JPS6339114B2 - - Google Patents

Info

Publication number
JPS6339114B2
JPS6339114B2 JP57184556A JP18455682A JPS6339114B2 JP S6339114 B2 JPS6339114 B2 JP S6339114B2 JP 57184556 A JP57184556 A JP 57184556A JP 18455682 A JP18455682 A JP 18455682A JP S6339114 B2 JPS6339114 B2 JP S6339114B2
Authority
JP
Japan
Prior art keywords
mixed crystal
layer
substrate
semiconductor laser
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57184556A
Other languages
Japanese (ja)
Other versions
JPS5878490A (en
Inventor
Takashi Kajimura
Takaro Kuroda
Shigeo Yamashita
Michiharu Nakamura
Junichi Umeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18455682A priority Critical patent/JPS5878490A/en
Publication of JPS5878490A publication Critical patent/JPS5878490A/en
Publication of JPS6339114B2 publication Critical patent/JPS6339114B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、高信頼性、長寿命の半導体レーザ装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly reliable and long-life semiconductor laser device.

半導体レーザ装置は、小形、高効率で、大量生
産が可能なことから、レーザプリンタ等の情報端
末機器やビデオデイスク、測距計等の光源として
多種の応用が考えられている。この際、レーザ光
の波長が短い方が、感度や分解能向上の点から好
ましく、また操作上の容易さからも、低しきい
値、高信頼性の可視域に発振波長を持つ半導体レ
ーザ装置の実用化が望まれている。
Semiconductor laser devices are compact, highly efficient, and can be mass-produced, and are therefore being considered for a variety of applications as light sources for information terminal equipment such as laser printers, video disks, distance meters, and the like. In this case, the shorter the wavelength of the laser light, the better from the viewpoint of improving sensitivity and resolution, and from the viewpoint of ease of operation, a semiconductor laser device with an oscillation wavelength in the visible range with a low threshold and high reliability is used. It is hoped that it will be put into practical use.

従来0.8μm帯で開発されてきたGaAlAs系ダブ
ルヘテロ半導体レーザにおいて、活性層の混晶比
zを0.15〜0.35、クラツド層の混晶比y、uを0.5
〜0.8とすることにより、波長7600Å以下の可視
半導体レーザを容易に作製できる。この場合、
GaAs基板と成長層の格子定数のミスマツチング
が混晶比z、y、uの増大と共に大きくなるた
め、成長層面内の応力、特に活性層にかかる応力
が、従来の0.83μmのレーザに比べて1ケタ以上
大きくなることが、素子の長寿命、高信頼性を得
る上で重要な問題である。この活性層にかかる応
力を低減する新しい半導体レーザ装置の構成を提
案する。
In GaAlAs double hetero semiconductor lasers that have been developed in the 0.8 μm band, the active layer's mixed crystal ratio z is 0.15 to 0.35, and the clad layer's mixed crystal ratio y and u are 0.5.
By setting it to 0.8, a visible semiconductor laser with a wavelength of 7600 Å or less can be easily manufactured. in this case,
As the mismatching of the lattice constants between the GaAs substrate and the grown layer increases as the mixed crystal ratio z, y, and u increases, the in-plane stress in the grown layer, especially the stress applied to the active layer, increases by 1 compared to the conventional 0.83 μm laser. Increasing the size by an order of magnitude or more is an important issue in obtaining long life and high reliability of the device. We propose a new semiconductor laser device configuration that reduces the stress applied to the active layer.

第1の形態はGaAlAs系のダブルヘテロ構造を
持つ多層膜をGa1-x1Alx1As混晶基板上に成長さ
せるものである。
In the first form, a GaAlAs-based multilayer film having a double heterostructure is grown on a Ga 1-x1 Al x1 As mixed crystal substrate.

第2の形態はGaAs1-x2Sbx2混晶基板上に
GaAlAs系のダブルヘテロ構造を持つ多層膜を成
長させるものである。
The second form is on a GaAs 1-x2 Sb x2 mixed crystal substrate.
This method grows a GaAlAs-based multilayer film with a double heterostructure.

第3の形態はInx3Ga1-x3As混晶基板上に
GaAlAs系のダブルヘテロ構造を持つ多層膜を成
長させるものである。
The third form is on an In x3 Ga 1-x3 As mixed crystal substrate.
This method grows a GaAlAs-based multilayer film with a double heterostructure.

