JPS6339019B2 - - Google Patents

Info

Publication number
JPS6339019B2
JPS6339019B2 JP55181467A JP18146780A JPS6339019B2 JP S6339019 B2 JPS6339019 B2 JP S6339019B2 JP 55181467 A JP55181467 A JP 55181467A JP 18146780 A JP18146780 A JP 18146780A JP S6339019 B2 JPS6339019 B2 JP S6339019B2
Authority
JP
Japan
Prior art keywords
rubber
ethylene
weight
propylene
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55181467A
Other languages
Japanese (ja)
Other versions
JPS57105444A (en
Inventor
Yozo Kitagawa
Akira Shimizu
Motoo Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP18146780A priority Critical patent/JPS57105444A/en
Publication of JPS57105444A publication Critical patent/JPS57105444A/en
Publication of JPS6339019B2 publication Critical patent/JPS6339019B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレン―プロピレン系ゴムにビニ
ル単量体混合物をグラフト共重合して得たグラフ
ト共重合体を含むゴム強化熱可塑性樹脂に特定の
非ジエン系ゴム質重合体を少量添加してなる耐候
性及び冷間二次加工特性の優れた熱可塑性樹脂組
成物に関する。 AES樹脂(エチレン―プロピレン系ゴム、ア
クリロニトリル、スチレンからなる三元共重合体
樹脂)及びAEMS樹脂(エチレン―プロピレン
系ゴム、アクリロニトリル、スチレン、メチルメ
タアクリレートからなる四元共重合体樹脂)など
は耐候性、耐衝撃性が優れている熱可塑性樹脂と
してモールド成形品、押出し成形品など自動車部
品あるいは工業製品に多く用いられている。 しかしながらこれらの成形品は、冷間にて二次
加工を行うと加工部品に白化現象及びストレスク
ラツク(製品外観に現われるヒビ割れ現象で特に
薬品と接触した場合に発生しやすい)が発生しや
すく、それらによつて機械的強度、特に耐衝撃
性、抗張力の低下が見られる。そのため一般的に
は成形品を加熱して加工するが、その場合成形品
が加熱により収縮したり、形くずれが起きたりし
て寸法安定性が悪いなどの欠点がある。 そこで本発明者らは、熱可塑性樹脂本来の特質
をそこなうことなく、成形品を冷間にて曲げ加工
などの二次加工を行う際の白化現象及びストレス
クラツクを改良する方法について鋭意検討した結
果、エチレン―プロピレン系ゴムを用いたゴム強
化熱可塑性樹脂に少量の特定の非ジエン系ゴム質
重合体を添加することにより上記の目的が達成さ
れることを見出し本発明に到達した。 すなわち本発明は、エチレン―プロピレン系ゴ
ムに芳香族ビニル化合物及びシアン化ビニル化合
物又はそれらと(メタ)アクリル酸エステルから
なるビニル単量体混合物をグラフト共重合体して
得たグラフト共重合体を含むゴム強化熱可塑性樹
脂100重量部にエチレン・プロピレン系共重合体
ゴム、ブチルゴムおよびアクリルゴムから選ばれ
た少なくとも1種の非ジエン系ゴム質重合体を2
〜8重量部添加してなる熱可塑性樹脂組成物を提
供するものである。 本発明におけるゴム強化熱可塑性樹脂の構成成
分を以下に例示する。 エチレン―プロピレン系ゴムとは、エチレンと
プロピレン又はそれらと非共役ジエンの二元又は
三元共重合体である。非共役ジエンとしてはジシ
クロペンタジエン、エチリデンノルボルネン、
1,4―ヘキサジエンなどがあり、これらは二種
以上組合わせて用いることもできる。芳香族ビニ
ル化合物としては、スチレン、α―メチルスチレ
ン、ビニルトルエンなどがあげられる。シアン化
ビニル化合物として、アクリロニトリル、メタア
クリロニトリル、クロロアクリロニトリルなどが
あげられる。又(メタ)アクリル酸エステルのエ
ステル基はメチル基、エチル基、n―プロピル
基、イソプロピル基、n―ブチル基、イソブチル
基などである。本発明で用いるゴム強化熱可塑性
樹脂を更に具体的に例示すれば、エチレン―プロ
ピレン共重合体又はエチレン―プロピレン―非共
役ジエン三元共重合体にスチレン及び/又はα―
メチルスチレンとアクリロニトリルの混合物をグ
ラフト共重合させて得たグラフト共重合体又はこ
のようにして得たグラフト共重合体とスチレン及
び/又はα―メチルスチレンとアクリロニトリル
の共重合体との混合によるいわゆるAES樹脂、
並びにメタクリル酸メチルを上記単量体成分に加
えて製造したAEMS樹脂などがあげられる。 ゴム強化熱可塑性樹脂中のゴム成分の割合は、
特に制限されないが、5〜30重量%程度の場合が
耐衝撃性が高く、かつ熱可塑性樹脂としてバラン
スが良い。 本発明においてゴム強化熱可塑性樹脂に添加混
合する非ジエン系ゴム質重合体としては、エチレ
ン―プロピレン共重合体、エチレン―プロピレン
―非共役ジエン共重合体、などのエチレン―プロ
ピレン系共重合体ゴム、アクリルゴムおよびブチ
ルゴムがあげられ、これらは二種以上組合わせて
使用することもできる。添加する非ジエン系ゴム
質重合体の量は、ゴム強化熱可塑性樹脂の優れた
機械的性質、特に耐衝撃性、耐熱性、抗張力の変
化の少ない範囲でなくてはならず、ゴム強化熱可
塑性樹脂100重量部に対して2〜8重量部の範囲
で用いる。8重量部を超えると機械的特性が低下
し、2重量部未満では本発明の効果が得られな
い。 添加混合の方法は、特に制限はないが、ゴム強
化熱可塑性樹脂及び非ジエン系ゴム質重合体が乳
化状のものは、ラテツクスブレンドが良く又両者
が溶液状の場合は溶液状にて混合した後処理すれ
ば良い。一般にはゴム強化熱可塑性樹脂はペレツ
ト状及び粉末状が多く、非ジエン系ゴム質重合体
は塊り状のものが多いので、その場合は両者をロ
ール又はバンバリー混練機を用いて混合すれば良
い。混合したものは、通常シートカツター又はイ
ンラインスクリユー押出機を用いてペレツト状に
することが出来る。 従来、モールド成形品は工業的に高度の技術を
必要とし、スライドコアー等を有する複雑な金型
を用いるため製造コストが高くつくのに対し、本
発明の樹脂組成物を用いれば比較的簡単な金型で
先ず成形しその後冷間二次加工を施こしてモール
ド成形品並みのものが成形出来るので製造コスト
が安くなる。又、押出し成形では通常困難とされ
ていた不定形R形状の成形品が本発明の樹脂組成
物を用いて成形した後、冷間にて二次加工するこ
とにより極めて簡単に加工出来るので、本発明の
樹脂組成物は自動車用等に用いられるモール成形
用の樹脂としても極めて有効である。 以下実施例によつて本発明を具体的に説明す
る。 実施例 1 25重量部のエチレン―プロピレン―非共役ジエ
ンゴム(JSR EP 22)にスチレン及びアクリロ
ニトリル(重量比70/30)の単量体混合物75重量
部を溶媒存在下で通常のラジカル重合によりグラ
フト共重合してグラフト共重合体(以下AESと
称す)を得た。一方スチレンとアクリロニトリル
(重量比70/30)を通常のバルクサスペンジヨン
重合により重合して共重合体(以下ASと称す)
を別に調製した。両者を別々にエクストルーダー
にて樹脂温度200℃にてペレツト化した。これら
表―1で示す配合割合にてエチレン―プロピレン
―非共役ジエンゴム共重合体ゴム(JSR EP 27)
を加えロールを用いて180℃で3分間混練りを行
い2mm厚みのシートを引出した。得られたシート
をシートペレタイザにてペレツト化した。各々の
ペレツトをスクリユーイン射出成形機に供給し、
樹脂温度220℃にて1/8″×1″×5″の金型で成形
片を得た。この成形片をASTMの1号ダンベル
及び1/8″×1/2″×5″の試験片に切出し物性試
験を行つた。その結果を表―1(射出成形品)及
び表―2(押出し成形品に示す。尚試験条件はテ
ストピースそのままのものとテストピースを二次
加工(R形状の治具を用いて)し室温にて2%の
歪になるように成形加工したものについて行い、
抗張力はASTM D―638、アイゾツト衝撃強度
はASTM D―256に準じて、各々常温下で測定
した。又押出し成形品については、上記の物性の
外に白灯油下におけるストレスクラツクの発生歪
%を1/4楕円の治具を用い24時間浸透させた後
のヒビ割れ現象より算出した。耐候性について
は、テストピースを二次加工にて2%の歪になる
ように成形加工したものを促進耐候性試験機(サ
ンシヤインウエザオメーター)を使用して200時
間及び500時間照射後の照射面のヒビ割れ現象の
有無で判定した。
