particles 1 with a coating material 2 made of, for example, a polymer emulsion and a cement fluidizing agent. The coating material 2 used is one that coats the surface of the foamed particles 1 well and uses a surfactant that does not inhibit the hardening of cement. Examples of the polymer emulsion include epoxy resin emulsion, acrylic resin emulsion, vinyl acetate resin emulsion, or copolymers thereof, ethylene vinyl acetate emulsion, and SBR.
Latex, NBR latex, CR latex and asphalt emulsion or mixtures thereof can be used. Among them, a mixture of asphalt emulsion and acrylic resin emulsion made for mixing with cement has good adhesion to the surface of foamed particles and is excellent in economical efficiency.
The amount of polymer emulsion is 1 to 1 m3 of the bulk volume of foamed particles in the case of an emulsion with a solid content of 50%.
10 kg is preferred, and 2 to 5 kg is particularly optimal. 1
If it is less than 10 kg, it will not be compatible with the foam particles, and if it exceeds 10 kg, the foam particles will not be coated uniformly and will become lumpy, making it difficult to disperse into cement paste, mortar or concrete. A superplasticizer is a substance used to improve the fluidity of cement paste, mortar, or concrete when mixed with cement and water, cement, sand, and water, or cement, sand, gravel, and water, and is used to improve the fluidity of cement paste, mortar, or concrete. A compound, a melamine derivative, or a lignin sulfonate may be used alone or in a mixture thereof, and an amount corresponding to the specified amount of cement may be mixed with the polymer emulsion. It is also possible to adopt a method in which thermoplastic synthetic resin particles are coated with a polymer emulsion and then coated with a highly fluidizing agent. In addition, as a sulfonated product of naphthalene,
Preferably, a condensation reaction product of naphthalene sulfonic acid and formalin is represented by the following formula, M (metal)
The sodium salt is preferred. As melamine derivatives, sulfonic acid-based melamine resins, especially methylolated melamine sulfonate salts are mainly used, and the amino group of melamine is usually methylolated with 2 to 3 times the mole of formalin, and then this is further modified with a sulfonate salt. It is preferable that As the sulfonate salt, Na salt is preferred for the present invention. The preferred amount of high fluidizing agent used is 1 to 9 kg per 1 m 3 of bulk volume of foamed particles.
Therefore, if it is less than 1 kg, it is insufficient, and if it is more than 9 kg, it is too much and will be wasted. Others that add viscosity to cement paste, mortar or concrete: polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), methylcellulose (MC), mannan,
Coatings with polyethylene oxide, ester gum, etc. also have an auxiliary effect. In order to produce the admixture of the present invention having the above-mentioned structure, first, the expanded particles 1 are placed in a stirrer and the polymer emulsion is sprinkled on the particles while stirring slowly to uniformly coat the particle surfaces. Next, a highly fluidizing agent and other additives are sprayed and coated uniformly to obtain an admixture of the present invention. It is best to sprinkle this admixture on fine inorganic powder such as calcium carbonate, silica powder, talc, diatom, etc. to prevent particles from adhering to each other. Furthermore, if this admixture is manufactured within the range of the blending ratio of the foamed particles, polymer emulsion, and high fluidizing agent, the polymer emulsion, etc. will flow down and separate from the surface of the foamed particles due to the water contained, resulting in the formation of the main material. Since the admixture will not become non-uniform, it is not necessarily necessary to include a drying process, but if it is packed in a bag without being forced to dry, that is, in an undried state, when mixed with cement paste, mortar, or concrete, It prevents particles from adhering to each other or scattering due to static electricity, resulting in good workability. Also, if it is dried, when mixed with cement paste, mortar, or concrete, the superplasticizer will slowly dissolve from the particle surface, but the polymer emulsion will be difficult to separate and will remain on the particle surface, so as a result, the above-mentioned drying will not be possible. The particles maintain an even greater affinity with the cement than in the case of drying, and can be more strongly bonded to the cement after drying. As shown in Table 1, the mixing ratio of cement and foamed particles varies depending on the target specific gravity, but the volume ratio is 1:0.5 to 1:6, and optimally 1:3 to 4.