以下、各々について詳細に説明する。 Each will be explained in detail below.

第1の形態は基板として Ga1-x1Alx1As混晶基板を用いるものである。 The first form uses a Ga 1-x1 Al x1 As mixed crystal substrate as the substrate.

第1図はGaAlAs系ダブルヘテロ半導体レーザ
の積層構造のフアブリペロ共振器を構成する鏡面
に平行な平面で切断した断面図である。同時に各
層の厚さをd1〜d5で表示した。
FIG. 1 is a cross-sectional view taken along a plane parallel to a mirror surface constituting a Fabry-Perot resonator having a stacked structure of a GaAlAs-based double hetero semiconductor laser. At the same time, the thickness of each layer was expressed as d1 to d5 .

各半導体層を次の如く構成することにより本発
明の目的を達することができる。
The object of the present invention can be achieved by configuring each semiconductor layer as follows.

Ga1-x1Alx1As混晶基板(0.02x10.4)(厚さ
d1)1上にn型Ga1-yAlyAs層(0.5y0.8)
(厚さd2)2、Ga1-zAlzAs層(0.15z0.35)
(厚さd3)3、p型Ga1-uAluAs層(0.5u0.8)
(厚さd4)4、およびp型GaAs層(厚さd5)5の
各層を周知の液相エピタキシヤル法で成長させ
る。層2と層4は反対導電型となす。この場合z
−0.075x1z+0.025の関係を満たす如く混晶
基板を選択する。
Ga 1-x1 Al x1 As mixed crystal substrate (0.02x 1 0.4) (thickness
d 1 ) n-type Ga 1-y Al y As layer (0.5y0.8) on 1
(Thickness d 2 ) 2, Ga 1-z Al z As layer (0.15z0.35)
(Thickness d 3 ) 3, p-type Ga 1-u Al u As layer (0.5u0.8)
A p-type GaAs layer (thickness d 4 ) 4 and a p-type GaAs layer (thickness d 5 ) 5 are grown by a well-known liquid phase epitaxial method. Layer 2 and layer 4 are of opposite conductivity type. In this case z
A mixed crystal substrate is selected so as to satisfy the relationship -0.075x 1 z + 0.025.

なお、各層の厚さは大略次の範囲で選択する。 Note that the thickness of each layer is approximately selected within the following range.

50μmd1200μm、1μmd23μm、0.05μm
d30.5μm、1μmd43μm、0.5μmd5
m 次いで層5上にAl2O3膜をCVD法によつて厚さ
3000Åに形成する。通常のフオトリソグラフイ技
術によつてAl2O3膜を幅5μmのストライプ状に選
択的に除去する。この窓を通してZn拡散し、Zn
拡散領域8を形成する。
50μmd 1 200μm, 1μmd 2 3μm, 0.05μm
d 3 0.5μm, 1μm d 4 3μm, 0.5μm d 5
m Next, an Al 2 O 3 film is deposited on layer 5 to a thickness of
Formed at 3000Å. The Al 2 O 3 film is selectively removed in stripes with a width of 5 μm using a conventional photolithography technique. Zn diffuses through this window, and Zn
A diffusion region 8 is formed.

Al2O3膜を除去して後、p側電極7としてCr−
Au、n側電極6としてAuGeNi−Auを蒸着で形
成する。半導体レーザ装置の相対する端面9,1
0はへき開により相互に平行な共振反射面を作製
する。
After removing the Al 2 O 3 film, Cr-
As the n-side electrode 6, AuGeNi-Au is formed by vapor deposition. Opposing end surfaces 9 and 1 of the semiconductor laser device
0 creates mutually parallel resonant reflection surfaces by cleavage.

この構造の素子における活性層中の応力を計算
した例が第2図である。各パラメータは図中に例
示した。実線は引張り応力、破線は圧縮応力を示
す。横軸は基板の混晶比x1で、縦軸は活性層中の
応力σを表わす。ここでは活性層中のAlAsの混
晶比zが0.15および0.2の場合が示してある。図
より或るzに対してx1をある範囲に設定すること
により活性層中の応力を著しく低減できる範囲が
あることがわかる。
FIG. 2 shows an example of calculating the stress in the active layer in an element with this structure. Each parameter is illustrated in the figure. Solid lines indicate tensile stress and dashed lines indicate compressive stress. The horizontal axis represents the mixed crystal ratio x 1 of the substrate, and the vertical axis represents the stress σ in the active layer. Here, cases are shown in which the AlAs mixed crystal ratio z in the active layer is 0.15 and 0.2. The figure shows that there is a range in which the stress in the active layer can be significantly reduced by setting x 1 within a certain range for a certain z.

