JPS6339245Y2 - - Google Patents

Info

Publication number
JPS6339245Y2
JPS6339245Y2 JP14535483U JP14535483U JPS6339245Y2 JP S6339245 Y2 JPS6339245 Y2 JP S6339245Y2 JP 14535483 U JP14535483 U JP 14535483U JP 14535483 U JP14535483 U JP 14535483U JP S6339245 Y2 JPS6339245 Y2 JP S6339245Y2
Authority
JP
Japan
Prior art keywords
alloy
ingot
consumable electrode
plate
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14535483U
Other languages
Japanese (ja)
Other versions
JPS6052959U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14535483U priority Critical patent/JPS6052959U/en
Publication of JPS6052959U publication Critical patent/JPS6052959U/en
Application granted granted Critical
Publication of JPS6339245Y2 publication Critical patent/JPS6339245Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案はFe−Cr−Al系合金のエレクトロス
ラグ溶解に使用される消耗電極に係り、更に詳し
く言えば棒鋼用小形インゴツトを溶製するのに好
適な消耗電極に係る。 3〜8%Al、18〜30%Cr、残部Feを主成分と
するFe−Cr−Al系合金は高温における酸化雰囲
気中で使用した場合、表面にアルミナの保護被膜
を生ずるので耐酸化性が良好な材料として広く実
用されている。しかしながら加工性が良くないの
が欠点であり、エレクトロスラグ溶解して清浄度
を上げると加工性が改善されることが知られてい
る。 ところでエレクトロスラグ溶解において溶解材
料となる消耗電極は予め高周波誘導電気炉等で所
望の化学成分組成の材料を溶解し、所望の形状寸
法に鋳造して製作されるのが通例であるが、最終
製品が電熱線やリボンの場合には消耗電極をエレ
クトロスラグ溶解して得たインゴツトを一度熱間
鍜造して断面を小さくし、表面きず取り加工した
のち、熱間圧延し冷間加工材料の寸法としてから
冷間加工にかけるのが通例なので、生産コストが
高くなるのが問題である。 しかしながらエレクトロスラグ溶解のインゴツ
トは鋳肌が奇麗なので熱間鍛造、表面きず取りを
省略して直接熱間圧延して冷間加工用材料とする
ことができれば生産コストを大幅に低減すること
ができる。 このためにはエレクトロスラグ溶解で得られる
インゴツトの径を鍛造後のビレツトの径と同じ程
度の大きさとすることが必要である。従つて使用
する消耗電極はインゴツトの径よりも更に小さな
径としなければならない。例えば220〜100mm径で
長さが1m以上にもなる細長棒状のインゴツトを
エレクトロスラグ溶解で作るのには消耗電極のサ
イズは直径で150mm以下、好ましくはインゴツト
の径の約70%以下で長さは少なくとも1.5m以上、
好ましくは2m以上の細長棒状のものとしなけれ
ばならない。 このような小径細長形状の消耗電極を通常の通
り例えば高周波誘導電気炉で大気中溶解し、金型
に上注ぎ法で鋳造するときには金型内面が高温の
溶湯流でなめられ損傷しやすく、或いは焼着する
ようになつてインゴツトを金型から抜き取ること
ができなくなる恐れがある等きわめて困難であ
る。上注ぎ法に代えて下注ぎ法で金型底部から溶
湯を注入しても小径で長尺ものであるため溶湯が
金型中を上昇する途中で凝固して所望の長さのイ
ンゴツトとすることが難しい等の問題がある。 その上、高品質のFe−Cr−Al系合金を得るた
めには合金に含有される不純物をできるだけ少な
くすることが必要であり、特にCやNはエレクト
ロスラグ溶解で精錬除去できないので、合金成分
のCrやAlと化合して炭化物や窒化物を作り、熱
間加工性を損なうと共に製品を脆化させるおそれ
がある。従つてCやNが消耗電極用インゴツトに
含まれるのを制限することが望ましく、このため
には大気溶解に代えて真空溶解、真空鋳造すれば
良いが、前記のような小径の細長棒状の消耗電極
用インゴツトを真空鋳造することは一層困難であ
る。 これを解決する消耗電極として低炭素鋼パイプ
にFe−Cr合金粉末やAl線を一様に充填して製作
する方法が提案されているが、エレクトロスラグ
溶解の際Fe−Cr合金粉末の一部が固まつたまま
崩れ落ちて溶融池に混入し、溶製されるインゴツ
トが均質にならず、塑性加工が困難になる等実用
上の問題がある。 本発明者はFe−Cr−Al系合金の小径細長のイ
ンゴツトを得るためのエレクトロスラグ溶解に使
用する消耗電極について種々実験を重ねた結果、
上記の問題を解決する消耗電極を考案し実用に供
することに成功した。 本願は上記問題点を解決する消耗電極を提供す
ることを目的とし、 Fe−Cr系合金棒を心材とし、その外側にアル
ミニウム板が巻かれ、更にその外側がFe−Cr合
金板または低炭素鋼板で被覆され、化学成分組成
が所要のFe−Cr−Al系合金となるように設計さ
れた低炭素、低窒素含有のエレクトロスラグ溶解
用消耗電極に係る。 次に添付図面を参照しながら本考案について説
明する。 Crを17〜30%含有するCr−Fe合金のインゴツ
ト径に対し約50%、例えば120mm径のインゴツト
に対し約60mm径で2m長さの市販の合金棒材を心
材1とし、その外側に所要量のAl板2を巻き付
け、更にその外側をFe−Cr合金板3または低炭
素鋼板で被覆して、そのつなぎ目をスポツト溶接
その他適当な方法で固着してインゴツト径或いは
るつぼの内径の約70%以下の径を有する消耗電極
4とする。化学組成のわかつている材料を使えば
電極の平均の化学組成を計算で求めることができ
る。 Fe−Cr系合金棒は真空脱ガス法やその他の精
錬方法でNやCを充分に低くしたものが市販され
ているから所要の組成のものを使用して消耗電極
のNやCを所望の量に制限することができる。
Al板を巻き付けた上をFe−Cr合金板または低炭
素鋼板で被覆するのは若しこの被覆が無くてAl
が裸のままであるとエレクトロスラグ溶解の際に
Alのみが単独に溶落ち、インゴツトに偏析を生
ずるようになるので、これを防止するためであ
り、図示のように三層構造とすることによりエレ
クトロスラグ溶解時に電極はその先端から逐次溶
解し、水冷るつぼの中には均質で不純物の少ない
インゴツトが凝固する。溶製したインゴツトの加
工は容易であり、Fe−Cr−Al系合金の比抵抗の
ばらつきも小さく、而も耐酸化性や機械的性質も
良好である。 次に実施例及び試験結果について説明する。心
材として23%Cr−Fe合金の65mm径×2m長さ、
51Kgの棒材を使用し、その外側に2.6mm厚のAl板
3Kgを巻き付け、その外側を低炭素鋼の0.5mm厚
の薄板2Kgで被覆し、Al板及び低炭素鋼板それ
ぞれの合せ目を電弧溶接した。 この消耗電極の化学成分の配合割合及び不純物
の割合は第1表に示す通りであつた。
