JPS6339240Y2 - - Google Patents
Info
- Publication number
- JPS6339240Y2 JPS6339240Y2 JP1981012481U JP1248181U JPS6339240Y2 JP S6339240 Y2 JPS6339240 Y2 JP S6339240Y2 JP 1981012481 U JP1981012481 U JP 1981012481U JP 1248181 U JP1248181 U JP 1248181U JP S6339240 Y2 JPS6339240 Y2 JP S6339240Y2
- Authority
- JP
- Japan
- Prior art keywords
- flux
- ejector
- amount
- section
- carrier gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000004907 flux Effects 0.000 claims description 76
- 239000007789 gas Substances 0.000 claims description 17
- 239000012159 carrier gas Substances 0.000 claims description 13
- 238000007664 blowing Methods 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000003723 Smelting Methods 0.000 claims description 3
- 238000007670 refining Methods 0.000 description 7
- 238000007654 immersion Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【考案の詳細な説明】
本考案は溶融金属精錬炉へのフラツクス吹き込
み量を広範囲に亘つて制御でき、且つキヤリアガ
スの吹き込み状況を一定に維持することができる
フラツクス吹き込み装置に関するものである。[Detailed Description of the Invention] The present invention relates to a flux injection device that can control the amount of flux injected into a molten metal smelting furnace over a wide range and maintain a constant carrier gas injection condition.
鉄或は非鉄金属の精錬に当つては、雰囲気ガス
の溶解、更にはこれに伴なう酸化物や窒化物の生
成等が併発し、表面欠陥等の各種欠陥の原因にな
つている。この様な欠陥を防ぐ為には溶存ガスの
除去、酸化物等の介在物の除去が必要で、塩化
物、弗化物、炭酸塩、硫酸塩等の無機化合物を配
合してなる粉粒状フラツクスを、N2やAr等の不
活性ガス(キヤリアガス)と共に溶融金属中へ吹
き込む方法が利用されている。 In refining iron or non-ferrous metals, the dissolution of atmospheric gas and the accompanying formation of oxides and nitrides occur together, causing various defects such as surface defects. In order to prevent such defects, it is necessary to remove dissolved gases and inclusions such as oxides, and it is necessary to remove granular fluxes containing inorganic compounds such as chlorides, fluorides, carbonates, and sulfates. , a method of injecting into molten metal together with an inert gas (carrier gas) such as N 2 or Ar is used.
この様なフラツクスとキヤリアガスの同時吹き
込みを行なうに当つては、フラツクス吹き込み量
を正しく制御する必要があり、ロータリーフイー
ダー式定量吹き込み装置、回転板による遠心力利
用方式の定量吹き込み装置、スクリユーフイーダ
ー式定量吹き込み装置等が利用されてきた。しか
しこれらの装置は大がかりであつて設備費及び運
転管理費が高価につくという欠点がある他、少量
フラツクスの低圧・低流量吹き込みには適さず、
フラツクス吹き込み量の制御範囲が狭いという欠
点があつた。又従来の装置ではフラツクスの吹き
込み量を調整するに当つてキヤリアガスの送給量
に変動が生じ、金属溶湯中への吹き込み状況が変
わるという問題があり、例えばAl等の精錬精度
そのものに悪影響を与える恐れがあつた。 When injecting flux and carrier gas at the same time, it is necessary to control the amount of flux injected correctly. Eider-type quantitative blowing devices and the like have been used. However, these devices are large-scale and have the disadvantage of high equipment and operation management costs, and are not suitable for injecting small amounts of flux at low pressure and low flow rate.
The drawback was that the control range for the amount of flux blown was narrow. Furthermore, when adjusting the amount of flux blown into conventional equipment, there is a problem in that the amount of carrier gas supplied fluctuates, which changes the conditions in which the flux is blown into the molten metal, which adversely affects the precision of refining Al, etc. I was afraid.
