JPS6338898B2 - - Google Patents

Info

Publication number
JPS6338898B2
JPS6338898B2 JP54124977A JP12497779A JPS6338898B2 JP S6338898 B2 JPS6338898 B2 JP S6338898B2 JP 54124977 A JP54124977 A JP 54124977A JP 12497779 A JP12497779 A JP 12497779A JP S6338898 B2 JPS6338898 B2 JP S6338898B2
Authority
JP
Japan
Prior art keywords
encoding
information
amount
signal
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54124977A
Other languages
Japanese (ja)
Other versions
JPS5648737A (en
Inventor
Norio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12497779A priority Critical patent/JPS5648737A/en
Publication of JPS5648737A publication Critical patent/JPS5648737A/en
Publication of JPS6338898B2 publication Critical patent/JPS6338898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • H04B14/066Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM]
    • H04B14/068Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM] with adaptive feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Description

【発明の詳細な説明】 本発明は画像信号の符号化伝送で複数種類の符
号化特性を有し不規則に発生する符号化情報をバ
ツフアメモリに一旦蓄えてから伝送する符号化復
号化装置の符号化特性切換えの方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a code for an encoding/decoding device that temporarily stores encoded information that has multiple types of encoding characteristics and occurs irregularly in a buffer memory and then transmits it in encoded transmission of an image signal. This invention relates to a method for switching characteristics.

テレビジヨン(TV)信号等を可変長符号化
DPCM(Differential Pulse Code Modulation)
するような場合、不規則に発生する可変長符号等
の符号化情報は一定の伝送ビツトレートで伝送す
るため一旦バツフアメモリに蓄えてから伝送路へ
送り出される。この場合バツフアメモリがオーバ
ーフローやアンダーフローを生じないように量子
化特性等の符号化特性を切換えることによつて発
生する符号化情報を制御する。従来は、符号化特
性を切換えた場合どの特性に切換えたかを示す信
号(モード信号)を伝送していたが、長い周期で
初換えを行なう場合はモード信号の割合は他の情
報に比して非常に少ないがバツフアメモリの制御
を短かい周期(たとえば1標本化ごと)で行なつ
た場合、モード信号の情報量が増大し符号化の情
報に比して無視できない値となり、また符号化情
報の間に切換え情報を割込ませるため装置が複雑
になつたりする。一方モード信号を伝送しないで
符号化特性を切換える方法(“準可変長符号化方
式”沢田他「放送カラーテレビ信号用32Mb/s
分離DPCM符号化方式」研究実用化報告第28巻
2号(1979)P285〜P286)もあるが、これは1
つの区間で送られる情報量は一定とする制約があ
るため符号化能率が悪くなる等の欠点があつた。
Variable length encoding of television (TV) signals, etc.
DPCM (Differential Pulse Code Modulation)
In such cases, encoded information such as variable-length codes that occur irregularly is temporarily stored in a buffer memory and then sent out to a transmission path in order to be transmitted at a constant transmission bit rate. In this case, the encoded information generated is controlled by switching encoding characteristics such as quantization characteristics so that the buffer memory does not overflow or underflow. Conventionally, when switching the encoding characteristic, a signal (mode signal) indicating which characteristic was switched was transmitted, but when the initial switching is performed in a long cycle, the proportion of the mode signal is smaller than other information. Although it is very rare, if the buffer memory is controlled in a short period (for example, every sampling), the amount of information in the mode signal increases and becomes a value that cannot be ignored compared to the encoded information, and the encoded information Since switching information is inserted in between, the device becomes complicated. On the other hand, a method of switching the encoding characteristics without transmitting a mode signal (“semi-variable length encoding method”) Sawada et al. “32 Mb/s for broadcast color television signals”
There is also ``Separated DPCM Coding Method'' Research and Practical Application Report Vol. 28 No. 2 (1979) P285-P286), but this is 1
Since there is a restriction that the amount of information sent in one section is constant, there are drawbacks such as poor coding efficiency.

