JPS6339081B2 - - Google Patents

Info

Publication number
JPS6339081B2
JPS6339081B2 JP56166280A JP16628081A JPS6339081B2 JP S6339081 B2 JPS6339081 B2 JP S6339081B2 JP 56166280 A JP56166280 A JP 56166280A JP 16628081 A JP16628081 A JP 16628081A JP S6339081 B2 JPS6339081 B2 JP S6339081B2
Authority
JP
Japan
Prior art keywords
ink
resistance
weight
inks
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56166280A
Other languages
Japanese (ja)
Other versions
JPS5798902A (en
Inventor
Narayan Purabufu Asuhooku
Uooren Hangu Kenesu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS5798902A publication Critical patent/JPS5798902A/en
Publication of JPS6339081B2 publication Critical patent/JPS6339081B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)
  • Non-Adjustable Resistors (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は優れた抵抗温度係数を有し、ポーセ
レン被覆金属基板上の多層電気構体に使用される
酸化インジウム厚膜抵抗インクに関する。 多層型集積回路構体の製造において適当な基板
上に種々の機能を持つ厚膜を特殊なインクを用い
て形成することは当業者に公知であり、この技法
は電子工業の広い用途において種々の基板上に極
めて稠密な多層回路パタンを形成する場合に重要
度を増して来た。 このような回路の製造に特に優れた基板が米国
特許第4256796号明細書に開示されているが、こ
の基板は金属に優れたポーセレン組成物を被覆し
たもので、そのポーセレン組成物はその酸化物組
成に基いて酸化マグネシウム(MgO)または酸
化マグネシウムと他の酸化物との混合物、酸化バ
リウム(BaO)、3酸化硼素(B2O3)および2酸
化シリコン(SiO2)より成つている。好ましい
金属は鋼、特に低炭素鋼で、銅のような他の金属
で被覆されていることもあり、この心金にポーセ
レン組成物を塗布して焼成し、部分(半)失透ポ
ーセレン被覆をその上に形成してある。この被覆
はその初期融点で極めて低粘度であるが、失透に
よつて殆んど瞬間的に高粘度になる。ハイブリツ
ド回路用に推奨される焼成被覆は少なくとも700
℃の熱変形温度と少なくとも約110×10-7/℃の
高い熱膨張係数を有する。 上記米国特許のポーセレン被覆金属基板はそれ
までに知られていた基板材料より著しく優れてい
るが、市販の厚膜用インクに殆んどまたは全く適
合しないという点だけが欠点である。この米国特
許の基板に適合する進歩したインクを開発する必
要がある上、抵抗値の上昇と共に速やかにOまた
は最適値から離れる抵抗温度係数を制御する手段
の必要性が一般に認められて来た。 この発明によつて酸化インジウム抵抗器の抵抗
温度係数を高抵抗値においても許容限度以内すな
わち約±350ppm/℃以内に制御し得る手段が提
供される。 この発明による抵抗インクは、酸化インジウ
ム、抵抗温度係数制御用成分の酸化マグネシウ
ム、バリウム・カルシウム硼珪酸ガラスフリツト
および適当な有機媒体から成つている。 この発明は進歩した中間抵抗および高抵抗用イ
ンクを提供するもので、すなわちこのインクは約
500Ω/□〜1MΩ/□またはそれ以上の面抵抗を
有し、ポーセレン被覆金属回路板上に複雑な単層
型または多層型厚膜回路の製造に有用である。こ
の発明の抵抗インクは上記米国特許のポーセレン
被覆金属板上の回路形成およびこのために特別に
調製された種々の厚膜インクについて特に有用で
あるが、アルミナ板等の通常の基板にも効果的に
用いることができる。 この発明の新規な抵抗インクは、酸化インジウ
ムと、酸化マグネシウムと、バリウム・カルシウ
ム硼珪酸ガラスフリツトと、適当な有機媒体とか
ら成り、この発明によつて酸化マグネシウムを抵
抗温度係数制御成分として添加することにより、
高い抵抗値と意外に許容し得る抵抗温度係数を持
つものが得られる。 酸化インジウムは高純度で、粒径約1.0〜1.2μ
のものが好ましく、インク全体の約25〜80重量
%、好ましくは約30〜45重量%を占める。 この発明のインクの抵抗温度係数制御用成分で
ある酸化マグネシウムは、インク全体の約1〜20
重量%、好ましくは約3〜8重量%を占め、この
含有量を変えると、それから製した被覆の通常大
きな負値を示す抵抗温度係数が充分許容限度内に
入り、しばしばOに近くなることもある。 この発明のインクのバリウム・カルシウム硼珪
酸ガラスフリツトは重量比で酸化バリウム約40〜
55%、好ましくは約52%と、酸化カルシウム約10
〜15%、好ましくは約12%と、3酸化硼素約14〜
25%、好ましくは約16%と、2酸化シリコン約13
〜25%、好ましくは約20%とを含み、このガラス
フリツト粉末はインク全体の約5〜60重量%、好
ましくは約30〜45重量%を占める。 有機媒体は例えば特にエチルセルローズのよう
なセルローズ誘導体、ポリアクリレートまたはメ
タクリレート、ポリエステル、ポリオレフイン等
の合成樹脂のような結着材である。一般にここに
述べる形式のインクに用いられる通常の溶剤はこ
の発明のインクに用いることができる。市販の溶
剤で推奨されるものは、例えばアモコ社
(Amoco Chemicals Corp.)の純液体ポリブテ
ンAmoco H−25型、H−50型、L−100型やデ
ユポン社(dupontde Nemours & Co.)のポ
リメタクリル酸n−ブチル等である。 上記の樹脂は単独で用いても、2つ以上を任意
に組合せてもよい。この樹脂材料には必要に応じ
て適当な粘度変更剤を添加することができる。こ
の変更剤は同様のインク組成物に通常用いられる
例えばパイン油、テルピネオール、ブチルカルビ
トールアセテート、テキサス社(Texas
Eastman Co.)の商標Texanolのエステルアルコ
ール等のような媒体または例えばNL社(NL
Industries)の商標Thixatrolのヒマシ油誘導体
のような固体材料とすることができる。この有機
媒体はインク全体の約10〜35重量%、好ましくは
約20〜30重量%を占める。 この発明の抵抗インクは例えば通常のアルミナ
板または上記米国特許のポーセレン被覆金属板の
ような基板にスクリーンプリント、刷毛塗り、吹
付け等の通常の手段で被着されるが、スクリーン
プリントが推奨される。次にインク被膜を空気中
で100〜125℃で約15分乾燥した後、窒素中で最高
温度850〜950℃で4〜10分焼成する。従来法にお
いて通例のように、この発明の抵抗インクはすべ
ての導電性インクが被着され焼成された後一般に
その基板面に被着され焼成される。この焼成被膜
の抵抗値はレーザトリミングまたは空気磨耗トリ
ミングのような通常の手段で調節することができ
る。この発明の抵抗インクから形成された被膜は
優れた抵抗温度係数、レーザ可切断性および熱衝
撃、半田浸漬、熱保存、電力負荷および湿度の影
響に対する安定性を示すと共に、上記米国特許の
ポーセレン被覆金属板と特にそのために開発され
たインクで形成された被覆に優れた適合性を示し
た。 次に例を挙げてこの発明を説明するが、この発
明がその説明の細部に限定されることはない。こ
の例において別示ない限り成分量の割合および%
はすべて重量比で示し、温度は℃で示す。 例 抵抗インクを次の組成で調製した。
This invention relates to indium oxide thick film resistive inks that have excellent temperature coefficients of resistance and are used in multilayer electrical structures on porcelain coated metal substrates. It is known to those skilled in the art to use specialized inks to form thick films with various functions on suitable substrates in the manufacture of multilayer integrated circuit structures, and this technique is widely used in the electronics industry to form thick films with various functions on suitable substrates. This has become increasingly important when forming extremely dense multilayer circuit patterns on top. A particularly excellent substrate for the manufacture of such circuits is disclosed in U.S. Pat. No. 4,256,796, which is a metal coated with a superior porcelain composition, the porcelain composition being an oxide of the metal. Based on the composition, it consists of magnesium oxide (MgO) or a mixture of magnesium oxide and other oxides, barium oxide (BaO), boron trioxide (B 2 O 3 ) and silicon dioxide (SiO 2 ). The preferred metal is steel, especially low carbon steel, which may be coated with other metals such as copper, and the mandrel is coated with a porcelain composition and fired to form a partially (semi) devitrified porcelain coating. It is formed on top of that. This coating has a very low viscosity at its initial melting point, but becomes highly viscous almost instantaneously due to devitrification. The recommended fired coating for hybrid circuits is at least 700