本考案はこの様な事情に着目してなされたもの
であつて、フラツクス吹き込み量の制御範囲を拡
大すると共に少量フラツクスの安定吹き込みを可
能ならしめ、又フラツクスの吹き込み量に関係な
くキヤリアガスの吹き込み量を安定化させて精錬
精度の向上を図り、且つ装置自体の簡略化をめざ
して種々検討した結果、供給フラツクス量の調整
可能なエゼクター方式を確立すると共に、バイパ
ス方式を利用すれば上記の目的が達成されること
を知り、茲に本考案の完成を見るに至つた。 The present invention was developed in view of these circumstances, and it expands the control range of the amount of flux blown into the flux, enables stable injection of a small amount of flux, and maintains the amount of carrier gas blown in regardless of the amount of flux blown into the flux. As a result of various studies aimed at improving refining accuracy by stabilizing the flux and simplifying the equipment itself, we established an ejector system that can adjust the amount of supplied flux, and by using a bypass system, the above objectives can be achieved. Knowing that this would be achieved, I came to see the completion of this invention.
即ち本考案に係るフラツクス吹き込み装置と
は、キヤリアガス供給部に連結されるガス導入部
と、浸漬ノズルに連結されるフラツクス放出部を
結ぶラインパイプを、少なくとも2系列に分岐さ
せると共にそのうちの少なくとも1系列をフラツ
クス通路とし、フラツクス通路の途中にエゼクタ
ーを設けて該エゼクターにフラツクス貯留部を連
結し、該貯留部の下方に形成するフラツクス落下
通路に落下フラツクス量の調整具を設け、前記エ
ゼクターの排出側と残る他方のラインパイプを合
流接続し、フラツクス放出部に連続した点を要旨
とするものである。本考案ではエゼクター方式を
用いているのでロータリーフイーダー方式等にお
いて必要とされた様な特別の装置や動力源が省略
でき装置の簡略化と運転経費の大幅な節減が可能
である。又フラツクス貯留部からエゼクターに向
うフラツクス落下通路に落下フラツクス量の調整
具を設けたから、フラツクスの供給量は自由に且
つ広範囲に亘つて調整でき、しかもバイパスを形
成しているので浸漬ノズルからのキヤリアガス吹
き込み量自体には実質的な変動が無く、精錬操作
の不安定を招くという恐れも無い。 That is, the flux blowing device according to the present invention has a line pipe connecting a gas introduction section connected to a carrier gas supply section and a flux discharge section connected to an immersion nozzle branched into at least two lines, and at least one line of is a flux passage, an ejector is provided in the middle of the flux passage, a flux storage part is connected to the ejector, an adjusting device for the amount of falling flux is provided in the flux falling passage formed below the storage part, and an adjustment device for the amount of falling flux is provided on the discharge side of the ejector. The gist is to connect the remaining line pipe to a point where it is continuous to the flux discharge part. Since the present invention uses an ejector system, the special equipment and power source required in rotary feeder systems etc. can be omitted, making it possible to simplify the equipment and significantly reduce operating costs. In addition, since a device for adjusting the amount of falling flux is provided in the flux falling path from the flux storage section to the ejector, the amount of flux supplied can be adjusted freely and over a wide range.Moreover, since a bypass is formed, the carrier gas from the immersion nozzle can be adjusted freely. There is no substantial variation in the injection amount itself, and there is no fear that it will cause instability in the refining operation.
第1図は本考案装置の説明図であつて、鎖線で
囲まれた本考案装置部分Bは、キヤリアガス供給
部Aと精錬部Cの間に介設される。供給部Aのガ
スボンベ1のガス導出管2aには、1次圧表示圧
力計3a及び2次圧表示用圧力計3bを具備した
減圧弁4が取り付けられ、カツプラー5aを介し
て本考案装置部分Bに接続される。カツプラー5
aに続くラインパイプ2bには流量計6aを具備
した流量調節弁7aが取り付けられ、パイプ2b
はP点から分岐し、フラツクスライン2cとバイ
パス2dに分かれ、これらはQ点において再び合
流し、ラインパイプ2f及びカツプラー5bを介
して浸漬ノズル8に接続される。尚9は精錬炉、
10は金属溶湯を夫々示す。 FIG. 1 is an explanatory diagram of the apparatus of the present invention, in which a portion B of the apparatus of the present invention surrounded by a chain line is interposed between a carrier gas supply section A and a refining section C. A pressure reducing valve 4 equipped with a primary pressure indicating pressure gauge 3a and a secondary pressure indicating pressure gauge 3b is attached to the gas outlet pipe 2a of the gas cylinder 1 of the supply section A, and is connected to the device part B of the present invention via a coupler 5a. connected to. Katsu puller 5
A flow control valve 7a equipped with a flow meter 6a is attached to the line pipe 2b following the pipe 2b.