This invention relates to a consumable electrode used for electroslag melting of Fe-Cr-Al alloys, and more specifically to a consumable electrode suitable for melting small ingots for steel bars. When a Fe-Cr-Al alloy whose main components are 3-8% Al, 18-30% Cr, and the balance Fe is used in an oxidizing atmosphere at high temperatures, it has poor oxidation resistance because it forms a protective film of alumina on the surface. It is widely used as a good material. However, its disadvantage is that it has poor workability, and it is known that workability can be improved by melting electroslag to improve cleanliness. By the way, the consumable electrode that is the melting material in electroslag melting is usually manufactured by melting a material with a desired chemical composition in advance in a high-frequency induction electric furnace, etc., and then casting it into the desired shape and size. In the case of heating wires or ribbons, the ingot obtained by electroslag melting of the consumable electrode is once hot-melted to reduce the cross-section, surface scratches are removed, and then hot-rolled to obtain the dimensions of the cold-worked material. The problem is that production costs are high because it is customary to cold-work the material after it has been processed. However, electroslag melted ingots have beautiful casting surfaces, so if hot forging and surface flaw removal can be omitted and the ingots can be directly hot rolled into cold working materials, production costs can be significantly reduced. For this purpose, it is necessary to make the diameter of the ingot obtained by electroslag melting approximately the same as the diameter of the billet after forging. Therefore, the consumable electrode used must have a diameter smaller than that of the ingot. For example, to make an elongated rod-shaped ingot with a diameter of 220 to 100 mm and a length of 1 m or more by electroslag melting, the size of the consumable electrode is 150 mm in diameter or less, preferably about 70% of the ingot diameter or less, and a length of 1 m or more. is at least 1.5m or more,
Preferably, it should be in the shape of an elongated rod with a length of 2 m or more. When such a small-diameter, elongated consumable electrode is melted in the atmosphere in a high-frequency induction electric furnace and cast into a mold by the top-pouring method, the inner surface of the mold is easily licked and damaged by the high-temperature molten metal flow, or This is extremely difficult as there is a risk that the ingot may become baked and become unable to be removed from the mold. Even if the molten metal is injected from the bottom of the mold using the bottom pouring method instead of the top pouring method, the molten metal is small in diameter and long, so the molten metal solidifies as it rises through the mold to form an ingot of the desired length. There are problems such as difficulty in Furthermore, in order to obtain a high-quality Fe-Cr-Al alloy, it is necessary to reduce the impurities contained in the alloy as much as possible. In particular, since C and N cannot be removed by electroslag melting, the alloy components It can combine with Cr and Al to form carbides and nitrides, impairing hot workability and making the product brittle. Therefore, it is desirable to limit the amount of C and N contained in consumable electrode ingots, and for this purpose vacuum melting or vacuum casting can be used instead of atmospheric melting. Vacuum casting electrode ingots is more difficult. To solve this problem, a method has been proposed in which a low carbon