JPS6339518B2 - - Google Patents

Info

Publication number
JPS6339518B2
JPS6339518B2 JP55074593A JP7459380A JPS6339518B2 JP S6339518 B2 JPS6339518 B2 JP S6339518B2 JP 55074593 A JP55074593 A JP 55074593A JP 7459380 A JP7459380 A JP 7459380A JP S6339518 B2 JPS6339518 B2 JP S6339518B2
Authority
JP
Japan
Prior art keywords
boom
working radius
signal
load
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074593A
Other languages
Japanese (ja)
Other versions
JPS571195A (en
Inventor
Myuki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7459380A priority Critical patent/JPS571195A/en
Publication of JPS571195A publication Critical patent/JPS571195A/en
Publication of JPS6339518B2 publication Critical patent/JPS6339518B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はクレーンの作業半径を求める装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for determining the working radius of a crane.

クレーンの作業半径はブーム長とブーム起伏角
によつて決定されるが、吊上作業の如くブームに
荷が吊下げられた状態ではブーム長が一定でもブ
ームの弾性的たわみによつて作業半径が変化して
しまう。このため従来はこの弾性的たわみをブー
ム長の関数としてとらえ、この関数を利用するこ
とによつて上記たわみ分を補正した作業半径を
得、予じめ記憶した定格荷重曲線から定格荷重を
読出し、この定格荷重と吊荷重とを比較すること
によつて過負荷状態を検出し、警報信号を発生す
る安全装置が用いられている。
The working radius of a crane is determined by the boom length and boom luffing angle, but when a load is suspended from the boom, such as during lifting work, even if the boom length is constant, the working radius will change due to the elastic deflection of the boom. It will change. Therefore, in the past, this elastic deflection was taken as a function of the boom length, and by using this function, the working radius was obtained by correcting the above deflection, and the rated load was read out from a pre-stored rated load curve. A safety device is used that detects an overload condition by comparing the rated load and the hanging load and generates an alarm signal.

しかしながらブームのたわみはブーム長のみの
関数ではなくブーム先端に加わる力すなわち吊荷
重によつても大きな影響を受けるものであり、し
たがつて従来の安全装置は完全にブームのたわみ
を考慮しているとはいえず、また各ブーム段にお
けるガタも考慮していなかつた。従つて実際の作
業半径よりも小さい作業半径を算出しこれにより
定格荷重を読出すので警報が出ない状態で危険状
態になるというおそれがあつた。
However, the deflection of the boom is not only a function of the boom length, but is also greatly affected by the force applied to the tip of the boom, that is, the lifting load, and therefore conventional safety devices do not completely take the deflection of the boom into account. However, the backlash in each boom stage was not taken into account. Therefore, since a working radius smaller than the actual working radius is calculated and the rated load is read out based on this calculation, there is a risk that a dangerous situation may occur without an alarm being issued.

また最大吊荷重を考慮して定格荷重を決めても
定格荷重の安全係数も大きく見込まなければなら
ないため、クレーンの作業能力を実質的に低下さ
せていた。
Furthermore, even if the rated load is determined in consideration of the maximum hanging load, the safety factor of the rated load must also be considered large, which substantially reduces the crane's working capacity.

本発明は上記に鑑みてなされたものでクレーン
吊作業時等ブームに負荷が加わる場合のブームの
弾性的たわみに加えさらにブームの機構的がたに
よる変化を補正した実質的な作業半径を、ブーム
長さ、ブーム起伏角、吊荷重をパラメータとする
関数演算により算出するようにした作業半径演算
装置を提供するものである。
The present invention has been made in view of the above, and the present invention has been developed to adjust the effective working radius of the boom by correcting changes due to mechanical play of the boom in addition to the elastic deflection of the boom when a load is applied to the boom such as during crane lifting work. The present invention provides a working radius calculation device that calculates a working radius using a function calculation using length, boom luffing angle, and hanging load as parameters.

以下本発明を添付図面の実施例により詳細に説
明する。
The present invention will be explained in detail below with reference to embodiments of the accompanying drawings.