The present invention is made by adding a small amount of a specific non-diene rubbery polymer to a rubber-reinforced thermoplastic resin containing a graft copolymer obtained by graft copolymerizing a vinyl monomer mixture to ethylene-propylene rubber. This invention relates to a thermoplastic resin composition with excellent weather resistance and cold secondary processing properties. AES resin (terpolymer resin consisting of ethylene-propylene rubber, acrylonitrile, and styrene) and AEMS resin (quaternary copolymer resin consisting of ethylene-propylene rubber, acrylonitrile, styrene, and methyl methacrylate) are weather resistant. As a thermoplastic resin with excellent strength and impact resistance, it is often used in molded products, extrusion molded products, and other automotive parts and industrial products. However, when these molded products are subjected to secondary processing in cold conditions, whitening and stress cracks (cracks that appear on the appearance of the product, which are particularly likely to occur when they come into contact with chemicals) are likely to occur in the processed parts. , a decrease in mechanical strength, especially impact resistance and tensile strength, is observed. For this reason, molded products are generally processed by heating, but in this case, there are drawbacks such as the molded products shrinking or deforming due to heating, resulting in poor dimensional stability. Therefore, the present inventors have conducted intensive studies on methods to improve the whitening phenomenon and stress cracks that occur when cold bending and other secondary processing is performed on molded products without impairing the original properties of thermoplastic resins. As a result, the inventors have discovered that the above object can be achieved by adding a small amount of a specific non-diene rubbery polymer to a rubber-reinforced thermoplastic resin using ethylene-propylene rubber, and have arrived at the present invention. That is, the present invention provides a graft copolymer obtained by graft copolymerizing an aromatic vinyl compound, a vinyl cyanide compound, or a vinyl monomer mixture consisting of these and (meth)acrylic acid ester to ethylene-propylene rubber. At least one non-diene rubbery polymer selected from ethylene-propylene copolymer rubber, butyl rubber, and acrylic rubber is added to 100 parts by weight of the rubber-reinforced thermoplastic resin.
The present invention provides a thermoplastic resin composition in which 8 parts by weight of the above ingredients are added. The constituent components of the rubber-reinforced thermoplastic resin in the present invention are illustrated below. Ethylene-propylene rubber is a binary or ternary copolymer of ethylene and propylene or a non-conjugated diene. Non-conjugated dienes include dicyclopentadiene, ethylidene norbornene,
Examples include 1,4-hexadiene, and two or more of these may be used in combination. Examples of aromatic vinyl compounds include styrene, α-methylstyrene, and vinyltoluene. Examples of vinyl cyanide compounds include acrylonitrile, methacrylonitrile, and chloroacrylonitrile. Further, the ester group of the (meth)acrylic acid ester includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and the like. More specific examples of the rubber-reinforced thermoplastic resin used in the present invention include ethylene-propylene copolymer or ethylene-propylene-nonconjugated diene terpolymer with styrene and/or α-
The so-called AES is a graft copolymer obtained by graft copolymerizing a mixture of methylstyrene and acrylonitrile, or a mixture of the thus obtained graft copolymer and a copolymer of styrene and/or α-methylstyrene and acrylonitrile. resin,
Also included are AEMS resins produced by adding methyl methacrylate to the above monomer components. The proportion of rubber component in rubber-reinforced thermoplastic resin is
