JPH0153907B2 - - Google Patents

Info

Publication number
JPH0153907B2
JPH0153907B2 JP57114774A JP11477482A JPH0153907B2 JP H0153907 B2 JPH0153907 B2 JP H0153907B2 JP 57114774 A JP57114774 A JP 57114774A JP 11477482 A JP11477482 A JP 11477482A JP H0153907 B2 JPH0153907 B2 JP H0153907B2
Authority
JP
Japan
Prior art keywords
weight
ink
oxide
inks
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57114774A
Other languages
Japanese (ja)
Other versions
JPS5815576A (en
Inventor
Narayan Purabuu Ashoku
Uooren Hangu Kenesu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Publication of JPS5815576A publication Critical patent/JPS5815576A/en
Publication of JPH0153907B2 publication Critical patent/JPH0153907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • H01C17/0658Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of inorganic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Glass Compositions (AREA)
  • Conductive Materials (AREA)
  • Non-Adjustable Resistors (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、一般的には電気回路(導体および
抵抗体の総称)を形成するためのインクに、具体
的には空気中で〓焼し得る、厚膜抵抗体形成用ま
たは導体形成用のインクとポースリン(磁器)被
覆金属基板上の多層電気回路構体に対するその使
用法に関する。 多層集積回路構体の製造において適当な基板上
に特殊インクを用いて種々の機能を有する厚膜を
形成することは当業者に公知である。この技法は
電子工業において広い用途に用いる種々の基板上
に極めて高密度の多層回路パタンを形成する場合
に関心が高まつている。 このような回路の製造において著しく改善され
た基板が米国特許第4256796号明細書に開示され
ている。この基板はその酸化物含有量に基いて酸
化マグネシウム(MgO)または酸化マグネシウ
ムと他の酸化物の混合物、酸化バリウム
(BaO)、3酸化硼素(B2O3)および2酸化シリ
コン(SiO2)の混合物より成る進歩したポース
リンで被覆した金属である。推奨される金属は鋼
板特に低炭素鋼板で、例えば銅のような他の種々
の金属で被覆することもできる。この金属の芯に
ポースリン組成物を塗布して〓焼し、部分的に失
透したポースリン被覆を形成する。この被覆はそ
の初期融点で極めて低粘度を呈するが、失透によ
り殆んど瞬間的に高粘度が得られる。〓焼後の被
覆はハイブリツド回路用に推奨されるが、少なく
とも700℃の変形温度と少なくとも110×10-7/℃
の高い熱膨張係数を有する。 上記米国特許のポースリン被覆金属基板は既知
の基板材料より著しく優れているが、市販の厚膜
用インクに適合しないか適合し難いという唯一の
欠点を有する。この発明は上記米国特許の基板に
適合する、空気中で〓焼可能の、電気回路形成用
(すなわち、導体形成用および抵抗体形成用)の
インクを提供するものである。 この発明による進歩した空気中〓焼可能のイン
クはバリウムカルシウム硼珪酸ガラスと、適当な
有機媒体と、機能成分とを含み、その機能成分は
抵抗体形成用インク(以下、抵抗体インクとい
う)の場合2酸化ルテニウム、導体形成用インク
(以下、導体インクという)の場合は半田付け性
能を改善するために酸化ビスマスを加えた貴金属
である。 この発明によれば、ポースリン金属回路板上の
厚膜回路の形成に有用な高信頼度の空気中で〓焼
し得る電気回路形成用のインクが提供される。こ
の発明のインクは上記米国特許の回路基板と相互
に特に適合し、またその回路基板用に特に指定さ
れた他の機能の空気中〓焼可能のインクにも適合
する。電子回路を形成する場合すべてのインクが
窒素のような不活性雰囲気中よりも空気中で〓焼
し得る方が経済的に有利であることは当業者に自
明である。 この発明のインクはバリウムカルシウム硼珪酸
ガラスフリツトと、適当な有機媒体と、1種また
はそれ以上の機能成分とから成つている。その機
能成分は抵抗体インクの場合2酸化ルテニウムと
必要に応じて抵抗温度係数調節剤であり、導体イ
ンクの場合1種またはそれ以上の貴金属と半田付
け促進剤の酸化ビスマスである。 この発明のインクのガラスフリツトは重量比で
約40〜55%の酸化バリウムと、約10〜15%の酸化
カルシウムと、約14〜25%の3酸化硼素と、約13
〜23%の2酸化シリコンとから成るバリウムカル
シウム硼珪酸ガラスである。 そのガラスフリツトはこの発明の空気中〓焼可
能のインクの約1〜80重量%を占める。上記抵抗
体インク中のガラスフリツトは約25〜80重量%が
好ましく、50〜75重量%が特に推奨される。また
上記導体インク中のガラスフリツトは約1〜15重
量%で、約1〜7重量%が特に推奨される。 この発明の抵抗体インクに推奨されるガラスフ
リツトは重量比で約52%の酸化バリウムと、約12
%の酸化カルシウムと、約16%の3酸化硼素と、
約20%の2酸化シリコンから成り、導体インクに
推奨されるガラスフリツトは重量比で約52%の酸
化バリウムと、約12%の酸化カルシウムと、約19
%の3酸化硼素と、約17%の2酸化シリコンとか
ら成る。 上記ガラスフリツトは、空気中で〓焼可能な従
来のこの種のインク中に含まれていた酸化鉛や酸
化亜鉛のような、ポースリン被覆金属基板と適合
しにくい酸化物を使用しない代りに、下限値10重
量%の酸化カルシウムを含み、そため上記米国特
許に記載されているような新しいポースリン被覆
金属基板にうまく適合し、また他の空気中で〓焼
可能なインクとも適合するという特徴がある。ま
た、上記量の酸化カルシウムを含むために、イン
ク中の機能成分粒子と適切な接触関係を保つ高い
表面張力を呈すると共に〓焼中はよく流動するよ
う低い表面張力を呈する利点がある。 この発明の空気中〓焼可能のインクの機能成分
すなわち酸化ルテニウムまたは貴金属は約2〜90
重量%存在する。この発明の抵抗体インクは酸化
ルテニウムを約2〜60重量%、好ましくは約5〜
25重量%含む。この抵抗体インクの酸化ルテニウ
ムは高純度で約0.05〜0.2μの粒度を持つことが好
ましい。 この空気中〓焼可能の抵抗体インクはまた例え
ば2酸化マンガン、酸化カドミウム、酸化第1銅
等ような通常の抵抗温度係数調節剤を約10重量%
まで含むこともある。 この発明に用いる「貴金属」は例えば金、銀、
白金、パラジウム、ロジウム等の当業者に認知さ
れている金属の1種またはそれ以上をいう。また
例えば銀と白金、金と白金、銀と白金とパラジウ
ム等のような金属の組合せも導体インクに通常用
いられる。これらはすべて市販のレジネートの形
で用いることもあるロジウムを除いて純金属の形
で使用される。貴金属はこの発明の導体インク中
に約60〜90重量%、好ましくは約70〜85重量%含
まれている。 この発明の導体インクは半田付け促進剤として
約1〜15重量%、好ましくは約1〜7重量%の酸
化ビスマスを添加粉末の形かガラスフリツトの一
部として含む。この酸化ビスマスとガラスフリツ
トは導体インク中に1対3ないし3対1の重量比
で存在するのが好ましく、等量ずつ存在するのが
最良である。 この発明の導体インクには少量すなわち約1重
量%以下の適当な酸化剤が随意含まれる。この添
加剤の機能は〓焼中の有機媒体の除去を助けるた
めの酸素や酸化性蒸気の発生源を提供することで
ある。推奨される酸化剤は硝酸ビスマス5水化物
で、これはある温度で分解して不都合なガスの急