第1図はクレーン車におけるクレーン部を示
し、このクレーン部1は旋回体2と、この旋回体
2に対して回動起伏軸Oを介して連結するブーム
3を有し、このブーム3は適宜その長さLが伸縮
されるとともにブームシリンダ(図示せず)によ
りブーム起伏角θが制御されるようになつてい
る。いま無吊下時すなわち無負荷時にはブーム中
心線が軸xと一致しているので作業半径Rは R=L cosθ−A ……(1) (但しAは起伏軸Oと旋回中心軸yとの距離を表
わす。) で与えられるが、吊下状態では図示の如くブーム
2の中心線が軸xから変位するため実際の作業半
径はR′となりΔRだけ増大変化する。従つて第2
図に示す定格荷重曲線により実際の定格荷重は前
記作業半径の変化量ΔRに応じたΔWだけ減少す
ることとなる。
FIG. 1 shows a crane section of a crane truck, and this crane section 1 has a revolving body 2 and a boom 3 connected to this revolving body 2 via a rotation axis O, and this boom 3 is The length L is expanded and contracted, and the boom elevation angle θ is controlled by a boom cylinder (not shown). When the boom is not suspended, that is, when there is no load, the center line of the boom coincides with the axis However, in the suspended state, the center line of the boom 2 is displaced from the axis x as shown in the figure, so the actual working radius becomes R', which increases by ΔR. Therefore, the second
According to the load rating curve shown in the figure, the actual load rating decreases by ΔW corresponding to the amount of change ΔR in the working radius.

つぎにブームのたわみやブーム各段間における
がたにより生じる前記作業半径の変化量をブーム
長さ、ブーム起伏角及び吊荷重により求めるため
の原理を第3〜第5図により説明する。まず第3
図はブームの自重及び吊荷重により生じるブーム
たわみの態様を示し、ブーム起伏角θが0のとき
第1ブーム11、第2ブーム12、第3ブーム1
3の各ブームのたわみの総和Δxは、ブーム全体
を一つの弾性体として考えることができかつ弾性
係数をブーム長さLの関数1(L)で表わすこと
ができるので次式(2)で与えられる。
Next, the principle for determining the amount of change in the working radius caused by boom deflection and rattling between each stage of the boom from the boom length, boom heave angle, and hanging load will be explained with reference to FIGS. 3 to 5. First, the third
The figure shows the form of boom deflection caused by the boom's own weight and hanging load. When the boom heave angle θ is 0, the first boom 11, the second boom 12, and the third boom 1
The sum Δx of the deflection of each boom in step 3 is given by the following equation (2) since the entire boom can be considered as one elastic body and the elastic coefficient can be expressed as a function 1 (L) of the boom length L. It will be done.

Δx=1(L)×Wv ……(2) なお上式(2)の関数1はブーム材質及び形状から
容易に決定されるものである。
Δx= 1 (L)×Wv (2) Function 1 in the above equation (2) is easily determined from the boom material and shape.

また上式(2)において、Wvはブーム先端に対し
て垂直な方向の吊荷重Wの成分である。
In the above formula (2), W v is the component of the hanging load W in the direction perpendicular to the boom tip.

ブームがブーム起伏角θであるときたわみΔx
により生じる作業半径の変化量をΔR1とすると第
4図によりΔR1は次式(3)で表わされる。
Deflection Δx of the boom when the boom luffing angle θ
Assuming that the amount of change in the working radius caused by ΔR 1 is ΔR 1 , ΔR 1 is expressed by the following equation (3) from FIG.

ΔR1=Δx×sinθ =1(L)×Wcosθ×inθ ……(3) すなわち、第4図において、Wの方向とWv
方向とのなす角θ′はブーム起伏角θよりは小さく
なるが、ブームの長さLがL≫△xであることか
ら、θ′≒θと近似され、これによりWv
Wcosθ′≒Wcosθと近似される。
ΔR 1 = Δx×sinθ = 1 (L)×Wcosθ×inθ...(3) In other words, in Fig. 4, the angle θ' between the direction of W and the direction of Wv is smaller than the boom heave angle θ. However, since the boom length L is L≫△x, it is approximated as θ′≒θ, so W v =
It is approximated that Wcosθ′≒Wcosθ.

したがつて、変化量△R1は上式(3)の如く表わ
すことができる。
Therefore, the amount of change ΔR 1 can be expressed as in the above equation (3).