Although not particularly limited, when the amount is about 5 to 30% by weight, impact resistance is high and the thermoplastic resin has a good balance. In the present invention, the non-diene rubbery polymer to be added and mixed with the rubber-reinforced thermoplastic resin includes ethylene-propylene copolymer rubbers such as ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, etc. , acrylic rubber and butyl rubber, and two or more of these can also be used in combination. The amount of the non-diene rubbery polymer added must be within a range that provides excellent mechanical properties of the rubber-reinforced thermoplastic resin, in particular impact resistance, heat resistance, and tensile strength. It is used in an amount of 2 to 8 parts by weight per 100 parts by weight of the resin. If it exceeds 8 parts by weight, mechanical properties will deteriorate, and if it is less than 2 parts by weight, the effects of the present invention cannot be obtained. There are no particular restrictions on the method of addition and mixing, but if the rubber-reinforced thermoplastic resin and non-diene rubbery polymer are in the form of an emulsion, a latex blend is best, or if both are in the form of a solution, they may be mixed in the form of a solution. All you have to do is process it afterwards. Generally, rubber-reinforced thermoplastic resins are often in the form of pellets or powders, and non-diene rubbery polymers are often in the form of lumps, so in that case, both can be mixed using a roll or Banbury kneader. . The mixture can be made into pellets, usually using a sheet cutter or an in-line screw extruder. Conventionally, molded products require industrially advanced technology and use complicated molds with slide cores, etc., resulting in high production costs.However, the resin composition of the present invention can be used to produce relatively simple products. Manufacturing costs are reduced because it is first molded in a mold and then subjected to cold secondary processing to form something similar to a molded product. In addition, molded products with irregular R-shapes, which are usually difficult to extrude, can be processed extremely easily by molding the resin composition of the present invention and then performing secondary processing in the cold. The resin composition of the invention is also extremely effective as a resin for molding used in automobiles and the like. The present invention will be specifically explained below using Examples. Example 1 75 parts by weight of a monomer mixture of styrene and acrylonitrile (weight ratio 70/30) was grafted onto 25 parts by weight of ethylene-propylene-nonconjugated diene rubber (JSR EP 22) by normal radical polymerization in the presence of a solvent. Polymerization was performed to obtain a graft copolymer (hereinafter referred to as AES). On the other hand, styrene and acrylonitrile (weight ratio 70/30) are polymerized by normal bulk suspension polymerization to create a copolymer (hereinafter referred to as AS).
was prepared separately. Both were pelletized separately using an extruder at a resin temperature of 200°C. Ethylene-propylene-nonconjugated diene rubber copolymer rubber (JSR EP 27) at the compounding ratio shown in Table 1.
was added and kneaded using a roll at 180°C for 3 minutes, and a 2 mm thick sheet was pulled out. The obtained sheet was pelletized using a sheet pelletizer. Feed each pellet to a screw-in injection molding machine,
A molded piece was obtained using a 1/8″ x 1″ x 5″ mold at a resin temperature of 220°C.This molded piece was tested using an ASTM No. 1 dumbbell and a 1/8″ x 1/2″ x 5″ test. A piece was cut out and tested for physical properties. The results are shown in Table 1 (injection molded products) and Table 2 (extrusion molded products).The test conditions were the test piece as it was and the test piece subjected to secondary processing (using an R-shaped jig) at room temperature. The test was performed on a molded product with a strain of 2%.
Tensile strength was measured according to ASTM D-638, and Izod impact strength was measured according to ASTM D-256 at room temperature. In addition to the above-mentioned physical properties, for extrusion molded products, the % strain of stress cracks under white kerosene was calculated from the cracking phenomenon after 24 hours of penetration using a 1/4 oval jig. Regarding weather resistance, test pieces were molded to a 2% strain through secondary processing and then irradiated for 200 hours and 500 hours using an accelerated weather resistance tester (Sunshine Weather-Ometer). Judgment was made based on the presence or absence of cracking on the irradiated surface.