branches from point P, and is divided into a flux line 2c and a bypass 2d, which join together again at point Q, and are connected to the immersion nozzle 8 via a line pipe 2f and a coupler 5b. Sho 9 is a smelting furnace,
10 each indicates a molten metal.
フラツクスライン2cには、流量計6bを具備
した流量調節弁7b、及びフラツクス逆流防止弁
11を取り付け、エゼクター12の直前には、ガ
ス放出管2eを取り付け、安全弁13aを介して
大気中に開放させておく。エゼクター12の上方
には、フラツクス落下管14を介してフラツクス
ホツパー15を配置し、フラツクスホツパー15
には安全弁13bを設ける。他方バイパス2dに
は、流量計6cを具備するか又は具備しない流量
調節弁7cを設ける。尚必要に応じ、フラツクス
ホツパー15と回路2cとを結び、フラツクスホ
ツパーの内圧を調整する回路2gを設けてもよ
い。 A flow control valve 7b equipped with a flow meter 6b and a flux backflow prevention valve 11 are attached to the flux line 2c, and a gas discharge pipe 2e is attached just before the ejector 12, which is opened to the atmosphere via a safety valve 13a. I'll let it happen. A flux hopper 15 is arranged above the ejector 12 via a flux drop pipe 14, and the flux hopper 15
is provided with a safety valve 13b. On the other hand, the bypass 2d is provided with a flow control valve 7c, which may or may not include a flow meter 6c. If necessary, a circuit 2g may be provided to connect the flux hopper 15 and the circuit 2c to adjust the internal pressure of the flux hopper.
エゼクター12の詳細は第2図に示す通りであ
つて、本体筒部の上面には、フラツクス落下管1
4との接続継手12aが形成され、下面には閉塞
時のフラツクス排出用ドレン12bを形成し、不
使用時はボルト12cが螺合される。エゼクター
12の本体導入側(図面の左側)には、キヤリア
ガス導入管16が螺合され、反対側にはキヤリア
ガス排出管17が螺合される。上記導入管16及
び排出管17の内部には、大径部、テーパ部及び
小径部が形成され、これらの各寸法a,b,c,
d,e,f,g及びhによつてエゼクター12の
吸引力が定まる。従つてフラツクス吹き込み量や
吹き込みガス圧等に応じて適当な寸法のものに取
り替えればよく、場合によつては導入管16及び
排出管17の螺合代を変更することによつてエゼ
クター12の吸引力を調整しても良い。尚図のシ
ール機構は一例を示したものに過ぎない。 The details of the ejector 12 are as shown in FIG.
4 is formed, and a drain 12b for discharging flux when closed is formed on the lower surface, and a bolt 12c is screwed into the drain when not in use. A carrier gas introduction pipe 16 is screwed onto the main body introduction side (left side in the drawing) of the ejector 12, and a carrier gas discharge pipe 17 is screwed onto the opposite side. A large diameter portion, a tapered portion, and a small diameter portion are formed inside the introduction pipe 16 and the discharge pipe 17, and each of these dimensions a, b, c,
The suction force of the ejector 12 is determined by d, e, f, g, and h. Therefore, it is only necessary to replace the ejector 12 with one of appropriate dimensions depending on the amount of flux blown in, the blown gas pressure, etc. In some cases, the length of the ejector 12 can be changed by changing the threading distance of the inlet pipe 16 and the discharge pipe 17. You may adjust the suction power. The sealing mechanism shown in the figure is merely an example.