またがたによる作業半径の変化量は各ブーム間
のスライド部におけるクリアランスと、その時の
ブーム長さにより決定されるためブーム長さLの
みの関数となる。すなわちブーム起伏角が0のと
きの前記がたによる変化量を第5図に示すように
Δyとすると Δy=2(L) ……(4) で表わすことができ、この関数2はブームの設計
寸法により決定されるものである。またブーム起
伏角がθのときΔyによる作業半径増分ΔR2は次
のとおりとなる。
The amount of change in the working radius due to rattling is determined by the clearance at the sliding portion between each boom and the boom length at that time, and is therefore a function only of the boom length L. In other words, if the amount of change due to the above movement when the boom heave angle is 0 is Δy as shown in Fig. 5, it can be expressed as Δy = 2 (L) ...(4), and this function 2 is a function of the boom design. It is determined by the dimensions. Further, when the boom heave angle is θ, the working radius increment ΔR 2 due to Δy is as follows.

ΔR22(L)×sinθ ……(5) したがつてブームのがた及びたわみによる作業
半径の変化量ΔRは ΔR=ΔR1+ΔR21(L)×Wcosθ×sinθ+2(L)×sin
θ =sinθ×(1(L)×Wcosθ+2(L))
……(6) となりパラメータL,θ,Wから容易に算出する
ことができる。
ΔR 2 = 2 (L) × sin θ ... (5) Therefore, the amount of change ΔR in the working radius due to boom rattling and deflection is ΔR = ΔR 1 + ΔR 2 = 1 (L) × Wcos θ × sin θ + 2 (L) ×sin
θ = sin θ × ( 1 (L) × Wcos θ + 2 (L))
...(6) and can be easily calculated from the parameters L, θ, and W.

第6図には前記原理を用いた本発明に係る作業
半径演算回路の一実施例のブロツク図が示され、
ブーム長検出器21はブーム長さLに対応したブ
ーム長信号L0を出力し、またブーム起伏角検出
器22、荷重検出器23はそれぞれブーム起伏角
信号θ0、吊荷重信号W0を出力する。
FIG. 6 shows a block diagram of an embodiment of the working radius calculation circuit according to the present invention using the above principle.
The boom length detector 21 outputs a boom length signal L 0 corresponding to the boom length L, and the boom heave angle detector 22 and load detector 23 output a boom heave angle signal θ 0 and a hanging load signal W 0 , respectively. do.

ブーム起伏角信号θ0は余弦関数発生器26によ
つて余弦信号cosθ0に変換され乗算器31の一入
力に加えられる。乗算器31の他入力には吊荷重
信号W0が加えられる。この乗算器31は乗算信
号W0×cosθ0を出力する。第1関数発生器28は
ブーム長信号L0が加わると関数1(L0)に対応す
る信号F1を発生させるものである。この信号F1
は乗算器32において信号W0×cosθ0と乗算さ
れ、乗算器32から信号W0×cosθ0×F1が出力さ
れ、ついで乗算器33の一入力に加えられる。乗
算器33の他入力には正弦関数発生器25から出
力されるブーム起伏角の正弦信号sinθ0が加わる。
乗算器33から出力する信号F1×W0×cosθ0×
sinθ0(=S)は式(3)で示したたわみによる作業半
径変化量ΔR1を示す信号である。
The boom heave angle signal θ 0 is converted into a cosine signal cos θ 0 by the cosine function generator 26 and applied to one input of the multiplier 31 . A hanging load signal W 0 is added to the other input of the multiplier 31 . This multiplier 31 outputs a multiplication signal W 0 ×cosθ 0 . The first function generator 28 generates a signal F 1 corresponding to function 1 (L 0 ) when the boom length signal L 0 is applied. This signal F 1
is multiplied by the signal W 0 ×cosθ 0 in the multiplier 32, and the multiplier 32 outputs the signal W 0 ×cosθ 0 ×F 1 , which is then added to one input of the multiplier 33. A sine signal sinθ 0 of the boom heave angle outputted from the sine function generator 25 is added to the other input of the multiplier 33 .
Signal output from multiplier 33 F 1 ×W 0 ×cosθ 0 ×
sinθ 0 (=S) is a signal indicating the amount of change in working radius ΔR 1 due to deflection shown in equation (3).

また式(4)で示したがたによる作業半径変化量
ΔR2に相当する信号S2は第2関数発生器27から
送出する前記関数2(L0)に対応した信号F2
sinθ0とを乗算器34により乗算することによつ
て得る。信号S1とS2は加算器35にて加算されが
た及びたわみによる作業半径の変化量ΔRの信号
S(=S1+S2)を得る。
Further, the signal S 2 corresponding to the working radius change amount ΔR 2 due to the backlash shown in equation (4) is the signal F 2 corresponding to the function 2 (L 0 ) sent from the second function generator 27.
sinθ 0 by multiplier 34. The signals S 1 and S 2 are added by an adder 35 to obtain a signal S (=S 1 +S 2 ) representing the amount of change ΔR in the working radius due to warp and deflection.