【表】【table】

【表】 表―1及び表―2の結果から機械的強度の抗張
力及びアイゾツトインパクトにおいて、JSR
EP27(非ジエン系ゴム質重合体)を添加したもの
は歪2%の2次加工後の低下は非常に少なく後述
の比較例のデーターと対比して大巾に優れている
ことが分かる。同様に表―2で示した耐薬品に対
するストレスクラツク及び耐候性においても本発
明の組成物が優れていることが分かる。 実施例 2 実施例1の実験No.3において非ジエン系ゴム質
重合体としてエチレン―プロピレン―非共役ジエ
ン共重合体ゴムの代わりに表―3に示した各種の
非ジエン系ゴム質重合体を各5重量部添加する以
外は同一配合方法、成形条件により押出し成形で
成形品を得、その評価を行つた。 その結果を表―3に示す。
[Table] From the results of Tables 1 and 2, JSR
It can be seen that the product to which EP27 (non-diene rubbery polymer) was added had very little reduction in strain after secondary processing of 2% strain, and was significantly superior to the data of the comparative example described below. Similarly, it can be seen that the composition of the present invention is also excellent in stress crack resistance to chemicals and weather resistance shown in Table 2. Example 2 In Experiment No. 3 of Example 1, various non-diene rubber polymers shown in Table 3 were used instead of the ethylene-propylene-nonconjugated diene copolymer rubber as the non-diene rubber polymer. Molded products were obtained by extrusion molding using the same blending method and molding conditions except that 5 parts by weight of each were added, and the molded products were evaluated. The results are shown in Table-3.