第3図はフラツクスホツパー15の断面図で、
ホツパー本体15aの下側開口部には、フラツク
ス落下管14が螺合される。そしてエゼクター1
2の場合と同様、内径iや傾斜角度αの異なる落
下管14を幾つか準備しておけば、フラツクスの
種類や必要供給量に応じてこれらを取り替えるこ
とが可能である。又ホツパー15の上蓋15bに
は調整ねじ18が螺合され、該ねじ18の先端に
は支持軸19が取り付けられると共に更にその下
端には断面円形状(図では珠算玉型)の弁20が
吊設される。従つて調整ねじ18の回転によつて
弁20を上下させると、落下管14頂面との間に
形成されるフラツクス落下通路21が広狭に変化
し、エゼクター12方向へのフラツクス落下量が
調整される。尚フラツクス落下量の調整手段とし
ては、弁20の作動による調整やフラツクス落下
管14の取替えによる調整に限定されず、落下管
14に2方コツクやダンパー等の流路断面積調整
手段を取り付ける方式等を利用してもよく、これ
らに、前記エゼクター12の吸引力調整手段を加
味すれば、フラツクス供給量は広範囲にコントロ
ールすることができる。ちなみに第4図は、第3
図における弁20の調整によつて流路断面積を変
化させたときのフラツクス流出量を示すグラフ
で、断面積が大きくなるにつれてフラツクス流出
量が比例的に増大していることを知ることができ
る(実験条件はフラツクスホツパー高さ:100mm、
同内径:25mm、α=70゜、使用フラツクス:
JDR908G)。 FIG. 3 is a cross-sectional view of the flux hopper 15.
A flux drop tube 14 is screwed into the lower opening of the hopper body 15a. and ejector 1
As in case 2, if several drop tubes 14 with different inner diameters i and angles of inclination α are prepared, these can be replaced depending on the type of flux and the required supply amount. Further, an adjustment screw 18 is screwed into the upper cover 15b of the hopper 15, and a support shaft 19 is attached to the tip of the screw 18, and a valve 20 having a circular cross section (bead-shaped in the figure) is suspended from the lower end of the adjustment screw 18. will be established. Therefore, when the valve 20 is moved up and down by rotating the adjustment screw 18, the flux falling passage 21 formed between it and the top surface of the falling tube 14 changes in width and narrowness, and the amount of flux falling in the direction of the ejector 12 is adjusted. Ru. Note that the means for adjusting the amount of flux falling is not limited to adjustment by operating the valve 20 or adjusting by replacing the flux drop pipe 14, but also a method of attaching a channel cross-sectional area adjusting means such as a two-way cock or a damper to the drop pipe 14. If the suction force adjustment means of the ejector 12 is added to these, the flux supply amount can be controlled over a wide range. By the way, Figure 4 shows the 3rd
This is a graph showing the flux outflow amount when the cross-sectional area of the flow path is changed by adjusting the valve 20 in the figure, and it can be seen that as the cross-sectional area increases, the flux outflow amount increases proportionally. (Experiment conditions were flux hopper height: 100mm,
Same inner diameter: 25mm, α=70°, flux used:
JDR908G).
次に第5図は、ガス圧力一定(ゲージ圧:10
Kg/cm2)、同上フラツクス使用の下で流量調節弁
7bを調節することによりエゼクター12へのガ
ス流入量を変化させたときのフラツクス流出量を
示すグラフであるが、明白な比例関係が認められ
る。即ちバイパス回路を形成したことにより、浸
漬ノズル8からの吹出圧力を変化させることなく
エゼクターへのガス流量の調整が可能となり、精
錬条件の変動を伴なわずにフラツクスの吹き込み
量が広範囲に亘つて調整されることとなつた。尚
バイパス2dにも別途フラツクスホツパーを取り
付ければ、銘柄の異なるフラツクスを適当な比率
で混合して吹き込むことも可能である。 Next, Figure 5 shows a constant gas pressure (gauge pressure: 10
This is a graph showing the amount of flux flowing out when the amount of gas flowing into the ejector 12 is changed by adjusting the flow rate control valve 7b using the same flux as above, and a clear proportional relationship is observed. It will be done. That is, by forming the bypass circuit, it is possible to adjust the gas flow rate to the ejector without changing the blowing pressure from the immersion nozzle 8, and the amount of flux blown can be adjusted over a wide range without changing the refining conditions. It was decided that it would be adjusted. If a flux hopper is separately attached to the bypass 2d, it is also possible to mix and inject fluxes of different brands in an appropriate ratio.