さらに信号Sに前式(1)の作業半径Rの信号を加
えれば前記補正された実質的な作業半径を得るこ
とができる。すなわち乗算器30にてブーム長
L0と信号cosθ0を乗算し、減衰器36ではこの乗
算信号L0×cosθ0から距離発生器24から発生す
る距離Aの信号を減算し、信号L0×cosθ0−Aを
得る。この信号L0×cosθ0−Aは加算器31にて
前記信号Sと加算され端子TRより作業半径信号
が出力される。
Furthermore, by adding the signal of the working radius R of the above equation (1) to the signal S, the corrected substantial working radius can be obtained. In other words, the boom length is determined by the multiplier 30.
L 0 is multiplied by the signal cos θ 0 , and the attenuator 36 subtracts the distance A signal generated from the distance generator 24 from the multiplied signal L 0 ×cos θ 0 to obtain the signal L 0 ×cos θ 0 -A. This signal L 0 ×cos θ 0 -A is added to the signal S in an adder 31, and a working radius signal is output from the terminal TR .

この作業半径信号Sは定格荷重曲線を記憶した
記憶装置あるいは関数発生器から定格荷重を得る
ために用いられ定格荷重と吊荷重信号との比較に
より危険状態の警報がなされる。
This working radius signal S is used to obtain the rated load from a storage device that stores the rated load curve or from a function generator, and a warning of a dangerous situation is issued by comparing the rated load and the hanging load signal.

なお上記実施例では演算回路により作業半径信
号Sを得るようにしているがこれに限るものでは
なく、例えばマイクロコンピユータ等を用いても
よく、要は式(6)の演算を実質的に行うものであれ
ばよい。
In the above embodiment, the working radius signal S is obtained by an arithmetic circuit, but the present invention is not limited to this. For example, a microcomputer or the like may be used, and in short, it is a device that substantially performs the calculation of equation (6). That's fine.

本発明によれば、ブームのたわみ、がたに基づ
く作業半径の変化量が精度良く求められ、この変
化量が加味された真の作業半径を得ることができ
る。
According to the present invention, the amount of change in the working radius based on the deflection and play of the boom can be determined with high accuracy, and the true working radius can be obtained in which this amount of change is taken into account.

したがつて、作業半径をパラメータとする安全
装置に適用すれば、該装置の信頼性を著しく向上
することができる。
Therefore, if applied to a safety device that uses the working radius as a parameter, the reliability of the device can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクレーン車の概略図、第2図はクレー
ンの定格荷重曲線図、第3図及び第4図はブーム
のたわみによる作業半径の変化態様を示す側面
図、第5図はブームのがたによる作業半径の変化
態様を示す側面図、第6図は本発明に係る作業半
径演算回路の一例を示すブロツク図である。 21…ブーム長検出器、22…ブーム起伏角検
出器、23…荷重検出器、24…距離発生器、2
7…第2関数発生器、28…第1関数発生器、3
0,31,32,33,34…乗算器、35,3
7…加算器、36…減算器。
Figure 1 is a schematic diagram of a crane vehicle, Figure 2 is a rated load curve diagram of the crane, Figures 3 and 4 are side views showing how the working radius changes due to deflection of the boom, and Figure 5 is a diagram of the crane's rated load curve. FIG. 6 is a block diagram showing an example of a working radius calculation circuit according to the present invention. 21...Boom length detector, 22...Boom elevation angle detector, 23...Load detector, 24...Distance generator, 2
7...Second function generator, 28...First function generator, 3
0, 31, 32, 33, 34... Multiplier, 35, 3
7...Adder, 36...Subtractor.