激な放出を起す酸化剤と異り、広い温度範囲で有
効に働らく。 このインクの有機媒体は例えばセルローズ誘導
体特にエチルセルローズ、ポリアクリレートまた
はメタクリレート、ポリエステル、ポリオレフイ
ン等の合成樹脂のような結合剤で、一般にここで
説明する形式のインクに用いられる通常の媒体は
このインクにも用いることができる。市販の媒体
で推奨されるものは、例えばアモコ社(Amoco
Chemicals Corp.)からアモコ(Amoco)H−
25型、H−50型、L−100型として市販の純液状
ポリブデンやデユポン社(E.I.Dupont
deNemours & Co.)から市販のポリルーブチ
ルメタクリレート等がある。 上記の樹脂は単独または2種以上を組合せて使
用することができる。また必要に応じて適当な粘
度調節剤を添加することもできる。この調節剤は
例えばパイン油、テレピネオール、ブチルカルビ
ノールアセテート、テキサス・イーストマン社
(Texas Eastman Co.)から商標テキサノール
(Texanol)で市販のエステルアルコール等のよ
うな同様のインクに通常用いられる溶剤、または
例えばエヌ・エル工業(N.L.Industries)から商
標シキサトロール(Thixatrol)で市販のヒマシ
油誘導体のような固体材料である。この有機媒体
はこの発明のインクの約8〜35重量%を占める
が、上記抵抗体インクでは約20〜30重量%、導体
インクでは約10〜25重量%が好ましい。 この発明の空気中〓焼可能のインクは上記米国
特許明細書記載のようなポースリン被覆金属板に
通常の手段すなわちスクリーンプリント、刷毛塗
り、吹付け等により塗布されるが、スクリーンプ
リントが好ましい。この被覆を次に空気中で100
〜125℃で約15分間乾燥した後、空気中において
850〜950℃のピーク温度で約4〜10分間〓焼す
る。この抵抗膜の値はレーザトリミングか空気摩
滅トリミングにより調節することができる。 上記米国特許の基板とそれ用のインクに対する
優れた適合性の上に、この発明の抵抗体インクか
ら形成された被膜は極めて良好な抵抗温度係数
値、レーザトリミング可能性、電流ノイズレベル
および熱衝撃、半田浸漬、蓄熱、加重、湿度に対
する安定性を示す。またこの導体インクから形成
された被膜は優れた導電性、半田付け性能、半田
浸出抵抗、結線性能および高湿度長時間露出抵抗
を示す。 次に例を挙げてこの発明を説明するが、この発
明がその細部に限定されるものではない。以下の
例においては別断のない限り部比と百分比はすべ
て重量によるものであり、すべての温度は℃で表
わすものとする。 例 1 金導体インクを次の組成で調製した。
This invention generally relates to inks for forming electric circuits (a general term for conductors and resistors), and specifically to inks for forming thick film resistors or conductors that can be baked in air. and its use for multilayer electrical circuit structures on porcelain coated metal substrates. It is known to those skilled in the art to use specialized inks to form thick films with various functions on suitable substrates in the manufacture of multilayer integrated circuit structures. This technique is of increasing interest in forming extremely dense multilayer circuit patterns on a variety of substrates for a wide range of applications in the electronics industry. A substrate that is significantly improved in the manufacture of such circuits is disclosed in US Pat. No. 4,256,796. Based on its oxide content, this substrate can be made of magnesium oxide (MgO) or a mixture of magnesium oxide and other oxides, barium oxide (BaO), boron trioxide (B 2 O 3 ) and silicon dioxide (SiO 2 ). It is an advanced porcelain coated metal consisting of a mixture of. The preferred metal is steel, especially low carbon steel, which can also be coated with various other metals, such as copper, for example. A porcelain composition is applied to the metal core and fired to form a partially devitrified porcelain coating. This coating exhibits a very low viscosity at its initial melting point, but devitrification results in a high viscosity almost instantaneously. The coating after firing is recommended for hybrid circuits, but with a deformation temperature of at least 700°C and a deformation temperature of at least 110×10 -7 /°C
It has a high coefficient of thermal expansion. Although the porcelain-coated metal substrates of the above-mentioned US patent are significantly superior to known substrate materials, the only drawback is that they are not compatible or difficult to compatibility with commercially available thick film inks. The present invention provides an ink for forming electric circuits (ie, for forming conductors and resistors) that is compatible with the substrate of the above-mentioned US patent and can be baked in air. The advanced air-sinterable ink of the present invention includes barium-calcium borosilicate glass, a suitable organic medium, and a functional component, which is a resistor-forming ink (hereinafter referred to as resistor ink). In the case of ruthenium dioxide, the ink for forming a conductor (hereinafter referred to as conductor ink) is a noble metal to which bismuth oxide is added to improve soldering performance. According to