次に本考案装置の使用例を示す。 Next, an example of the use of the device of the present invention will be shown.
Al−Mg系合金の溶湯(760℃)10Kgをルツボ
に入れ(深さ20cm)、JDR908Gのフラツクスを吹
き込む為に、次に示す様な諸元の本考案装置を組
み立てた。 In order to put 10kg of molten Al-Mg alloy (760℃) into a crucible (depth 20cm) and inject JDR908G flux, we assembled the device of this invention with the following specifications.
フラツクスホツパー
内径:50mm
高さ:100mm
α :70度
フラツクス落下管内径:7mm
エゼクター
a:9mm,b:4mm,c:6mm,
d:3mm,e:9mm,f:10mm,
g:10mm,h:7mm
吹き込みガスとしてN2を使用し、ガス圧力:
0.02Kg/cm2、ガス流量:7/分、の下でエゼク
ター部のガス流量を5/分に定めて吹き込みを
行なつたところ、フラツクスは10g/分で安定な
吹き込みを継続させることができた。 Flux hopper Inner diameter: 50mm Height: 100mm α: 70 degrees Flux drop tube inner diameter: 7mm Ejector a: 9mm, b: 4mm, c: 6mm, d: 3mm, e: 9mm, f: 10mm, g: 10mm, h: 7mm Using N2 as the blowing gas, gas pressure:
When blowing was carried out with the ejector gas flow rate set at 5/min under conditions of 0.02 Kg/cm 2 and gas flow rate of 7/min, stable blowing of flux could be continued at 10 g/min. Ta.
本考案は以上の如く構成されるので、装置が簡
略化され運転経費も大幅に削減される様になつた
にもかかわらず、フラツクス吹き込み量の調整は
却つて広範囲に可能となり、しかも溶湯中へのガ
ス吹き込み総量及び吹き込み圧が一定に保持さ
れ、鉄及び非鉄金属の精錬精度を向上させること
が可能になつた。 Since the present invention is constructed as described above, although the equipment has been simplified and operating costs have been significantly reduced, the amount of flux blown into the molten metal can be adjusted over a wide range. The total gas blowing amount and blowing pressure are kept constant, making it possible to improve the precision of refining ferrous and non-ferrous metals.
第1図は本考案装置の説明図、第2図はエゼク
ターの要部断面図、第3図はフラツクスホツパー
の断面図、第4,5図はフラツクス吹き込み量の
調整を示すグラフである。
1……ガスボンベ、12……エゼクター、14
……フラツクス落下管、15……フラツクスホツ
パー。
Fig. 1 is an explanatory diagram of the device of the present invention, Fig. 2 is a sectional view of the main part of the ejector, Fig. 3 is a sectional view of the flux hopper, and Figs. 4 and 5 are graphs showing adjustment of the flux injection amount. . 1...Gas cylinder, 12...Ejector, 14
...Flux drop tube, 15...Flux hopper.