本発明の目的は符号化特性を切換えてバツフア
メモリの占有率を制御する符号化方式において前
述の欠点をなくし符号化特性の切換えを示すモー
ド信号を伝送しないで符号化特性の切換えができ
るような符号化方式を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks in a coding method that controls the occupancy rate of a buffer memory by switching coding characteristics, and to provide a code that allows switching of coding characteristics without transmitting a mode signal indicating switching of coding characteristics. The objective is to provide a method for converting

本発明によれば、ある区間ごとにバツフアメモ
リの占有量を用いて符号化情報の符号量(符号化
情報量)を積算する初期値をセツトしたのちその
区間内において符号化情報量の積算値を用いて制
御特性にしたがつて符号化特性を切換えることに
より切換えの情報を送らなくても符号化特性を切
換えてバツフアメモリ占有率を制御できることに
なる。
According to the present invention, after setting an initial value for accumulating the amount of encoded information (amount of encoded information) using the occupied amount of buffer memory for each section, the accumulated value of the amount of encoded information is calculated within that section. By switching the encoding characteristic according to the control characteristic using the control characteristic, the buffer memory occupancy rate can be controlled by switching the encoding characteristic without sending switching information.

以下本発明について図面を用いて詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

可変長符号化DPCMにおいてバツフアメモリ
の占有率をDPCMの量子化特性すなわち符号化
特性を切換えてコントロールする場合について示
す。標本化周波数がS、伝送ビツトレートが
Rbit/sでそのうち符号化情報の伝送に用いられ
る分をRBbit/sとすれば1標本化サンプルあた
りの平均伝送ビツトレートは=R/S、平均伝
送符号化情報量はB=RBSで示される。
A case will be described in which the buffer memory occupancy rate in variable length coding DPCM is controlled by switching the quantization characteristics, that is, the coding characteristics of the DPCM. The sampling frequency is S , the transmission bit rate is
If R bit /s and the part used for transmitting encoded information is R B bit/s, the average transmission bit rate per sampling sample is = R/ S , and the average amount of transmitted encoded information is B = R B / Indicated by S.

DPCMの予測誤差信号を量子化して量子化出
力の信号を可変長符号化したとき1つの区間内で
第n番目のサンプルの符号化情報である可変長符
号の語長すなわち符号化情報量がW(n)ビツト
で示されるとすると符号化情報量から平均伝送符
号化情報量Bを減算した第n番目の差分符号化
情報量DW(n)は DW(n)=W(n)−B ……(1) で示される。他に伝送する情報が加えられないと
すれば差分符号化情報量はバツフアメモリに蓄え
られる情報量(バツフア占有量)の変化量にな
る。1つの区間で第nサンプルまでの差分符号化
情報量の積算値(累積差分情報量)DC(n)は次
式で示される。
When the prediction error signal of DPCM is quantized and the quantized output signal is variable-length encoded, the word length of the variable-length code, which is the encoded information of the n-th sample within one interval, that is, the amount of encoded information is W. If it is expressed in (n) bits, the n-th differential encoded information amount DW(n) obtained by subtracting the average transmitted encoded information amount B from the encoded information amount is DW(n) = W(n) - B ... ...(1) is shown. If no other information to be transmitted is added, the amount of differentially encoded information is the amount of change in the amount of information stored in the buffer memory (buffer occupancy). The integrated value (cumulative differential information amount) DC(n) of the amount of differentially encoded information up to the n-th sample in one section is expressed by the following equation.

DC(n)=oi=n (W(i)−B)=oi=n W(i)−B・n ……(2) ここでoi=n W(i)は符号化情報量の積算値(累積
情報量)C(n)でC(n)=oi=n W(i)である。1つ
の区間の累積差分情報量の初期値がDC(o)で与
えられたと第n番目のサンプルにおける累積差分
情報量DC(n)は次式で与えられる。
DC(n)= oi=n (W(i)− B )= oi=n W(i)− B・n ……(2) where oi=n W(i) is the sign The integrated value of the converted information amount (cumulative information amount) C(n) is C(n)= oi=n W(i). If the initial value of the cumulative difference information amount for one section is given by DC(o), the cumulative difference information amount DC(n) in the n-th sample is given by the following equation.