the present invention, there is provided a reliable air-sinterable ink for forming electrical circuits useful for forming thick film circuits on porcelain metal circuit boards. The inks of this invention are particularly compatible with the circuit boards of the above-referenced US patents, as well as other functional air sinterable inks specifically designated for the circuit boards. It is obvious to those skilled in the art that when forming electronic circuits, it is economically advantageous for all inks to be sinterable in air rather than in an inert atmosphere such as nitrogen. The inks of this invention consist of a barium calcium borosilicate glass frit, a suitable organic medium, and one or more functional ingredients. Its functional components are, in the case of resistor inks, ruthenium dioxide and optionally a temperature coefficient of resistance modifier, and in the case of conductor inks, one or more noble metals and the soldering promoter bismuth oxide. The glass frit of the ink of this invention contains about 40 to 55% barium oxide, about 10 to 15% calcium oxide, about 14 to 25% boron trioxide, and about 13% by weight.
It is a barium calcium borosilicate glass consisting of ~23% silicon dioxide. The glass frit constitutes about 1 to 80% by weight of the air sinterable ink of this invention. The glass frit in the resistor ink is preferably about 25-80% by weight, with 50-75% by weight particularly recommended. The amount of glass frit in the conductor ink is about 1 to 15% by weight, with about 1 to 7% by weight being particularly recommended. The glass frit recommended for the resistor ink of this invention contains about 52% barium oxide and about 12% barium oxide by weight.
% of calcium oxide and about 16% of boron trioxide,
Consisting of approximately 20% silicon dioxide, the glass frit recommended for conductive inks contains approximately 52% barium oxide, approximately 12% calcium oxide, and approximately 19% by weight barium oxide.
% boron trioxide and approximately 17% silicon dioxide. The above-mentioned glass frit does not use oxides that are difficult to compatibility with the porcelain-coated metal substrate, such as lead oxide or zinc oxide, which are contained in conventional inks of this type that can be baked in air. It contains 10% by weight calcium oxide and is therefore well suited for use with new porcelain-coated metal substrates such as those described in the above-mentioned US patents, as well as other air-sinterable inks. Furthermore, since it contains the above amount of calcium oxide, it has the advantage of exhibiting a high surface tension that maintains an appropriate contact relationship with the functional component particles in the ink, and a low surface tension that allows good fluidity during firing. The functional component of the air-sinterable ink of this invention, i.e., ruthenium oxide or noble metal, is about 2 to 90%
% by weight present. The resistor ink of the present invention contains about 2 to 60% by weight of ruthenium oxide, preferably about 5 to 60% by weight.
Contains 25% by weight. The ruthenium oxide of this resistor ink is preferably of high purity and has a particle size of about 0.05 to 0.2 microns. This air-sinterable resistor ink also contains about 10% by weight of conventional resistance temperature coefficient modifiers such as manganese dioxide, cadmium oxide, cuprous oxide, etc.
It may even include. "Precious metals" used in this invention include gold, silver,