【表】 次に軽量コンクリートの製造について述べる。
あらかじめ、セメントと水又は目的に応じてセメ
ントと砂と水或るいはセメントと砂と砂利と水を
混合撹拌したものを生コンクリートミキサー車の
ミキサーに入れ、施工現場に運ぶ。水とセメント
比は目的に応じて異なるが、40%前後が適当で70
%を越える事はない。生コンクリートミキサー車
は回転ドラム式の生コンクリートミキサー車で最
高30回/分の回転が得られるものであればよく、
強力な強制撹拌の可能なミキサーを有するもので
ある必要はない。現場で規定量の本発明混和材を
投入して30回/分で5分〜15分撹拌すると、均一
な軽量コンクリートが得られる。これをコンクリ
ート圧送ポンプ車にて圧送し打設することができ
る。 上述より明らかなように本発明によれば、熱可
塑性合成樹脂発泡粒子の表面に、高分子エマルジ
ヨン及びセメント高流動化剤を付着させてなる軽
量コンクリート用混和材であるので次のような効
果を奏する。現場で比較的少量の高流動化剤を
合成樹脂発泡粒子、セメント、水等と同等に混合
する場合と異なり、高流動化剤を予め合成樹脂発
泡粒子と高分子エマルジヨンに付着混合してある
ので、現場において短時間にかつ小動力で発泡粒
子をセメントに均一に分散させることができ、よ
り一層均一な軽量コンクリート仕上り品を得るこ
とができる。本発明混和材をセメントペース
ト、モルタル或るいはコンクリートに現場で短時
間に混合できるので、高流動化剤の効力低下をき
たす前にかつ水が少量でも高流動性を保持しなが
らコンクリート打込み作業を遂行することができ
る。高流動化剤を現場配合する時のような高流
動化剤の計量ミスによる配合ミスをなくすること
ができ、また混合するためのミキサーとして特別
の強力撹拌を行なうミキサーは不要であり、通常
の生コンクリートミキサー車のミキサーのような
小動力のものを使用することができる。予め合
成樹脂発泡粒子の表面に高分子エマルジヨン及び
高流動化剤を付着させてあるので、かかる混和材
をセメントペースト、モルタル、コンクリート等
と混合する際に、高流動化剤は緩やかに溶け出す
が高分子エマルジヨンは離脱しにくく、結果とし
て発泡粒子とセメントとの親和性が維持されて発
泡粒子の浮上りによる分離も防止し易くなり、ま
たセメントの乾燥後も発泡粒子とセメントとの結
合を強固にでき、軽量コンクリートの物性を良好
ならしめることができる。本発明の混和材を混
入した軽量コンクリートはポンプ打ちがきわめて
良く出来る特長もある。すなわち圧送中に流動性
を失なわず遠距離圧送が可能であり、しかも水、
セメント比は40%以下の小さな比でも、スランプ
値(JIS A1101−1975)は20以上ときわめて流動
性に富んでいるので圧送中に分離したり、水だけ
が先行したりする事はなく、圧送前後の物性にほ
とんど変化がない。 次に本発明の作用効果を理解してもらうために
実施例と比較例及び参考例を示す。 実施例 1 全内容積8m3積載可能容積5m3の生コンクリー
トミキサー車にセメント1300Kgと水520Kgを混合
してなるセメントペーストを積載し、これに表面
加工した発泡ポリスチレン粒子(本発明混和材)
3500を施工現場で混入し、30回/分の速さで10
分間混合撹拌し、ポンプを用いてコンクリート打
設を行なつた。その結果、スランプ値21で、比重
0.4、圧縮強度12Kg/cm2、熱伝導率0.08kcal/mh
℃の軽量コンクリートが得られた。ここで用いた
本発明混和材は70倍発泡のポリスチレン粒子の表
面に、該粒子のみかけ嵩容積1m3につきアスフア
ルトエマルジヨン5Kg、高流動化剤としてナフタ
リンのスルフオン化物(花王石鹸(株)製商品名マイ
テーFD)5Kg、石粉10Kgをコーテイングしたも
のを用いた。なお、かかる粒子の表面には、エマ
ルジヨンによる濡れ、あるいはベタつきは感じら
れなかつた。 実施例 2 実施例1と同じ生コンクリートミキサー車に、
セメント1800Kg、砂2700Kg、水1080Kgを混合して
なるモルタルを積載し、これに現場にて実施例1
と全く同じ本発明混和材を3800投入し、30回/
分の速度で15分間混合撹拌したのち、ポンプを用
いてコンクリート打ちを行なつた。その結果、ス
ランプ値15で、比重1.0、圧縮強度60Kg/cm2熱伝
導率0.25kcal/mh℃の軽量コンクリートが得ら
れた。 比較例 実施例1と同じ生コン車にセメント1800Kg、砂
2700Kg、水1080Kgを混合してなるモルタルを積載
し、これに現場にて高流動化剤として前記マイテ
ーFDを18Kg入れ10分間混合したのち高流動化剤
をコーテイングしていない混和材を3800投入し
て15分間混合したのちポンプ打ちしたところ、ポ
ンプ打ちの後半になつて高流動化剤の効果が減退
し、スランプ値が10以下となつてしまつた。 比較例 実施例1と同じ生コン車にセメント1800Kg、砂
2700Kg、水1080Kgを混合してなるモルタルを積載
し、これに現場にて高流動化剤をコーテイングし
ていない以外は実施例1と同じ混和材を3800投
入して15分混合したところ、スランプ値5でポン
プ打ちができず、水を180Kg追加して水/セメン
ト比を0.7にしてスランプ値15を得たが、水が多
くコンクリートが硬化収縮しクラツクを生じた。
[Table] Next, we will discuss the production of lightweight concrete.
Cement and water, or depending on the purpose, cement, sand, water, or cement, sand, gravel, and water are mixed and stirred in advance and placed in the mixer of a ready-mixed concrete mixer truck and transported to the construction site. The water to cement ratio varies depending on the purpose, but around 40% is appropriate.
It never exceeds %. The ready-mixed concrete mixer truck should be a rotating drum-type ready-mixed concrete mixer truck that can rotate up to 30 times per minute.
It is not necessary to have a mixer capable of powerful forced stirring. Uniform lightweight concrete can be obtained by adding a specified amount of the admixture of the present invention on site and stirring at 30 times/minute for 5 to 15 minutes. This can be poured and placed using a concrete pressure pump truck. As is clear from the above, according to the present invention, the admixture for lightweight concrete is made by adhering a polymer emulsion and a cement superplasticizer to the surface of foamed thermoplastic synthetic resin particles, so it has the following effects. play. Unlike the case where a relatively small amount of superplasticizer is mixed equally with synthetic resin foam particles, cement, water, etc. on site, the superplasticizer is preadhered and mixed with synthetic resin foam particles and polymer emulsion. , it is possible to uniformly disperse foamed particles in cement at the site in a short time and with a small amount of power, and it is possible to obtain a more uniform finished lightweight concrete product. Since the admixture of the present invention can be mixed into cement paste, mortar, or concrete on site in a short time, it is possible to perform concrete pouring work while maintaining high fluidity even with a small amount of water and before the effectiveness of the superplasticizer decreases. can be carried out. It is possible to eliminate mixing errors caused by mistakes in measuring the superplasticizer when blending the superplasticizer on-site, and there is no need for a mixer that performs special strong stirring as a mixer for mixing. A low powered mixer such as a mixer from a fresh concrete mixer truck can be used. Since the polymer emulsion and superplasticizer are attached to the surface of the foamed synthetic resin particles in advance, when such admixtures are mixed with cement paste, mortar, concrete, etc., the superplasticizer will slowly dissolve. The polymer emulsion is difficult to separate, and as a result, the affinity between the foamed particles and cement is maintained, making it easier to prevent separation due to floating of the foamed particles, and also solidifying the bond between the foamed particles and cement even after the cement dries. It is possible to improve the physical properties of lightweight concrete. The lightweight concrete mixed with the admixture of the present invention also has the advantage of being extremely easy to pump. In other words, long-distance pumping is possible without losing fluidity during pumping, and water,