検討の結果、活性層中の応力が最も小さくなる
基板の混晶比x1は x1z−0.025(この時、y=u=0.6) であることが判明した。また活性層中の応力σを
108dyn/cm2以内にするには z−0.075x1z+0.025 ……(1) とすればよいことが判明した。このもようを第3
図に示した。活性層中の応力は各層の厚みd2〜d5
に対してはゆるやかに変化する量であることが計
算より確められており、実用的な素子構造に対し
ては上記関係は誤差範囲内でほぼ満足される。活
性層中のAlAsの混晶比zが大きくなると、yお
よびuを0.6以上にする必要があるが、この場合
も応力が最小となる範囲は第3図の領域内に含ま
れる。
As a result of investigation, it was found that the mixed crystal ratio x 1 of the substrate at which the stress in the active layer is minimized is x 1 z-0.025 (at this time, y=u=0.6). Also, the stress σ in the active layer is
It turned out that in order to keep it within 10 8 dyn/cm 2 z−0.075x 1 z+0.025 ……(1). This is the third
Shown in the figure. The stress in the active layer varies with the thickness of each layer d 2 ~ d 5
It has been confirmed through calculations that the amount changes slowly, and for practical device structures, the above relationship is almost satisfied within the error range. When the mixed crystal ratio z of AlAs in the active layer increases, y and u must be set to 0.6 or more, but in this case as well, the range where the stress is minimum is included in the region shown in FIG.

試作した素子は次のような特性を示した。 The prototype device showed the following characteristics.

z=0.2、x1=0.175、y=u=0.5として試作し
た半導体レーザは、発振波長745nmにおいてし
きい値電流密度1.5KA/cm2で室温連続発振した。
また、環境温度50℃において光出力5mWで定光
出力動作させた結果1000時間以上安定に動作し
た。
A semiconductor laser prototyped with z = 0.2, x 1 = 0.175, and y = u = 0.5 continuously oscillated at room temperature at an oscillation wavelength of 745 nm and a threshold current density of 1.5 KA/cm 2 .
Furthermore, when operating at a constant light output of 5 mW at an environmental temperature of 50°C, it operated stably for over 1000 hours.

さらに、z=0.2、y=u=0.5とし、x1をZ−
0.075x1z+0.025の範囲で変化させて試作し
た半導体レーザの場合も、上記と同様の結果が得
られた。
Furthermore, z=0.2, y=u=0.5, and x 1 is Z−
Results similar to those described above were also obtained in the case of a semiconductor laser that was prototyped by changing it in the range of 0.075x 1 z + 0.025.

以上述べたごとくGaAlAs系可視半導体レーザ
において、 z−0.075x1z+0.025なる関係を満足する
混晶比x1を有する基板を使用することにより、活
性層の応力集中が緩和され、素子の長寿命化が期
待される。なお混晶基板の作製は液相厚膜成長法
で行なうことができる。
As mentioned above, in a GaAlAs-based visible semiconductor laser, by using a substrate with a mixed crystal ratio x 1 that satisfies the relationship z-0.075x 1 z+0.025, stress concentration in the active layer is eased and the length of the device is increased. Expected to last longer. Note that the mixed crystal substrate can be manufactured by a liquid phase thick film growth method.

第2および第3の形態はGaAlAs系可視半導体
レーザの成長に際し、GaAsSb又はInGaAs系三
元混晶を混晶基板として用いることによつて、活
性層の応力低減をはかることを特徴とする。
The second and third embodiments are characterized in that stress in the active layer is reduced by using GaAsSb or InGaAs ternary mixed crystal as a mixed crystal substrate during growth of the GaAlAs visible semiconductor laser.

以下にその内容を説明する。 The contents will be explained below.