Refers to one or more metals recognized by those skilled in the art, such as platinum, palladium, rhodium, etc. Combinations of metals, such as silver and platinum, gold and platinum, silver, platinum and palladium, are also commonly used in conductive inks. All of these are used in pure metal form with the exception of rhodium, which is sometimes used in the form of commercially available resinates. The precious metal is present in the conductor ink of the present invention in an amount of about 60-90% by weight, preferably about 70-85% by weight. The conductor ink of the present invention contains about 1 to 15 weight percent bismuth oxide as a soldering promoter, preferably about 1 to 7 weight percent, either in the form of an additive powder or as part of the glass frit. The bismuth oxide and glass frit are preferably present in the conductive ink in a weight ratio of 1:3 to 3:1, preferably in equal amounts. The conductive inks of this invention optionally include a small amount, less than about 1% by weight, of a suitable oxidizing agent. The function of this additive is to provide a source of oxygen and oxidizing vapors to aid in the removal of organic media during calcination. The recommended oxidizing agent is bismuth nitrate pentahydrate, which is effective over a wide temperature range, unlike oxidizing agents that decompose at certain temperatures, resulting in rapid release of undesirable gases. The organic medium of this ink is a binder such as a cellulose derivative, especially a synthetic resin such as ethyl cellulose, polyacrylate or methacrylate, polyester, polyolefin, etc., and is generally the usual medium used in inks of the type described herein. can also be used. Recommended commercially available media include, for example, Amoco
Chemicals Corp.) to Amoco H-
Pure liquid polybdenum commercially available as Type 25, Type H-50, and Type L-100 and Dupont (EIDupont)
Polyrubutyl methacrylate, etc., commercially available from deNemours & Co.). The above resins can be used alone or in combination of two or more. Moreover, a suitable viscosity modifier can be added as necessary. The modifier may include solvents commonly used in similar inks, such as pine oil, terpineol, butyl carbinol acetate, ester alcohols available under the trademark Texanol from Texas Eastman Co., etc. or a solid material such as a castor oil derivative commercially available from NL Industries under the trademark Thixatrol. The organic medium accounts for about 8-35% by weight of the inks of this invention, preferably about 20-30% by weight for the resistor inks and about 10-25% by weight for the conductor inks. The air-sinterable ink of this invention is applied to a porcelain-coated metal plate as described in the above-referenced US patent by conventional means, such as screen printing, brushing, spraying, etc., with screen printing being preferred. This coating is then exposed to air for 100 min.
After drying at ~125℃ for about 15 minutes, in the air.
Bake at peak temperature of 850-950℃ for about 4-10 minutes. The value of this resistive film can be adjusted by laser trimming or air abrasion trimming. In addition to its excellent compatibility with the substrates and inks of the above patent, the coatings formed from the resistor inks of the present invention exhibit very good resistance temperature coefficient values, laser trimmability, current noise levels, and thermal shock. , exhibits stability against solder immersion, heat storage, load, and humidity. Additionally, coatings formed from this conductive ink exhibit excellent electrical conductivity, soldering performance, solder bleed resistance, wiring performance, and high humidity long-term exposure resistance. The invention will now be explained by way of example, but the invention is not limited to the details. In the following examples, all parts and percentages are by weight and all temperatures are in degrees Celsius, unless otherwise indicated. Example 1 A gold conductor ink was prepared with the following composition.