Claims (1)

【特許請求の範囲】 1 ブーム長を検出するブーム長検出手段と、 ブーム起伏角を検出する角度検出手段と、 吊荷重を検出する荷重検出手段と、 上記ブーム長およびブーム起伏角に基づいて作
業半径を求める手段と、 ブームの弾性係数を、上記ブーム長を変数とし
て求める第1の関数発生手段と、 上記起伏角が0のときの上記ブームのがたに基
づくブーム先端の変位量を、上記ブーム長を変数
として求める第2の関数発生手段と、 上記弾性係数、上記吊荷重および上記ブーム起
伏角に基づいて、上記ブームのたわみによる上記
作業半径の変化量を求める手段と、 上記ブームのがたによるブーム先端の変位量と
半径ブーム起伏角とに基づいて、上記がたによる
上記作業半径の変化量を求める手段と、 上記各変化量で上記作業半径を補正して真の作
業半径を求める手段と を備えることを特徴とする作業半径演算装置。
[Claims] 1. A boom length detection means for detecting the boom length, an angle detection means for detecting the boom heave angle, a load detection means for detecting the suspended load, and performing work based on the boom length and the boom heave angle. means for determining the radius; first function generating means for determining the elastic modulus of the boom using the boom length as a variable; a second function generating means for determining the boom length as a variable; a means for determining the amount of change in the working radius due to deflection of the boom based on the elastic modulus, the hanging load and the boom heave angle; means for determining the amount of change in the working radius due to the above-mentioned changes based on the displacement of the tip of the boom and the radius boom luffing angle, and calculating the true working radius by correcting the working radius with each of the above-mentioned changes A working radius calculation device comprising means.
JP7459380A 1980-06-03 1980-06-03 Safety device for crane Granted JPS571195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7459380A JPS571195A (en) 1980-06-03 1980-06-03 Safety device for crane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7459380A JPS571195A (en) 1980-06-03 1980-06-03 Safety device for crane

Publications (2)

Publication Number Publication Date
JPS571195A JPS571195A (en) 1982-01-06
JPS6339518B2 true JPS6339518B2 (en) 1988-08-05

Family

ID=13551604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7459380A Granted JPS571195A (en) 1980-06-03 1980-06-03 Safety device for crane

Country Status (1)

Country Link
JP (1) JPS571195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013241A1 (en) * 1993-11-08 1995-05-18 Komatsu Ltd. Lifting load and tipping moment detecting device for a mobile crane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54179734U (en) * 1978-06-09 1979-12-19
IT201800004717A1 (en) 2018-04-19 2019-10-19 Articulated arm equipped with a system for the compensation of deformations due to loads

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612293A (en) * 1979-07-06 1981-02-06 Kato Seisakusho Kk Crane work radius calculator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612293A (en) * 1979-07-06 1981-02-06 Kato Seisakusho Kk Crane work radius calculator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013241A1 (en) * 1993-11-08 1995-05-18 Komatsu Ltd. Lifting load and tipping moment detecting device for a mobile crane
US5711440A (en) * 1993-11-08 1998-01-27 Komatsu Ltd. Suspension load and tipping moment detecting apparatus for a mobile crane
CN1038576C (en) * 1993-11-08 1998-06-03 株式会社小松制作所 Lifting load and tipping moment detecting device for mobile crane

Also Published As

Publication number Publication date
JPS571195A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
EP0420625A2 (en) Safety device for crane
KR940007539A (en) Tilt angle and acceleration sensor
KR20080078653A (en) Device for preventing sway of suspended load
US3631537A (en) Calibration circuit for boom crane load safety device
EP0481501B1 (en) Method and apparatus for controlling slewing stop of upper slewing body in construction machine
JPS6339518B2 (en)
EP4261179A1 (en) Forklift anti-tipping method, apparatus thereof, and forklift
JP3447410B2 (en) Truck overload protection device with crane
JPS5970919A (en) Apparatus for calculating measuring error of loading weight due to oscillation
JP3161816B2 (en) Safety equipment for construction machinery
JPH0245737B2 (en) YUATSUSHOBERUNOTENTOBOSHISOCHI
RU2034773C1 (en) Boom crane with turntable
JP2006056665A (en) Over-loading prevent device of work vehicle
JPH0527433Y2 (en)
JPH0729110Y2 (en) Boom-flame prediction device for mobile cranes
GB2189456A (en) Device for protecting hoisting mechanisms against overloads and tipping
JPH0367957B2 (en)
JP3596931B2 (en) Construction machine load condition detection device
JPS593212A (en) Rotary position detecting device for rotary body
JPH025666B2 (en)
JPH0626547Y2 (en) Safety equipment for aerial work vehicles
JPH0620796Y2 (en) Overload prevention device for aerial work vehicles
RU2245294C2 (en) Method of and device for moment protection of boom crane by signals from support pickups
JP2000191286A (en) Sensing method and device for actual load of crane
JPH0454013B2 (en)