steel pipe is uniformly filled with Fe-Cr alloy powder or Al wire as a consumable electrode, but during electroslag melting, some of the Fe-Cr alloy powder is This causes practical problems, such as the ingots falling down while solidified and getting mixed into the molten pool, making the melted ingot not homogeneous and making plastic working difficult. As a result of various experiments on consumable electrodes used in electroslag melting to obtain small-diameter and elongated ingots of Fe-Cr-Al alloys, the present inventors found that:
We have devised and successfully put into practical use a consumable electrode that solves the above problems. The purpose of this application is to provide a consumable electrode that solves the above problems.The core material is an Fe-Cr alloy rod, an aluminum plate is wound around the outside of the core, and the outside of the core is an Fe-Cr alloy plate or a low carbon steel plate. The present invention relates to a consumable electrode for electroslag melting that is coated with a low carbon and low nitrogen content and is designed to have a desired chemical composition of Fe-Cr-Al alloy. Next, the present invention will be explained with reference to the accompanying drawings. Approximately 50% of the ingot diameter of a Cr-Fe alloy containing 17 to 30% Cr, for example, for an ingot with a diameter of 120 mm, a commercially available alloy bar with a diameter of approximately 60 mm and a length of 2 m is used as the core material 1, and the required amount is placed on the outside of the ingot. The aluminum plate 2 is wrapped around the ingot, and the outside is covered with a Fe-Cr alloy plate 3 or a low carbon steel plate, and the joint is fixed by spot welding or other suitable method to make a material that is about 70% of the ingot diameter or the inner diameter of the crucible. The consumable electrode 4 has the following diameter. If a material with a known chemical composition is used, the average chemical composition of the electrode can be determined by calculation. Fe-Cr alloy rods are commercially available that have sufficiently low N and C content through vacuum degassing or other refining methods, so use ones with the desired composition to achieve the desired N and C content in the consumable electrode. quantity can be limited.
If the wrapped Al plate is covered with a Fe-Cr alloy plate or low carbon steel plate, if this coating is not present and the Al
remains bare and during electroslag melting
This is to prevent Al from burning off alone and causing segregation in the ingot. By creating a three-layer structure as shown in the figure, the electrode melts sequentially from its tip during electroslag melting. A homogeneous ingot with few impurities solidifies in the water-cooled crucible. Processing of the melted ingot is easy, the variation in specific resistance of the Fe-Cr-Al alloy is small, and the oxidation resistance and mechanical properties are also good. Next, examples and test results will be explained. 65mm diameter x 2m length of 23% Cr-Fe alloy as core material,
A 51 kg bar is used, a 2.6 mm thick Al plate (3 kg) is wrapped around the outside, the outside is covered with a 0.5 mm thick thin plate (2 kg) of low carbon steel, and the joints of the Al plate and low carbon steel plate are electrically arced. Welded. The compounding ratio of chemical components and the ratio of impurities in this consumable electrode were as shown in Table 1.