It has a heat distortion temperature of 0.degree. C. and a high coefficient of thermal expansion of at least about 110.times.10.sup. -7 /.degree. The porcelain-coated metal substrates of the above-mentioned US patent are significantly superior to previously known substrate materials, the only drawback being that they have little or no compatibility with commercially available thick film inks. In addition to the need to develop improved inks that are compatible with the substrate of this patent, there has been a general recognition of the need for a means to control the temperature coefficient of resistance which moves away from O or an optimum value rapidly as resistance increases. The present invention provides a means for controlling the temperature coefficient of resistance of an indium oxide resistor to within acceptable limits, ie, within about ±350 ppm/° C., even at high resistance values. The resistive ink of this invention consists of indium oxide, a resistance temperature coefficient controlling component of magnesium oxide, a barium-calcium borosilicate glass frit, and a suitable organic medium. The present invention provides an advanced intermediate resistance and high resistance ink, i.e., the ink has approximately
It has a sheet resistance of 500 Ω/□ to 1 MΩ/□ or more, making it useful for fabricating complex single-layer or multilayer thick film circuits on porcelain-coated metal circuit boards. The resistive inks of this invention are particularly useful for circuit formation on the porcelain coated metal plates of the above patent and various thick film inks specially formulated for this purpose, but are also effective on conventional substrates such as alumina plates. It can be used for. The novel resistance ink of this invention consists of indium oxide, magnesium oxide, barium-calcium borosilicate glass frit, and a suitable organic medium, with the addition of magnesium oxide as a resistance temperature coefficient controlling component. According to
High resistance values and surprisingly acceptable temperature coefficients of resistance are obtained. Indium oxide is highly pure and has a particle size of approximately 1.0-1.2μ
Preferably, it accounts for about 25-80%, preferably about 30-45% by weight of the total ink. Magnesium oxide, which is a component for controlling the temperature coefficient of resistance of the ink of this invention, accounts for about 1 to 20% of the total ink.
% by weight, preferably from about 3 to 8% by weight, and varying this content brings the normally highly negative temperature coefficient of resistance of the coatings made therefrom well within acceptable limits, often approaching O. be. The barium-calcium borosilicate glass frit of the ink of this invention has a weight ratio of barium oxide of about 40 to
55%, preferably about 52% and about 10% calcium oxide
~15%, preferably about 12% and boron trioxide ~14%
25%, preferably about 16% and about 13% silicon dioxide
-25%, preferably about 20%, and the glass frit powder accounts for about 5-60%, preferably about 30-45% by weight of the total ink. Organic media are, for example, binders such as cellulose derivatives such as ethylcellulose, synthetic resins such as polyacrylates or methacrylates, polyesters, polyolefins, etc., among others. Conventional solvents commonly used in inks of the type described herein can be used in the inks of this invention. Recommended commercially available solvents include, for example, pure liquid polybutenes Amoco H-25, H-50, and L-100 from Amoco Chemicals Corp. and polybutenes from Dupont Nemours & Co. n-butyl methacrylate and the like. The above resins may be used alone or in any combination of two or more. A suitable viscosity modifier can be added to this resin material if necessary. This modifier is commonly used in similar ink compositions, such as pine oil, terpineol, butyl carbitol acetate, Texas
Eastman Co.) trademark Texanol ester alcohol, etc. or e.g.
It can be a solid material, such as the castor oil derivative of Thixatrol, trademarked by Industries. The organic medium accounts for about 10-35% by weight of the total ink, preferably about 20-30%. The resistive inks of this invention may be applied to a substrate, such as a conventional alumina plate or the porcelain-coated metal plate of the aforementioned US patent, by conventional means such as screen printing, brushing, spraying, etc., although screen printing is recommended. Ru. The ink film is then dried in air at 100-125°C for about 15 minutes, and then baked in nitrogen at a maximum temperature of 850-950°C for 4-10 minutes. As is customary in the prior art, the resistive ink of the present invention is generally deposited and fired on the substrate surface after all conductive inks have been deposited and fired. The resistance of this fired coating can be adjusted by conventional means such as laser trimming or air abrasion trimming. The coatings formed from the resistive inks of this invention exhibit excellent temperature coefficients of resistance, laser cutability and stability to the effects of thermal shock, solder immersion, thermal storage, power loading and humidity, as well as the porcelain coatings of the above-identified U.S. patents. It has shown excellent compatibility with metal plates and coatings formed with inks specifically developed for the purpose. The invention will now be explained by way of example, but the invention is not limited to the details of the description. Percentages and percentages of ingredient amounts unless otherwise specified in this example
All are given as weight ratios and temperatures are given in °C. Example A resistive ink was prepared with the following composition.