室温において、GaAs、AlAs、GaSb、InAsの
格子定数は、それぞれ5653Å、5662Å、6095Å、
6058Åであり、その差をGaAsの格子定数を基準
とした百分率で表わすと、AlAsは+0.16%、
GaSbは+7.52%、InAsは+6.92%である。これ
らの系の混晶Ga1-x1Alx1As、GaAs1-x2Sbx2、Inx3
Ga1-x3Asでは、格子定数が混晶比x1、x2、x3
比例的に変化するというVegardの法則がよくな
りたつているから、混晶比x1のGa1-x1Alx1Asと
同じ格子定数となるx2、x3はそれぞれ x2=(0.16/7.52)x1=0.0213x1 ……(2) x3=(0.16/6.92)x1=0.0231x1 ……(3) となる。
At room temperature, the lattice constants of GaAs, AlAs, GaSb, and InAs are 5653 Å, 5662 Å, 6095 Å, respectively.
6058 Å, and when the difference is expressed as a percentage based on the lattice constant of GaAs, it is +0.16% for AlAs,
GaSb is +7.52%, and InAs is +6.92%. Mixed crystals of these systems Ga 1-x1 Al x1 As, GaAs 1-x2 Sb x2 , In x3
In Ga 1-x3 As, Vegard's law that the lattice constant changes proportionally to the mixed crystal ratio x 1 , x 2 , x 3 is becoming better, so Ga 1-x1 Al x1 with a mixed crystal ratio x 1 x 2 and x 3 , which have the same lattice constant as As, are x 2 = (0.16/7.52) x 1 = 0.0213x 1 …… ( 2 ) 3) becomes.

これは、第1の形態の半導体レーザにおいて混
晶比x10.1の混晶基板を用いる代りに、x2
0.00213のGaAs1-x2Sbx2系、又はx30.00231の
Inx3Ga1-x3As系混晶基板で代替できることを示し
ている。
This means that instead of using a mixed crystal substrate with a mixed crystal ratio of x 1 0.1 in the semiconductor laser of the first form,
0.00213 GaAs 1-x2 Sb x2 system, or x 3 0.00231
This shows that it can be replaced with an In x3 Ga 1-x3 As mixed crystal substrate.

また、式(1)、(2)、(3)よりx1、x2、x3を求める
と、 0.075x10.375 0.00160x20.00799 0.00173x30.00866 となる。
Furthermore, when x 1 , x 2 , and x 3 are calculated from equations ( 1 ), ( 2 ), and (3), they become 0.075x 1 0.375 0.00160x 2 0.00799 0.00173x 3 0.00866.

従つて、GaAs1-x2Sbx2(0.00160x2
0.00799)、Inx3Ga1-x3As(0.00173x30.00866)
を用いることによつて本発明の目的を達すること
が出来る。
Therefore, GaAs 1-x2 Sb x2 (0.00160x 2
0.00799), In x3 Ga 1-x3 As (0.00173x 3 0.00866)
By using this, the object of the present invention can be achieved.

これらの形態は、GaAlAs系の混晶基板を用い
る場合に比べて次の点で有利である。
These forms have the following advantages over the case of using a GaAlAs-based mixed crystal substrate.

x10.1の組成のGa1-x1Alx1Asと同じ格子定数
の混晶基板の作製においても、x2x30.002
(0.2%)と非常に小さいため、結晶中のSb、Inの
密度は〜5×1019コ/c.c.と通常のドーパント程度
で良く、基板としての結晶の品質を劣化させるこ
となく作製できる。また、Sb、Inの偏析係数が
小さいため、均一組成の基板が得やすい。
Even in the production of a mixed crystal substrate with the same lattice constant as Ga 1-x1 Al x1 As with a composition of x 1 0.1, x 2 x 3 0.002
(0.2%), the density of Sb and In in the crystal can be ~5×10 19 co/cc, which is about the same as a normal dopant, and it can be manufactured without deteriorating the quality of the crystal as a substrate. Furthermore, since the segregation coefficients of Sb and In are small, it is easy to obtain a substrate with a uniform composition.

具体例をもつて第2および3の形態を説明す
る。
The second and third embodiments will be explained using specific examples.