【表】 この消耗電極を用いて次の溶解条件でエレクト
ロスラグ溶解を行つた。 インゴツト径 120mm インゴツト重量 55Kg 溶解電圧、電流 40V、6500A 使用フラツクス CaF2 得られたインゴツトの化学分析値は次の通りで
ある(重量%)。 5.3%Al、22.3%Cr、0.01%N、0.018%C、
0.002%S、0.01%P、0.13%Si、0.11%Mn、残
Fe 120mm径のインゴツトは直接熱間圧延して8mm
丸の線材とし、これを5mm径以下に伸線して電熱
線とした。得られた電熱用合金の特性は次の通り
である。 寿命値、JIS法、1300℃ 530 電気抵抗、μΩ−cm 139 抗張力、Kgf/mm2 86 伸び、% 25 酸化増量、mg/cm2・h・1200℃ 0.05 上記の試験結果から判るように本考案の消耗電
極を使用してエレクトロスラグ溶解したインゴツ
トは熱間鍛造、きず取りを省略して直接熱間圧延
したのにその製品の特性は何等従来品に劣ること
はない。 なおFe−Cr−Al系合金の耐酸化性や機械的性
質を改善するため少量のZr,Nb,TaやCe,La,
Y等の希土類元素の一つまたは二つ以上を組合せ
て添加すると効果があることが知られている。本
発明においてもこれらの元素の添加は同様に効果
があるので、心材のFe−Cr系合金にこれら元素
を予め添加合金させておく等の方法を採用すると
良い。なおこれらの元素を予め電極材料に添加し
ておくことにより電極中の不純物のCやNの含有
量の制限を若干高めることが可能であり、CやN
の量が多少多くなつても所望の特性を有する電熱
用合金を得ることができる。 以上説明したように本考案の消耗電極は市販の
Fe−Cr合金棒材を心材とし、その外側にAl板を
巻き付け、その外側はFe−Cr合金板または低炭
素鋼板で被覆してあるので、細径の長尺の消耗電
極でも容易に製作することが出来る上に、所望の
化学成分組成をもつた電極とすることも容易であ
る。また心材に巻き付けたAl板の外側をFe−Cr
合金板または低炭素鋼薄板で被覆して保護してあ
るので、溶解時にAl板だけ先に溶け落ちるのが
防止される。或いはまた粉末材料を使用していな
いので粉末が崩落してインゴツト内に偏析を生ず
ることもなく、そのうえ熱間鍛造、きず取り工程
を省略できるので生産コストを低減できる等、簡
単な構造にもかかわらずその実用上の効果はきわ
めて大きい。
[Table] Using this consumable electrode, electroslag melting was performed under the following melting conditions. Ingot diameter: 120mm Ingot weight: 55Kg Melting voltage, current: 40V, 6500A Flux used: CaF 2The chemical analysis values of the obtained ingot are as follows (wt%). 5.3%Al, 22.3%Cr, 0.01%N, 0.018%C,
0.002%S, 0.01%P, 0.13%Si, 0.11%Mn, balance
Fe 120mm diameter ingot is directly hot rolled to 8mm
A round wire rod was prepared, and this wire was drawn to a diameter of 5 mm or less to make a heating wire. The properties of the obtained electrothermal alloy are as follows. Lifespan value, JIS method, 1300℃ 530 Electrical resistance, μΩ-cm 139 Tensile strength, Kgf/mm 2 86 Elongation, % 25 Oxidation weight gain, mg/cm 2・h・1200℃ 0.05 As can be seen from the above test results, this invention Although the ingots melted by electroslag using a consumable electrode are directly hot rolled without hot forging or flaw removal, the properties of the product are not inferior to conventional products. In order to improve the oxidation resistance and mechanical properties of the Fe-Cr-Al alloy, small amounts of Zr, Nb, Ta, Ce, La,
It is known that adding one or a combination of two or more rare earth elements such as Y is effective. In the present invention, the addition of these elements is similarly effective, so it is preferable to adopt a method such as adding these elements to the Fe-Cr alloy of the core material in advance. By adding these elements to the electrode material in advance, it is possible to slightly increase the limit on the content of impurities such as C and N in the electrode.
It is possible to obtain an electrothermal alloy having desired properties even if the amount of . As explained above, the consumable electrode of the present invention is commercially available.
Fe-Cr alloy rod is used as core material, Al plate is wrapped around the outside, and the outside is covered with Fe-Cr alloy plate or low carbon steel plate, so even long consumable electrodes with small diameter can be easily manufactured. In addition, it is easy to form an electrode with a desired chemical composition. In addition, the outer side of the Al plate wrapped around the core material is Fe-Cr.
Since it is protected by coating with an alloy plate or low carbon steel thin plate, it prevents the Al plate from melting down first during melting. Furthermore, since no powder material is used, the powder will not collapse and cause segregation within the ingot, and hot forging and flaw removal processes can be omitted, reducing production costs.Despite its simple structure, Its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す横断面図、第2
図は同じく正面図である。 1……心材、2……Al板、3……Fe−Cr合金
板、4……消耗電極。
Figure 1 is a cross-sectional view showing an embodiment of the present invention;
The figure is also a front view. 1... Core material, 2... Al plate, 3... Fe-Cr alloy plate, 4... Consumable electrode.