【表】 ガラスフリツトの組成は、BaO51.32%、
CaO12.51%、B2O319.42%、SiO216.75%とした。
また有機媒体の量は完成インクに対してエチルセ
ルローズ0.58%、テルピネオール7.90%、ブチル
カルビノールアセテート3.23%、テキサノール
1.84%、シキサトロール0.34%であつた。 まずエチルセルローズとシキサトロールのその
媒体の液体成分による溶液を作り、媒体を組合せ
てまず手で組合された粉末成分と混合した後、3
ロールミルで剪断をかけて混合し、スクリーンプ
リントに適する滑らかなペーストを得た。混合中
の損失を補つて適正なレオロジを保つため媒体を
追加した。 このインクを前記米国特許の形式のポースリン
被覆鋼板上に325メツシユのステンレス鋼スクリ
ーンを用いてエマルジヨン厚さ約25.4μにプリン
トし、これを空気中において125℃で10分間乾燥
した後、空気中においてコンベヤ炉でピーク温度
900℃を用いそのピーク温度で4〜6分間〓焼し
た。これによつて得られた被膜の面抵抗は4.5×
10-3Ω/平方であつた。 例 2 次の組成を用い、例1の方法で金白金導体イン
クを調製した。
[Table] The composition of the glass frit is BaO51.32%,
CaO 12.51%, B 2 O 3 19.42%, and SiO 2 16.75%.
The amount of organic medium is 0.58% ethyl cellulose, 7.90% terpineol, 3.23% butyl carbinol acetate, and texanol based on the finished ink.
1.84%, and hexatrol 0.34%. First make a solution of ethylcellulose and hexatrol with the liquid components of the vehicle, combine the media and mix first with the combined powder components by hand, then
Mixing was carried out under shear on a roll mill to obtain a smooth paste suitable for screen printing. Media was added to compensate for losses during mixing and maintain proper rheology. This ink was printed on a porcelain-coated steel plate of the type of the aforementioned US patent using a 325 mesh stainless steel screen to an emulsion thickness of approximately 25.4 microns, dried in air at 125°C for 10 minutes, and then dried in air. Peak temperature in conveyor furnace
Baking was performed at 900° C. for 4 to 6 minutes at its peak temperature. The sheet resistance of the film thus obtained is 4.5×
It was 10 -3 Ω/square. Example 2 A gold-platinum conductor ink was prepared by the method of Example 1 using the following composition.