Even if the cement ratio is small (less than 40%), the slump value (JIS A1101-1975) is over 20, which means it is extremely fluid, so it will not separate during pumping or only water will take the lead, and the pumping will be smooth. There is almost no change in the physical properties before and after. Next, Examples, Comparative Examples, and Reference Examples will be shown in order to help you understand the effects of the present invention. Example 1 A cement paste made by mixing 1300 kg of cement and 520 kg of water was loaded into a fresh concrete mixer truck with a total internal volume of 8 m 3 and a loading capacity of 5 m 3 , and the foamed polystyrene particles (admixture of the present invention) whose surface was treated with this were loaded.
3500 was mixed at the construction site and 10 times at a rate of 30 times/min.
The mixture was mixed and stirred for a minute, and concrete was poured using a pump. As a result, with a slump value of 21, the specific gravity
0.4, compressive strength 12Kg/cm 2 , thermal conductivity 0.08kcal/mh
℃ lightweight concrete was obtained. The admixture of the present invention used here included 5 kg of asphalt emulsion per 1 m 3 of apparent bulk volume of the particles on the surface of polystyrene particles expanded 70 times, and sulfonated naphthalene (a product manufactured by Kao Soap Co., Ltd.) as a high fluidizing agent. FD) coated with 5 kg of stone powder and 10 kg of stone powder was used. It should be noted that no wetting or stickiness due to the emulsion was felt on the surface of the particles. Example 2 In the same ready-mixed concrete mixer truck as in Example 1,
A mortar made by mixing 1,800 kg of cement, 2,700 kg of sand, and 1,080 kg of water was loaded, and Example 1 was applied at the site.
3800 times of the same inventive admixture as above, 30 times/
After mixing and agitating for 15 minutes at a speed of 15 minutes, concrete was poured using a pump. As a result, lightweight concrete with a slump value of 15, a specific gravity of 1.0, and a compressive strength of 60 Kg/cm 2 and a thermal conductivity of 0.25 kcal/mh°C was obtained. Comparative example: 1800 kg of cement and sand in the same ready-mixed concrete truck as in Example 1.
A mortar made by mixing 2,700 kg and 1,080 kg of water was loaded, and 18 kg of the aforementioned Mighty FD was added as a high fluidizing agent on site and mixed for 10 minutes. After that, 3,800 kg of admixture that was not coated with a high fluidizing agent was added. When the mixture was mixed for 15 minutes and then pumped, the effect of the superplasticizer diminished in the latter half of pumping, and the slump value became less than 10. Comparative example: 1800 kg of cement and sand in the same ready-mixed concrete truck as in Example 1.
A mortar made by mixing 2,700 kg and 1,080 kg of water was loaded, and 3,800 kg of the same admixture as in Example 1 was added, except that it was not coated with a high fluidizing agent on site, and mixed for 15 minutes.The slump value was determined. 5, pumping could not be done, and 180 kg of water was added to make the water/cement ratio 0.7, resulting in a slump value of 15, but the concrete hardened and shrank due to too much water, causing cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明混和材の一例を示す断面図であ
る。 1……熱可塑性合成樹脂発泡粒子、2……高分
子エマルジヨンとセメント高流動化剤よりなるコ
ーテイング層。
The drawing is a sectional view showing an example of the admixture of the present invention. 1... Thermoplastic synthetic resin expanded particles, 2... A coating layer consisting of a polymer emulsion and a cement superplasticizer.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性合成樹脂発泡粒子の表面に、高分子
エマルジヨン及びナフタリンのスルフオン化物、
メラミン誘導体、リグリンスルフオン酸塩よりな
る群から選ばれた少なくとも一種のセメント高流
動化剤を付着させてなる軽量コンクリート用混和
材。
1. Polymer emulsion and naphthalene sulfonate on the surface of foamed thermoplastic synthetic resin particles,
A lightweight concrete admixture comprising at least one cement superplasticizer selected from the group consisting of melamine derivatives and ligurin sulfonate.
JP13098080A 1980-09-19 1980-09-19 Admixing material for lightweight concrete Granted JPS5756372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13098080A JPS5756372A (en) 1980-09-19 1980-09-19 Admixing material for lightweight concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13098080A JPS5756372A (en) 1980-09-19 1980-09-19 Admixing material for lightweight concrete