【表】 上の組成でガラス粉末の組成は、重量%で、
BaO(51.59)と、CaO(12.58)と、B2O3(15.62)
と、SiO2(20.21)とした。 媒体はエチルセルローズのTexanolエステルア
ルコールによる6%溶液とした。インクF、Hは
流動度調節のためそれぞれ1.51%、3.03%の
Texanolを追加した。 粉末成分を有機媒体と合せて、最初は手で混合
した後、3ロールミルで剪断力を加えてスクリー
ンプリントに適する滑らかなペーストを得た。さ
らに混合中の損失を補い、適当な流動性を保証す
るために媒体を添加した。 この導電性銅インクを上記米国特許の型のポー
セレン被覆鋼板上に被着して焼成した。このとき
インクは325メツシユのステンレス鋼スクリーン
を介して厚さ7.6〜15.2μのインク層として基板上
に印刷し、空気中で125±10℃で約15分乾燥した
後、窒素中で最高温度900±10℃で4〜7分焼成
した。各インクについて面抵抗と熱間および冷間
の抵抗温度係数(TCR)を測定したところ次表
のようになつた。
[Table] The composition of the glass powder in the above composition is in weight%,
BaO (51.59), CaO (12.58), and B 2 O 3 (15.62)
and SiO 2 (20.21). The medium was a 6% solution of ethyl cellulose in Texanol ester alcohol. Ink F and H are 1.51% and 3.03%, respectively, to adjust the fluidity.
Added Texanol. The powder components were combined with the organic medium, initially mixed by hand, and then sheared on a three-roll mill to obtain a smooth paste suitable for screen printing. Further media was added to compensate for losses during mixing and to ensure proper fluidity. The conductive copper ink was deposited on a porcelain-coated steel plate of the type of the above patent and fired. At this time, the ink is printed onto the substrate as an ink layer with a thickness of 7.6 to 15.2 μ through a 325 mesh stainless steel screen, dried in air at 125 ± 10 °C for about 15 minutes, and then heated to a maximum temperature of 900 °C in nitrogen. It was baked at ±10°C for 4 to 7 minutes. The sheet resistance and hot and cold temperature coefficient of resistance (TCR) of each ink were measured and the results are shown in the table below.