【表】 有機媒体の組成はエチルセルローズ0.70%、テ
ルピネオール5.43%、ブチルカルビノールアセテ
ート3.82%、テキサノール2.23%、シキサトロー
ル0.42%とした。 このインクを例1と同様にプリントし、〓焼し
て得た被膜の面抵抗は60×10-3Ω/平方であつ
た。 例 3 次の組成を用い、例1の方法で銀パラジウム導
体インクを調製した。
[Table] The composition of the organic medium was 0.70% ethyl cellulose, 5.43% terpineol, 3.82% butyl carbinol acetate, 2.23% texanol, and 0.42% hexatrol. This ink was printed in the same manner as in Example 1, and the film obtained by baking had a sheet resistance of 60×10 −3 Ω/square. Example 3 A silver palladium conductor ink was prepared by the method of Example 1 using the following composition.

【表】 有機媒体の組成はエチルセルローズ0.78%、テ
ルピネオール17.56%、ブチルカルビノールアセ
テート1.33%、シキサトロール0.04%とした。 このインクを例1と同様にプリントし、〓焼し
て得た被膜の面抵抗は58×10-3Ω/平方であつ
た。 例 4 次の組成を用い、例1の方法で銀パラジウム白
金導体インクを調製した。
[Table] The composition of the organic medium was 0.78% ethyl cellulose, 17.56% terpineol, 1.33% butyl carbinol acetate, and 0.04% hexatrol. This ink was printed in the same manner as in Example 1, and the film obtained by baking had a sheet resistance of 58×10 −3 Ω/square. Example 4 A silver palladium platinum conductor ink was prepared by the method of Example 1 using the following composition.

【表】 有機媒体の組成はエチルセルローズ1.13%、テ
ルピネオール13.94%、ブチルカルビノールアセ
テート4.48%、シキサトロール0.15%とした。 このインクを例1と同様にプリントし、〓焼し
て得た被膜の面抵抗は85×10-3Ω/平方であつ
た。 例 5 次の組成を用い、例1の方法でルテニウム抵抗
体インクを調製した。
[Table] The composition of the organic medium was 1.13% ethyl cellulose, 13.94% terpineol, 4.48% butyl carbinol acetate, and 0.15% hexatrol. This ink was printed in the same manner as in Example 1, and the sheet resistance of the film obtained by baking was 85×10 −3 Ω/square. Example 5 A ruthenium resistor ink was prepared by the method of Example 1 using the following composition.