第4図を用いて説明する。 This will be explained using FIG.

n形GaAs1-0.002Sb0.002基板42又はn形In0.002
Ga1-0.002As基板42を用意し、この上部に n形Ga0.4Al0.6As層43、 p形Ga0.8Al0.2As層44、 p形Ga0.4Al0.6As層45、p形GaAs層46を
液相成長法で連続的に成長する。液相成長法は通
常のスライドボード法で行ない、各層の厚さは4
2が10μm、43が2μm、44が0.1μm、45が
2μm、46が1μmである。
n-type GaAs 1-0.002 Sb 0.002 substrate 42 or n-type In 0.002
A Ga 1-0.002 As substrate 42 is prepared, and on top of it are formed an n-type Ga 0.4 Al 0.6 As layer 43, a p-type Ga 0.8 Al 0.2 As layer 44, a p-type Ga 0.4 Al 0.6 As layer 45, and a p-type GaAs layer 46. Continuously grows using liquid phase growth method. The liquid phase growth method was carried out using the usual slide board method, and the thickness of each layer was 4
2 is 10μm, 43 is 2μm, 44 is 0.1μm, 45 is
2 μm, 46 is 1 μm.

次いで層46上にSiO2膜をCVD法によつて厚
さ3000Åに形成する。通常のフオトリソグラフイ
技術によつてSiO2膜を幅5μmのストライプ状に
選択的に除去する。その後、p側電極として
AuZn、n側電極としてAuSnを蒸着で形成する。
レーザ長は300μmである。半導体レーザ装置の
相対する端面はへき開により相互に平行な共振反
射面を作製する。
Next, a SiO 2 film is formed on layer 46 to a thickness of 3000 Å by CVD. The SiO 2 film is selectively removed in stripes with a width of 5 μm using conventional photolithography technology. After that, as a p-side electrode
AuZn and AuSn are formed by vapor deposition as the n-side electrode.
The laser length is 300 μm. Opposing end faces of the semiconductor laser device are cleaved to create mutually parallel resonant reflection surfaces.

上記レーザは室温において750nmでレーザ発
振し、しきい電流密度は1KA/cm2程度と低く、
また環境温度50℃、光出力5mWにおいて定光出
力動作させる寿命試験では1000時間以上にわたつ
て安定に動作し、従来の0.83μm帯の素子と同程
度の寿命が得られた。
The above laser oscillates at 750 nm at room temperature, and has a low threshold current density of about 1 KA/ cm2 .
In addition, in a life test in which the device operated at a constant light output at an ambient temperature of 50°C and a light output of 5 mW, it operated stably for over 1000 hours, achieving a lifespan comparable to that of conventional 0.83 μm band elements.

GaAsSb系、又はInGaAs系の混晶基板は、
GaAs基板上に気相成長したもの、あるいはCVD
法で成長したものを用いることもでき、同様の特
性が得られた。
GaAsSb-based or InGaAs-based mixed crystal substrates are
Vapor phase growth on GaAs substrate or CVD
It was also possible to use those grown by the method, and similar properties were obtained.

なお、本発明においてはプレーナ・ストライプ
構造の半導体レーザに関する実施例について詳述
したが、埋め込みヘテロ構造、Channeled
Substrate Planar構造等種々の構造のレーザに
おいても本発明を用いることにより同様の特性が
得られた。
In the present invention, an embodiment related to a semiconductor laser with a planar stripe structure has been described in detail, but a buried heterostructure, a channeled
Similar characteristics were obtained by using the present invention in lasers with various structures such as a substrate planar structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ装置の斜視図、
第2図は基板の混晶比と活性層応力の関係を示す
図、第3図は活性層の混晶比と基板の液晶比の領
域を示す図、第4図は本発明の別な実施形態を示
す半導体レーザ装置の断面図。 1……GaAlAs基板、2,4……クラツド層、
3……活性層、6,7……電極、9,10……結
晶端面、42……GaAsSb基板、InGaAs基板。
FIG. 1 is a perspective view of a semiconductor laser device of the present invention;
Fig. 2 is a diagram showing the relationship between the mixed crystal ratio of the substrate and the stress in the active layer, Fig. 3 is a diagram showing the range of the mixed crystal ratio of the active layer and the liquid crystal ratio of the substrate, and Fig. 4 is a diagram showing another embodiment of the present invention. FIG. 2 is a cross-sectional view of a semiconductor laser device showing its configuration. 1...GaAlAs substrate, 2, 4...cladding layer,
3... Active layer, 6, 7... Electrode, 9, 10... Crystal end face, 42... GaAsSb substrate, InGaAs substrate.