Claims (1)

【実用新案登録請求の範囲】 Fe−Cr−Al系合金のエレクトロスラグ溶解に
使用される消耗電極において、 Fe−Cr系合金棒を心材とし、その外側にアル
ミニウム板が巻かれ、更にその外側がFe−Cr合
金板または低炭素鋼板で被覆され、化学成分組成
が所要のFe−Cr−Al系合金となるように設計さ
れた低炭素、低窒素含有のエレクトロスラグ溶解
用消耗電極。
[Claims for Utility Model Registration] In a consumable electrode used for electroslag melting of Fe-Cr-Al alloy, an Fe-Cr alloy rod is used as the core material, an aluminum plate is wound around the outside of the core material, and an aluminum plate is wound around the outside of the core material. A consumable electrode for electroslag melting that is coated with a Fe-Cr alloy plate or a low-carbon steel plate and has a low carbon and low nitrogen content and is designed to have the required chemical composition of Fe-Cr-Al alloy.
JP14535483U 1983-09-20 1983-09-20 Electrode for electroslag melting Granted JPS6052959U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14535483U JPS6052959U (en) 1983-09-20 1983-09-20 Electrode for electroslag melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14535483U JPS6052959U (en) 1983-09-20 1983-09-20 Electrode for electroslag melting

Publications (2)

Publication Number Publication Date
JPS6052959U JPS6052959U (en) 1985-04-13
JPS6339245Y2 true JPS6339245Y2 (en) 1988-10-14

Family

ID=30323867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14535483U Granted JPS6052959U (en) 1983-09-20 1983-09-20 Electrode for electroslag melting

Country Status (1)

Country Link
JP (1) JPS6052959U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561738B2 (en) * 2011-05-12 2014-07-30 株式会社日本製鋼所 Consumable electrode for electroslag remelting and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6052959U (en) 1985-04-13

Similar Documents

Publication Publication Date Title
CN103526038A (en) Electroslag remelting production method of high-strength high-plasticity TWIP (Twinning Induced Plasticity) steel
US4846885A (en) High molybdenum nickel-base alloy
CN112030015B (en) Vacuum consumable melting method for high-Al-content refractory high-entropy alloy cast ingot
CN105132767A (en) High-conductivity compressive-creep-resistant aluminum alloy and manufacturing method thereof
JPS6339245Y2 (en)
JP4014900B2 (en) Low oxygen copper wire for magnet wire and method for producing the same
JPH11189834A (en) High strength trolley wire and its manufacture
CN106695173A (en) Welding material for welding near-titanium layer of titanium-steel composite plate, and preparation method thereof
US3193661A (en) Welding rod and electrode
US4161398A (en) Method for electroslag remelting of a copper-nickel alloy
JP3072199B2 (en) Method for producing Ni-Fe-based super heat-resistant alloy ingot
JPH0621303B2 (en) Method for producing low oxygen Ti alloy
RU98165U1 (en) COMPOSITION WIRE FOR Fusing ALLOYS ON THE BASIS OF TITANIUM ALUMINIDES
US4161399A (en) Method for electroslag remelting of a manganese-copper-nickel alloy
JP3578866B2 (en) Method for welding B-containing austenitic stainless steel
JPH10211546A (en) Hot-top casting method
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
SU901321A1 (en) Method of producing resistive copper-nickel-based alloy
JPS6144930B2 (en)
US3516476A (en) Electrode and method of improving soundness of ingots
JPH1080789A (en) Welding wire for co2 gas shielded arc welding and its manufacture
JPH01143791A (en) Aluminum alloy filler metal
JPS6344461B2 (en)
US4265295A (en) Method of producing steel ingots
JP3685864B2 (en) Material for hot rolling of high B content austenitic stainless steel and hot rolling method