【表】 それぞれの場合のガラスフリツトの組成は、
BaO51.59%、CaO12.58%、B2O315.62%、
SiO220.21%とした。また有機媒体はエチルセル
ローズの6%テキサノール溶液とした。 このインクを例1と同様にスクリーンプリント
し、空気中で〓焼した。最初種々の導体端子を各
組成について取付け、〓焼した。それぞれについ
て測定した面抵抗は次表の通りであつた。
[Table] The composition of the glass frit in each case is
BaO51.59%, CaO12.58%, B2O3 15.62 %,
SiO 2 was set at 20.21%. The organic medium was a 6% Texanol solution of ethyl cellulose. This ink was screen printed as in Example 1 and baked in air. First, various conductor terminals were attached for each composition and fired. The sheet resistance measured for each was as shown in the following table.

【表】 この結果はこの発明の抵抗体と導体の適合性を
示している。
[Table] This result shows the compatibility of the resistor and conductor of the present invention.

Claims (1)

【特許請求の範囲】 1 2〜90重量%の機能成分と、1〜80重量%の
ガラスフリツトと、8〜35重量%の有機媒体とよ
り成り、 上記機能成分は、抵抗体形成用の場合には2酸
化ルテニウムであり、導体形成用の場合には酸化
ビスマスと貴金属との組合せであつてその酸化ビ
スマスは上記貴金属との混合物としてまたは上記
ガラス中の成分として含まれているものであり、 特徴として、上記ガラスフリツトは、40〜55重
量%の酸化バリウムと、10〜15重量%の酸化カル
シウムと、14〜25重量%の3酸化硼素と、13〜23
重量%の2酸化シリコンと、より成るものであ
る、ポースリン被覆金属回路板上の被膜形成に適
する空気中で〓焼し得る電気回路形成用インク。
[Claims] 1. Consists of 2 to 90% by weight of functional components, 1 to 80% by weight of glass frit, and 8 to 35% by weight of organic medium, and the above functional components are used for forming resistors. is ruthenium dioxide, and when used to form a conductor, it is a combination of bismuth oxide and a noble metal, and the bismuth oxide is contained as a mixture with the noble metal or as a component in the glass. The glass frit contains 40-55% by weight of barium oxide, 10-15% by weight of calcium oxide, 14-25% by weight of boron trioxide, and 13-23% by weight of boron trioxide.
% by weight of silicon dioxide.
JP57114774A 1981-07-06 1982-06-30 Air calcinable conductor or resistor ink Granted JPS5815576A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28093681A 1981-07-06 1981-07-06
US280936 1981-07-06

Publications (2)

Publication Number Publication Date
JPS5815576A JPS5815576A (en) 1983-01-28
JPH0153907B2 true JPH0153907B2 (en) 1989-11-16

Family

ID=23075248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114774A Granted JPS5815576A (en) 1981-07-06 1982-06-30 Air calcinable conductor or resistor ink

Country Status (6)

Country Link
JP (1) JPS5815576A (en)
KR (1) KR880002063B1 (en)
CA (1) CA1173644A (en)
DE (1) DE3224573A1 (en)
FR (1) FR2508922B1 (en)
GB (1) GB2107302B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537703A (en) * 1983-12-19 1985-08-27 E. I. Du Pont De Nemours And Company Borosilicate glass compositions
JPH0613530B2 (en) * 1984-06-08 1994-02-23 武田薬品工業株式会社 Cem compound
US4722853A (en) * 1985-08-12 1988-02-02 Raychem Corporation Method of printing a polymer thick film ink
AU1241995A (en) * 1994-12-01 1996-06-19 Eckart-Werke Conductive ink
US6362119B1 (en) 1999-06-09 2002-03-26 Asahi Glass Company, Limited Barium borosilicate glass and glass ceramic composition
JP2007103594A (en) 2005-10-03 2007-04-19 Shoei Chem Ind Co Resistor composition and thick film resistor
US20140186596A1 (en) * 2012-12-28 2014-07-03 Dip-Tech Ltd. Ink