【表】 表―3の結果より、非ジエン系ゴム質重合体と
してブチルゴム、アクリルゴムを添加したもの
は、機械的特性及び耐ストレスクラツク性、耐候
性において表―1の実験No.3と同様の効果が認め
られた。 比較例 1 実施例1と同様の成形条件下でJSR EP27を含
まないもの、JSR ED27の添加量が1重量部及び
9重量部のものについて表―1及び表―2と同様
の評価を行つた。 その結果を表―4及び表―5に示す。
[Table] From the results in Table 3, the non-diene rubber polymers to which butyl rubber and acrylic rubber were added had better mechanical properties, stress crack resistance, and weather resistance than Experiment No. 3 in Table 1. Similar effects were observed. Comparative Example 1 Under the same molding conditions as in Example 1, evaluations similar to those shown in Tables 1 and 2 were conducted for products that did not contain JSR EP27 and those that added 1 part by weight and 9 parts by weight of JSR ED27. . The results are shown in Table-4 and Table-5.

【表】【table】

【表】 表―4及び表―5の結果より、JSR EP27を含
まないもの及び添加量が1重量部のものは歪2%
加工後の機械的強度、並びにストレスクラツク及
び耐候性のヒビ割れ現象に劣ることが明らかであ
る。又添加量が9重量部のもの(No.4)は機械的
強度の抗張力及び剛性、耐熱性等が低下し、熱可
塑性樹脂本来の特性が悪くなる。 比較例 2 実施例2と同様の配合方法、成形条件下におい
て、本発明で特定する非ジエン系ゴム質重合体の
代わりに各種の本発明外のゴム質重合体を各5重
量部添加して評価を行つた。その結果を表―6に
示す。 表―6の結果より、ジエン系のゴムを用いた場
合、本発明に比べ2%歪二次加工品の機械的強度
及び耐ストレスクラツク性、特に耐候性における
物性低下が著しい。
[Table] From the results in Tables 4 and 5, the strain is 2% for those that do not contain JSR EP27 and those that have an additive amount of 1 part by weight.
It is clear that the mechanical strength after processing and the cracking phenomena of stress cracks and weather resistance are inferior. Further, when the amount added is 9 parts by weight (No. 4), the mechanical strength such as tensile strength, rigidity, heat resistance, etc. is decreased, and the inherent properties of the thermoplastic resin are deteriorated. Comparative Example 2 Under the same compounding method and molding conditions as in Example 2, 5 parts by weight of each of various rubbery polymers other than the present invention were added in place of the non-diene rubbery polymer specified in the present invention. I conducted an evaluation. The results are shown in Table-6. From the results shown in Table 6, when diene-based rubber is used, the mechanical strength and stress crack resistance of the 2% strain fabricated product, especially the weather resistance, are significantly lowered compared to those of the present invention.

【表】 比較例 3 表―7の実験No.8は実施例の実験No.3のエチレ
ン―プロピレン―非共役ジエン共重合体ゴムにか
えて、分子量1200のポリブテンを用いたものであ
り、実験No.9は分子量18000のポリブテンを用い
た以外は実施例1と同様に行なつた。押出成形品
の試験結果を表―7に示す。実験No.8、9とも本
発明の範囲外であり、本発明に比べ2%歪二次加
工品の機械的強度及び耐ストレスクラツク性が劣
る。
[Table] Comparative Example 3 Experiment No. 8 in Table 7 uses polybutene with a molecular weight of 1200 instead of the ethylene-propylene-nonconjugated diene copolymer rubber in Experiment No. 3 of the example. No. 9 was carried out in the same manner as in Example 1 except that polybutene with a molecular weight of 18,000 was used. Table 7 shows the test results for the extruded product. Both Experiment Nos. 8 and 9 are outside the scope of the present invention, and the mechanical strength and stress crack resistance of the 2% strain secondary processed product are inferior to those of the present invention.