DC(n)=oi=n (W(n)−B)+DC(o)=oi=n W(n)−B・n+DC(o) ……(3) この累積差分情報量は初期値DC(o)および符
号化情報量W(n)がわかれば求めることができ
る。すなわち受信側ではW(n)に加えてある区
間ごとに初期値DC(o)を知ることによつて送り
側と同様にDC(n)を求めることができる。また
初期値をバツフアメモリの占有量に一致させるか
または近い値をとるようにすればDC(n)はほぼ
バツフアメモリの占有量に近い値となる。これよ
りDC(n)の値を用いて制御特性にしたがつて符
号化特性である量子化特性を切換えることによつ
て符号化情報の発生情報量を変えてバツフアメモ
リの占有率を制御できることになる。第1図に示
すように累積差分情報量の領域を定数B1、B2(B1
<B2)で3つの領域に区切つたとき(一般には
定数でなくnの関数(制御関数)を用いて区切る
ことができる。)第n番目のサンプルにおけるDC
(n)がどの領域にあるかによつて次のサンプル
点(n+1)をどの符号化特性で符号化するかを
決定する。すなわち差分情報量が小さくDC(n)
<B1ならばモード1、中位でB1DC(n)<B2
らばモード2、大きくてB2DC(n)ならばモ
ード3とする。
DC(n)= oi=n (W(n) -B )+DC(o)= oi=n W(n) -B・n+DC(o)......(3) This cumulative difference information amount is It can be determined if the initial value DC(o) and the encoded information amount W(n) are known. That is, on the receiving side, by knowing the initial value DC(o) for each section in addition to W(n), DC(n) can be found in the same way as on the sending side. Further, if the initial value is made to match or be close to the occupancy of the buffer memory, DC(n) will become a value approximately close to the occupancy of the buffer memory. From this, it is possible to control the buffer memory occupancy rate by changing the amount of encoded information generated by switching the quantization characteristic, which is the encoding characteristic, according to the control characteristic using the value of DC(n). . As shown in Figure 1, the area of cumulative difference information is defined by constants B 1 and B 2 (B 1
<B 2 ) (generally, it can be divided using a function (control function) of n instead of a constant), the DC at the nth sample
Depending on which region (n) is in, it is determined with which encoding characteristic the next sample point (n+1) is encoded. In other words, the amount of differential information is small and DC(n)
If <B 1 , mode 1; if B 1 DC(n)<B 2 , mode 2; if B 2 DC(n), large, mode 3.

今符号器が符号化特性として3つの量子化特性
を持つており、モード1のときは量子化ステツプ
が細かく、したがつて発生情報が多くなる可変長
符号化用の量子化特性1で可変長符号化を、モー
ド2のときは量子化ステツプが粗く、したがつて
発生情報が少なくなる可変長符号化用の量子化特
性2で可変長符号化を、モード3のときはこれ以
上情報量が増えないように固定ビツト長q(q<
B)の量子化特性3で固定長符号化を行なうよ
うにする。このようにすれば累積差分情報量DC
(n)はほぼバツフア占有量と対応しているので
占有率が小さいときは発生情報が多くなるよう
に、バツフア占有率が大きいときは発生情報が少
なくなるように1標本化ごとに制御できることに
なる。受信側で復号を行なう場合(3)式で示される
累積差分情報量DC(n)を知る必要があるため、
W(n)の他に初期値DC(o)の情報を伝送する
必要がある。
Now, the encoder has three quantization characteristics as encoding characteristics. In mode 1, the quantization step is fine, and therefore the generated information is large. Quantization characteristic 1 is for variable length encoding. When in mode 2, the quantization step is coarser and therefore less information is generated, and variable length encoding is performed with quantization characteristic 2 for variable length encoding, and in mode 3, the amount of information is more than this. Fixed bit length q (q<
Fixed length encoding is performed using quantization characteristic 3 of R B ). In this way, the cumulative difference information amount DC
Since (n) roughly corresponds to the buffer occupancy, it is possible to control each sampling so that when the buffer occupancy is small, there is more occurrence information, and when the buffer occupancy is large, there is less occurrence information. Become. When decoding is performed on the receiving side, it is necessary to know the cumulative difference information amount DC(n) shown by equation (3), so
In addition to W(n), it is necessary to transmit information about the initial value DC(o).