Claims (1)
リアガス供給部との間に設けられるフラツクス吹
き込み装置であつて、前記キヤリアガス供給部に
連結されるガス導入部と、前記吹き込みノズルに
連結されるフラツクス放出部の間を少なくとも2
系列のラインパイプに分岐してそのうち少なくと
も1系列をフラツクス通路とし、該フラツクス通
路の途中にエゼクターを取り付け、該エゼクター
にはフラツクス貯留部を連結すると共に、該貯留
部の下方に形成するフラツクス落下通路に落下フ
ラツクス量の調整具を設け、さらに前記エゼクタ
ーの出口側に連結されるキヤリアガス排出管は、
前記分岐された残りの他系列のラインパイプに合
流接続された後、前記フラツクス放出部に連結さ
れてなることを特徴とする溶融金属精錬炉へのフ
ラツクス吹き込み装置。 A flux blowing device provided between a blowing nozzle immersed in molten metal and a carrier gas supply section, the flux blowing device comprising a gas introduction section connected to the carrier gas supply section and a flux discharge section connected to the blowing nozzle. at least 2
A series of line pipes are branched, at least one of which is used as a flux passage, an ejector is installed in the middle of the flux passage, a flux storage section is connected to the ejector, and a flux falling passage is formed below the storage section. A carrier gas discharge pipe connected to the outlet side of the ejector is provided with a falling flux amount adjusting device.
A flux injection device into a molten metal smelting furnace, characterized in that the flux injection device is connected to the flux discharge section after being connected to the branched line pipe of the remaining other series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981012481U JPS6339240Y2 (en) | 1981-01-31 | 1981-01-31 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981012481U JPS6339240Y2 (en) | 1981-01-31 | 1981-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57125766U JPS57125766U (en) | 1982-08-05 |
JPS6339240Y2 true JPS6339240Y2 (en) | 1988-10-14 |
Family
ID=30025045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981012481U Expired JPS6339240Y2 (en) | 1981-01-31 | 1981-01-31 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6339240Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS527238A (en) * | 1975-07-07 | 1977-01-20 | West Electric Co Ltd | Photographic camera |
JPS53119402A (en) * | 1977-03-28 | 1978-10-18 | Marconaflo Inc | Centrifugal slurry pump and method of pumping up slurry |
-
1981
- 1981-01-31 JP JP1981012481U patent/JPS6339240Y2/ja not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS527238A (en) * | 1975-07-07 | 1977-01-20 | West Electric Co Ltd | Photographic camera |
JPS53119402A (en) * | 1977-03-28 | 1978-10-18 | Marconaflo Inc | Centrifugal slurry pump and method of pumping up slurry |
Also Published As
Publication number | Publication date |
---|---|
JPS57125766U (en) | 1982-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3773226A (en) | Container with sliding shutter for a liquid melt | |
DE3204389A1 (en) | DEVICE AND METHOD FOR POURING METAL MELTS | |
US4566614A (en) | Casting nozzle | |
US4391319A (en) | Apparatus for introducing elements into molten metal streams and casting in inert atmosphere | |
US4460409A (en) | Process and installation for protecting a jet of molten metal for casting | |
US3260591A (en) | Propelling of addition agents into melts | |
KR910001174B1 (en) | Process for preventing the formation nozzle during teeming of molten metal | |
JPS6339240Y2 (en) | ||
US4828609A (en) | Method to protect the surface of metal in vertical melting furnaces | |
SK48999A3 (en) | Refractory assemblies | |
US3592363A (en) | Device for adding fine particle-sized solids to a liquid stream | |
US3224051A (en) | Method of introducing addition agent into a melt | |
JPS63313655A (en) | Method of introducing flash gas into casting hole with sliding stopper for metallurgical vessel | |
AU613424B2 (en) | Carbon dioxide snow nozzle for metallurgy | |
US4997167A (en) | Ladle inoculant dispenser | |
JP3484820B2 (en) | Continuous casting of free-cutting steel | |
US3211545A (en) | Process and apparatus for vacuum degassing of metal | |
US3582057A (en) | Oxygen lance | |
EP0174061A1 (en) | Continuous vacuum degassing and casting of steel | |
JPH02235557A (en) | Method for charging adding metal for continuous casting and submerged nozzle for using to this | |
JPS63502601A (en) | Injection of substances into hot liquids | |
JPS5731453A (en) | Continuous casting method for steel | |
CN211965854U (en) | Slag adding device for back side of water gap of crystallizer | |
JP2004223575A (en) | Gas blowing device for sliding nozzle | |
US3275244A (en) | Apparatus for introducing addition agent into a melt |