Publications (2)

Publication Number Publication Date
JPS5756372A JPS5756372A (en) 1982-04-03
JPS6339536B2 true JPS6339536B2 (en) 1988-08-05

Family

ID=15047092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13098080A Granted JPS5756372A (en) 1980-09-19 1980-09-19 Admixing material for lightweight concrete

Country Status (1)

Country Link
JP (1) JPS5756372A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235753A (en) * 1984-05-04 1985-11-22 株式会社大林組 Lightweight aggregate coated with synthetic resin
JPS63210336A (en) * 1987-02-24 1988-09-01 松下電工株式会社 Lightweight cement molded product

Also Published As

Publication number Publication date
JPS5756372A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
KR100894934B1 (en) Micro-granulose particulates
US2990382A (en) Composition comprising hydraulic cement, methyl cellulose and reemulsifiable polyvinyl acetate, method of preparing same and mortar prepared therefrom
JP2000119074A (en) Production of porous concrete and porous concrete
US4072786A (en) Production of floor toppings by flowing inorganic binder suspensions over porous open-cell underlays
JPH01261250A (en) Admixture for cement concrete and mortar produced by using highly water-absorbing resin
JP2017210407A (en) Polymer cement mortar and method using polymer cement mortar
JPS6339536B2 (en)
JP2002284551A (en) Admixture for lightweight concrete and light weight concrete
JPS5812223B2 (en) Manufacturing method of lightweight concrete
JP2001048621A (en) Additive for water permeable concrete
JP2020200200A (en) Method for producing additive for cement
JPH1036161A (en) Hydraulic composition and its hardened product
JPH0359035B2 (en)
JP3290171B2 (en) Manufacturing method of porous concrete
JPH03275545A (en) Method for hardening fresh concrete, fresh concrete and water absorbing material usable this method
JP5020431B2 (en) Spraying method
JPS58173183A (en) Hydraulic cement graut
JPS60123666A (en) Dry spray construction method
JP2004010397A (en) Admixture for porous concrete
JP2006182629A (en) Mortar for fire-proofing coating
JP2900261B2 (en) Hydraulic lightweight composition and method for producing hydraulic lightweight molded article
RU2497768C2 (en) Method of producing products from light-weight concretes and products from light-weight concretes, produced by thereof
JPH0657930A (en) Treatment of concrete and/or mortar surface layer with its section rich in air permeability being selectively arranged
CN114014624A (en) Method for proportioning gypsum-based self-leveling mortar special for ground heating backfill
JP2809392B2 (en) Method for producing fiber-reinforced cement molding