1区間(ブロツク)の終りごとのバツフアメモ
リの占有率の変化は、第l番目のブロツクにおけ
るバツフアメモリの占有量をB(l)、初期値をB
O(l)o(=B(l−1))、各ブロツクの最初に
同期信号を伝送するために必要な情報量をd、
bitとし、l番目の区間内での符号化情報量をWl
(i)、その区間のサンプル数をNで示せば第lブロ
ツクの終りでのバツフアメモリ占有量B(l)は次
式で示される。
The change in the buffer memory occupancy at each end of one section (block) is expressed as follows: The buffer memory occupancy in the l-th block is B(l), and the initial value is B.
O(l)o(=B(l-1)), the amount of information required to transmit the synchronization signal at the beginning of each block is d,
bit, and the amount of encoded information in the l-th interval is Wl
(i), if the number of samples in that section is denoted by N, the buffer memory occupancy B(l) at the end of the lth block is expressed by the following equation.

B(l)=Ni=1 Wl(i)+α−・N+B(l−1) ……(4) (3)式を用いて累積符号化情報量を累積差分情報
量におき換えると B(l)={DCl(N)+B・N−DCl(o)}+α
−・N+B(l−1)……(5) したがつて初期値DC(o)を次の(6)式のようにお
けばバツフアメモリ占有率はブロツクごとに(7)式
のように変る。
B(l)= Ni=1 Wl(i)+α−・N+B(l−1) …(4) Using equation (3) to replace the cumulative encoded information amount with the cumulative difference information amount, we get B (l)={DC l (N)+ B・N−DC l (o)}+α
-.N+B(l-1) (5) Therefore, if the initial value DC(o) is set as shown in equation (6) below, the buffer memory occupancy rate changes for each block as shown in equation (7).

DCl(o)=B・N+α−・N +B(l−1) ……(6) B(l)=DCl(N)+DCl(o) ……(7) したがつてブロツク内で累積差分情報量DCl
(n)を適当にコントロールすればバツフアメモ
リ占有率をオーバフローやアンダーフローが生じ
ないように適当に制御できる。DC(n)とバツフ
アメモリ占有率とは(7)式で完全に対応させる必要
はなく例えばDCl(o)の値はある程度量子化さ
れた値でもかまわない。すなわち量子化された
DCl(o)の値をD〓Cl(o)とすれば D〓Cl(o)=DCl(o)+ΔEl (ただしΔElは量子化誤差) ……(8) となる。したがつて(3)式においてDC(o)の代り
に量子化された値D〓Cl(o)を用い(9)式から第1
図に示すような特性によつてモードを決定し符号
化特性を切換えて発生情報を制御する。
DC l (o) = B・N+α−・N +B(l−1) ……(6) B(l)=DC l (N)+DC l (o) ……(7) Therefore, the accumulation within the block Differential information amount DC l
By appropriately controlling (n), the buffer memory occupancy rate can be appropriately controlled to prevent overflow or underflow. It is not necessary that DC(n) and the buffer memory occupancy correspond to each other completely according to equation (7), and for example, the value of DC l (o) may be a quantized value to some extent. i.e. quantized
If the value of DC l (o) is D〓C l (o), then D〓C l (o) = DC l (o) + ΔE l (where ΔE l is a quantization error) ...(8). Therefore, in equation (3), the quantized value D〓C l (o) is used instead of DC(o), and from equation (9), the first
The mode is determined based on the characteristics shown in the figure, and the generated information is controlled by switching the encoding characteristics.