【表】【table】

【表】 比較例 4 表―8の実験No.10は、エチレン―酢酸ビニル共
重合体を用いた例であり、耐白灯油ストレスクラ
ツクが劣る。
[Table] Comparative Example 4 Experiment No. 10 in Table 8 is an example using an ethylene-vinyl acetate copolymer, which has poor white kerosene stress crack resistance.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エチレン―プロピレン系ゴムに芳香族ビニル
化合物およびシアン化ビニル化合物又はそれらと
(メタ)アクリル酸エステルからなるビニル単量
体混合物をグラフト共重合して得たグラフト共重
合体を含むゴム強化熱可塑性樹脂100重量部に、
エチレン―プロピレン系共重合体ゴム、ブチルゴ
ムおよびアクリルゴムから選ばれた少なくとも1
種の非ジエン系ゴム質重合体を2〜8重量部添加
してなる熱可塑性樹脂組成物。
1 Rubber-reinforced thermoplastic containing a graft copolymer obtained by graft copolymerizing an aromatic vinyl compound and a vinyl cyanide compound or a vinyl monomer mixture consisting of them and (meth)acrylic acid ester to ethylene-propylene rubber. 100 parts by weight of resin,
At least one selected from ethylene-propylene copolymer rubber, butyl rubber, and acrylic rubber
A thermoplastic resin composition containing 2 to 8 parts by weight of a non-diene rubbery polymer.
JP18146780A 1980-12-22 1980-12-22 Thermoplastic resin composition Granted JPS57105444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18146780A JPS57105444A (en) 1980-12-22 1980-12-22 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18146780A JPS57105444A (en) 1980-12-22 1980-12-22 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS57105444A JPS57105444A (en) 1982-06-30
JPS6339019B2 true JPS6339019B2 (en) 1988-08-03

Family

ID=16101257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18146780A Granted JPS57105444A (en) 1980-12-22 1980-12-22 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS57105444A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948469A (en) * 1972-02-07 1974-05-10
JPS5318652A (en) * 1976-08-05 1978-02-21 Idemitsu Petrochemical Co Thermoplastic resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948469A (en) * 1972-02-07 1974-05-10
JPS5318652A (en) * 1976-08-05 1978-02-21 Idemitsu Petrochemical Co Thermoplastic resin composition

Also Published As

Publication number Publication date
JPS57105444A (en) 1982-06-30

Similar Documents

Publication Publication Date Title
JP3409141B2 (en) Filled carbonate polymer blend composition
JPH0733473B2 (en) Filled polymer blend
KR101676124B1 (en) Thermoplastic resin composition having exellent chemical resistantce and molded article prepared therefrom
DE3926275A1 (en) ABS MOLDS WITH IMPROVED STRETCH TENSION
CN101117433B (en) Elastomer-containing polycarbonate-based blending material and method for making same
JPS60233151A (en) Polycarbonate composition
KR100943961B1 (en) Weatherable Thermoplastic Resin Composition
EP0114598A1 (en) Thermoplastic moulding masses
KR20090072651A (en) Thermoplastic resin composition having excellent weatherability
KR100665804B1 (en) High Heat ABS Resin Composition Having Improved Crack and Chemical Resistance
EP0755972A2 (en) Styrenic polymer composition
US4496690A (en) Alloys of styrenic resins and polyamides
CA2173665A1 (en) Impact modifier combination for aromatic polyesters
JPH0341104B2 (en)
CA2605425A1 (en) Polycarbonate compositions with modified resilience, related production methods and molded elements containing said compositions
US5210135A (en) ABS moulding compounds with improved yield stress
EP0080720B1 (en) Alloys of styrenic resins and polyamides
DE10046774A1 (en) Thermoplastic molding compounds with special additive mixtures
JPS6339019B2 (en)
US6855786B2 (en) Method for preparing graft copolymer of methylmethacrylate-butadiene-styrene having superior anti-stress whitening properties
CA1304856C (en) Polycarbonate resin composition with dienic impact modifiers
DE102004024272A1 (en) Graft polymer-containing materials for extrusion processing
EP1322700B1 (en) Moulding materials with a dibenzoate additive
DE3808846A1 (en) THERMOPLASTIC MOLDS OF ABS TYPE WITH HIGH TOUGHNESS AND GOOD WORKABILITY
NZ233817A (en) Polyamide compositions comprising polyglutarimide and an impact modifier which comprises core/shell polymer having a core of at least 50 weight percent butadiene and/or alkylacrylate