Claims (1)

【特許請求の範囲】 1 Ga1-x1Alx1As、GaAs1-x2Sbx2またはInx3
Ga1-x3Asより成る混晶基板上に、Ga1-yAlyAs層
(0.5y0.8)、Ga1-zAlzAs層(0.15z0.35)
およびGa1-uAluAs層(0.5u0.8)を順次積層
したダブルヘテロ構造を有する半導体レーザ装置
において、上記混晶基板の混晶比x1、x2、x3
各々0.075x10.375、 0.00160x20.00799、 0.00173x30.00866であることを特徴とする
半導体レーザ装置。 2 上記y、z、uがz<uyなる大小関係を
有することを特徴とする特許請求の範囲第1項記
載の半導体レーザ装置。
[Claims] 1 Ga 1-x1 Al x1 As, GaAs 1-x2 Sb x2 or In x3
Ga 1- y Al y As layer (0.5y0.8), Ga 1-z Al z As layer (0.15z0.35) on a mixed crystal substrate consisting of Ga 1- x3 As.
In a semiconductor laser device having a double heterostructure in which Ga 1-u Al u As layers (0.5u0.8) are sequentially laminated, the mixed crystal ratios x 1 , x 2 , x 3 of the mixed crystal substrate are each 0.075x 1 0.375, 0.00160x 2 0.00799, 0.00173x 3 0.00866. 2. The semiconductor laser device according to claim 1, wherein y, z, and u have a magnitude relationship of z<uy.
JP18455682A 1982-10-22 1982-10-22 Semiconductor laser device Granted JPS5878490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18455682A JPS5878490A (en) 1982-10-22 1982-10-22 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18455682A JPS5878490A (en) 1982-10-22 1982-10-22 Semiconductor laser device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP23111785A Division JPS61142786A (en) 1985-10-18 1985-10-18 Semiconductor laser device
JP11734986A Division JPS61258491A (en) 1986-05-23 1986-05-23 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS5878490A JPS5878490A (en) 1983-05-12
JPS6339114B2 true JPS6339114B2 (en) 1988-08-03

Family

ID=16155268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18455682A Granted JPS5878490A (en) 1982-10-22 1982-10-22 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS5878490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118717U (en) * 1989-03-09 1990-09-25

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245689A (en) * 1986-04-18 1987-10-26 Toshiba Corp Semiconductor light emitting device
JPS61258491A (en) * 1986-05-23 1986-11-15 Hitachi Ltd Semiconductor laser device
US5212705A (en) * 1992-02-18 1993-05-18 Eastman Kodak Company AlAS Zn-stop diffusion layer in AlGaAs laser diodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113591A (en) * 1973-02-26 1974-10-30
JPS5212719A (en) * 1975-07-19 1977-01-31 Nat Jutaku Kenzai Quenching panel
JPS52127190A (en) * 1976-04-19 1977-10-25 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113591A (en) * 1973-02-26 1974-10-30
JPS5212719A (en) * 1975-07-19 1977-01-31 Nat Jutaku Kenzai Quenching panel
JPS52127190A (en) * 1976-04-19 1977-10-25 Matsushita Electric Ind Co Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118717U (en) * 1989-03-09 1990-09-25

Also Published As

Publication number Publication date
JPS5878490A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
US4740976A (en) Semiconductor laser device
JPH11307866A (en) Nitride compound semiconductor laser element
JPS6215875A (en) Semiconductor device and manufacture thereof
US5289484A (en) Laser diode
US5020066A (en) Surface-emitting-type semiconductor laser device
JPH05283791A (en) Surface emission type semiconductor laser
JP2002064244A (en) Distributed feedback semiconductor laser device
JP2558768B2 (en) Semiconductor laser device
JP2003163417A (en) Semiconductor light emitting element and method of manufacturing the same
JP2783947B2 (en) Semiconductor laser
JPS6339114B2 (en)
US6330263B1 (en) Laser diode having separated, highly-strained quantum wells
JPH0416032B2 (en)
JPH0248151B2 (en)
JPH0846291A (en) Semiconductor laser and manufacture thereof
JP4033930B2 (en) Semiconductor laser
JPS6343913B2 (en)
JP3239821B2 (en) Method for producing strained semiconductor crystal
JP2556270B2 (en) Strained quantum well semiconductor laser
JPS62112391A (en) Semiconductor laser
JPH06334256A (en) Formation of semiconductor light reflective layer
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6367350B2 (en)
JP2913946B2 (en) Quantum well semiconductor laser
JPH06204599A (en) Semiconductor laser and manufacture thereof