DCl(n)=oi=n Wl(n)−B・n+D〓Cl(o) ……(9) すなわち符号化情報よりWl(n)が求められる
ので1区間ごとに切期値D〓Cl(o)の情報を伝送
すればその区間内では切換え情報なしに1標本化
ごとに符号化特性の切換えの制御ができる。初期
値を1区間ごとに送るため伝送エラーがあつても
次の区間では正しく再生ができるし1区間の大き
さは一定値Nサンプルに固定しなくても制御でき
る。またBの値はB=−α/Nに一致させる
必要はない。また1標本化ごとに制御を行なわな
いで適当なサンプル間隔ごとに制御を行なうこと
も可能である。累積差分情報量を計算する方法は
差分符号化情報量(W(n)−B)を積算して求
める方法や、符号化情報量W(n)の積算値より
(3)式にしたがつて求めることができる。
DC l (n) = oi=n W l (n) − B・n+D〓C l (o) ...(9) In other words, since W l (n) is obtained from the encoded information, it is cut for each section. If information about the initial value D〓C l (o) is transmitted, switching of the encoding characteristics can be controlled for each sampling without switching information within that section. Since the initial value is sent for each section, even if there is a transmission error, the next section can be correctly reproduced, and the size of one section can be controlled without having to be fixed at a constant value of N samples. Further, the value of B does not need to match B = -α/N. It is also possible to perform control at appropriate sampling intervals without performing control for each sampling. The cumulative difference information amount can be calculated by accumulating the difference encoded information amount (W(n) - B ), or from the cumulative value of the encoded information amount W(n).
It can be obtained according to equation (3).

また発生する符号化情報量を用いて制御を行な
う構成例として累積差分情報量と制御特性とを比
較してモードを切換える構成で示したが、この他
種種の構成が可能で例えば累積情報量C(n)(=
oi=n W(n))と制御特性との比較によりモードを
決定するように構成できる。
In addition, as an example of a configuration in which control is performed using the amount of encoded information generated, a configuration is shown in which the cumulative difference information amount and the control characteristics are compared and the mode is switched, but other types of configurations are possible. (n)(=
The mode can be determined by comparing oi=n W(n)) with the control characteristics.

例えば先の例でモード1となる領域はDC(n)
<B1で定められるが、(3)式を用いれば C(n)=oi=n W(n)<B1B・n−DC(o) ……(10−2) となる。したがつて制御特性としてB1の代りに
制御関数F1(n)=B1B・n−DC(o)を用い
れば累積情報量C(n)と制御関数F1(n)より
C(n)<F1(n)でモード1が決定される。すな
わち一般に累積情報量と1つ以上の制御関数F
(n)を有する制御特性によりモードの決定が行
なえる。
For example, in the previous example, the area that becomes mode 1 is DC(n)
<B 1 , but using formula (3), C(n)= oi=n W(n)<B 1 + B・n−DC(o) ……(10−2) . Therefore, if we use the control function F 1 (n)=B 1 + B・n−DC(o) instead of B 1 as the control characteristic, then from the cumulative information amount C(n) and the control function F 1 (n), C Mode 1 is determined by (n)<F 1 (n). That is, in general, the cumulative amount of information and one or more control functions F
The mode can be determined by the control characteristic having (n).

本発明の第1の実施例の構成を示すブロツク図
を第2図に示す。本実施例は標本化周波数S
8.906MHz(566HHは水平同期周波数)でA/
D変換されたNTSCカラーTV信号を高次の予測
関係を用いて直接DPCMを行ない量子化出力を
可変長符号化して32.064Mb/Sで伝送路へ送り
出し、受信側では受信信号を復号化して復号信号
を得る場合について示す。
A block diagram showing the configuration of the first embodiment of the present invention is shown in FIG. In this example, the sampling frequency S =
A /
Direct DPCM is performed on the D-converted NTSC color TV signal using a high-order prediction relationship, and the quantized output is variable-length coded and sent to the transmission path at 32.064 Mb/S. On the receiving side, the received signal is decoded and decoded. The case where a signal is obtained is shown below.

1区間(1ブロツク)を1水平走査区間とすれ
ばN=566サンプルで=3.6bi/sである。標
本化周波数S=8.906MHzでA/D変換されたカ
ラーTV信号は制御器206からのモード信号に
よつて量子化器202の量子化特性が切換えられ
るDPCM符号器214において符号化が行なわ
れ、量子化器202で量子化された予測誤差信号
すなわち量子化出力信号が可変長符号器へ送られ
る。
If one section (one block) is one horizontal scanning section, N=566 samples = 3.6 bi/s. The color TV signal A/D converted at a sampling frequency S = 8.906 MHz is encoded in a DPCM encoder 214 in which the quantization characteristics of the quantizer 202 are switched by a mode signal from the controller 206. The prediction error signal quantized by the quantizer 202, that is, the quantized output signal, is sent to the variable length encoder.