【表】 *印は酸化マグネシウムを含む。
この発明の組成物中に存在する酸化マグネシウ
ムの抵抗温度係数に与える積極的効果がこの表か
ら容易に判る。例えばインクEからFに移るとき
に面抵抗の3倍以上の増大によつて抵抗温度係数
が約−1000になると考えられるが、この発明によ
る酸化マグネシウムの添加により、熱間および冷
間の抵抗温度係数が意外にも1/4以下に低下して
いる。
[Table] *Includes magnesium oxide.
The positive effect of magnesium oxide present in the compositions of this invention on the temperature coefficient of resistance is easily seen from this table. For example, when moving from ink E to F, it is thought that the temperature coefficient of resistance becomes approximately -1000 due to an increase of more than three times the sheet resistance. The coefficient unexpectedly decreased to less than 1/4.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化インジウム25〜80重量%と、酸化マグネ
シウム1〜20重量%と、バリウム・カルシウム硼
珪酸ガラスフリツト5〜60重量%と、適当な有機
媒体10〜35重量%とを含む、回路板上の抵抗被膜
の形成に適する抵抗インク。
1. A resistor on a circuit board comprising 25-80% by weight of indium oxide, 1-20% by weight of magnesium oxide, 5-60% by weight of barium-calcium borosilicate glass frit, and 10-35% by weight of a suitable organic medium. Resistive ink suitable for forming a film.
JP56166280A 1980-10-17 1981-10-16 Resistance ink Granted JPS5798902A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8033569 1980-10-17

Publications (2)

Publication Number Publication Date
JPS5798902A JPS5798902A (en) 1982-06-19
JPS6339081B2 true JPS6339081B2 (en) 1988-08-03

Family

ID=10516744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56166280A Granted JPS5798902A (en) 1980-10-17 1981-10-16 Resistance ink

Country Status (2)

Country Link
JP (1) JPS5798902A (en)
KR (1) KR880000423B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467009A (en) * 1983-01-21 1984-08-21 Rca Corporation Indium oxide resistor inks

Also Published As

Publication number Publication date
KR830008354A (en) 1983-11-18
JPS5798902A (en) 1982-06-19
KR880000423B1 (en) 1988-03-22

Similar Documents

Publication Publication Date Title
US4399320A (en) Conductor inks
KR890000725B1 (en) Improved overglaze inks
US4415624A (en) Air-fireable thick film inks
US4379195A (en) Low value resistor inks
US4369220A (en) Crossover dielectric inks used in forming a multilayer electrical circuit
JPH01128488A (en) Thick film copper conductor ink
US4410598A (en) Process for preparation of insulating coatings upon steel
GB2038104A (en) Resistor material resistor made therefrom and method of making the same
US4808770A (en) Thick-film copper conductor inks
JPH05116984A (en) Capsulating material composition
US4380750A (en) Indium oxide resistor inks
JPS6339081B2 (en)
JPH0153907B2 (en)
US4467009A (en) Indium oxide resistor inks
GB2086142A (en) Indium oxide resistor inks
US4452844A (en) Low value resistor inks
JPH04502751A (en) Thick film copper via file ink
JPS60103075A (en) Composition for ceramic substrate
CA1167247A (en) Conductor inks
GB2085481A (en) Improved copper conductor inks
CA1159851A (en) Overglaze inks
CA1167249A (en) Indium oxide resistor inks
GB2085867A (en) Improved overglaze inks
GB2086368A (en) Improved Crossover Dielectric Inks
JPH0478572B2 (en)