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130004A (en) * 1974-09-05 1976-03-13 Matsushita Electric Ind Co Ltd TENSHAYOTEIKOPEESUTONOSEIZOHOHO
JPS5222790A (en) * 1975-08-14 1977-02-21 Sumitomo Metal Mining Co Ltd Base material for thick film conductive paste
JPS5399499A (en) * 1977-02-09 1978-08-30 Hitachi Chemical Co Ltd Ink for variable resistance
JPS5534211A (en) * 1978-08-31 1980-03-10 Toppan Printing Co Ltd Calcining ink composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775347A (en) * 1969-11-26 1973-11-27 Du Pont Compositions for making resistors comprising lead-containing polynary oxide
US3876433A (en) * 1973-12-28 1975-04-08 Du Pont Bismuth-containing silver conductor compositions
US3974107A (en) * 1974-03-27 1976-08-10 E. I. Dupont De Nemours And Company Resistors and compositions therefor
US4230493A (en) * 1978-09-22 1980-10-28 E. I. Du Pont De Nemours And Company Gold conductor compositions
US4286251A (en) * 1979-03-05 1981-08-25 Trw, Inc. Vitreous enamel resistor and method of making the same
DE3140969A1 (en) * 1980-10-17 1982-06-16 RCA Corp., 10020 New York, N.Y. Copper conducting ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130004A (en) * 1974-09-05 1976-03-13 Matsushita Electric Ind Co Ltd TENSHAYOTEIKOPEESUTONOSEIZOHOHO
JPS5222790A (en) * 1975-08-14 1977-02-21 Sumitomo Metal Mining Co Ltd Base material for thick film conductive paste
JPS5399499A (en) * 1977-02-09 1978-08-30 Hitachi Chemical Co Ltd Ink for variable resistance
JPS5534211A (en) * 1978-08-31 1980-03-10 Toppan Printing Co Ltd Calcining ink composition

Also Published As

Publication number Publication date
GB2107302A (en) 1983-04-27
KR840000623A (en) 1984-02-25
CA1173644A (en) 1984-09-04
FR2508922A1 (en) 1983-01-07
GB2107302B (en) 1985-05-09
DE3224573A1 (en) 1983-01-20
JPS5815576A (en) 1983-01-28
FR2508922B1 (en) 1987-04-17
KR880002063B1 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US4415624A (en) Air-fireable thick film inks
US4399320A (en) Conductor inks
US4072771A (en) Copper thick film conductor
KR890001785B1 (en) Improved low value resistor ink
US4401709A (en) Overglaze inks
US4894184A (en) Low-temperature burnt conductive paste and method of manufacturing printed circuit board
JPH0334162B2 (en)
JPH01128488A (en) Thick film copper conductor ink
US4316942A (en) Thick film copper conductor circuits
KR0130974B1 (en) Non-oxidizing copper thick-film conductors
JPH0153907B2 (en)
JPH0213803B2 (en)
US3962143A (en) Reactively-bonded thick-film ink
US4311730A (en) Thick film circuits
EP0045482B1 (en) Thick film conductor compositions
US4380750A (en) Indium oxide resistor inks
US3505134A (en) Metalizing compositions whose fired-on coatings can be subjected to acid bath treatment and the method of using such metalizing compositions
CA1167247A (en) Conductor inks
JPH05114305A (en) Paste for baking
JPH01196192A (en) Conductor paste
GB2086142A (en) Indium oxide resistor inks
JPH0618122B2 (en) Resistive ink and circuit board
GB2085481A (en) Improved copper conductor inks
JPH0438121B2 (en)
CA1159851A (en) Overglaze inks