DPCM符号器214は減算器201、量子化
器202、加算器203、予測器204からな
り、量子化器202は細かい量子化ステツプと粗
い量子化ステツプを持つ可変長符号化用の量子化
特性が2種類と、3.5ビツトの固定長符号化用の
量子化特性1種の合せて3種の量子化特性からな
る符号化特性を持ち、モード信号によつて切換え
が行なわれる。NTSCカラーTV信号を直接能率
よく予測できる予測関数P(Z)の具体的な一例
としてZ変換で示される伝達特性が次式で示され
る特性を予測器204は有する。ただしZ=
ej2π/sである。
The DPCM encoder 214 consists of a subtracter 201, a quantizer 202, an adder 203, and a predictor 204, and the quantizer 202 has quantization characteristics for variable length encoding with fine quantization steps and coarse quantization steps. It has encoding characteristics consisting of three types of quantization characteristics, two types and one type for 3.5-bit fixed length encoding, and is switched by a mode signal. As a specific example of a prediction function P(Z) that can directly and efficiently predict an NTSC color TV signal, the predictor 204 has a transfer characteristic expressed by Z transformation as expressed by the following equation. However, Z=
ej2π/s.

P(Z)=0.875Z-2+0.502Z-3 −0.533Z-4+0.156Z-5 ……(10) 可変長符号器205では制御器206からのモ
ード信号にしたがつて量子化出力信号を可変長符
号または3.5ビツトの固定長符号に符号化し、こ
の符号化した信号(可変長符号化信号)およびそ
の符号の語長を示す符号長信号を出力する。符号
の語長が変る可変長符号化信号はバツフアメモリ
207へ送られ一旦蓄えられたのち各ブロツクご
との差分発生情報量の初期値を示す初期値信号お
よびブロツクの先頭を示すブロツク信号およびそ
の他必要な信号が付け加えられ等速度の伝送ビツ
トレートで伝送路へ送り出される。各ブロツクご
とにバツフアメモリの占有量を示す占有量信号が
制御器206へ送られる。
P(Z)=0.875Z -2 +0.502Z -3 -0.533Z -4 +0.156Z -5 ...(10) The variable length encoder 205 generates a quantized output signal according to the mode signal from the controller 206. This encoded signal (variable length encoded signal) and a code length signal indicating the word length of the code are output. The variable-length coded signal in which the word length of the code changes is sent to the buffer memory 207 and once stored, an initial value signal indicating the initial value of the amount of difference generated information for each block, a block signal indicating the head of the block, and other necessary signals are sent to the buffer memory 207 and stored therein. A signal is added and sent out onto the transmission path at a constant transmission bit rate. An occupancy signal indicating the occupancy of the buffer memory for each block is sent to the controller 206.

制御器206では可変長符号器205からサン
プル(標本化画素)ごとに送られる符号長信号お
よびバツフアメモリ207からブロツクごと送ら
れるバツフアメモリの占有量信号を用いて符号化
の制御を行なう。今バツフアメモリの容量を2048
ビツトとし、制御特性の制御関数としては一定値
を用いることとしその定数をB1=768、B2=1536
とすると累積差分情報量DC(n)は各ブロツク内
で第3図の制御特性によつてモードを決定し符号
化特性を切換えることになる。1標本化画素ごと
の制御も可能であるがモードが頻繁に切換るのを
避けるため例えば32サンプルごとにモード切換え
の制御を行なうようにする。DC(n)が768未満
ならばモード1、768以上1536未満ならモード2、
1536以上ならモード3となる。DC(n)が例えば
64未満になればアンダーフローを防止するためダ
ミー符号等を付け加える。
The controller 206 controls encoding using the code length signal sent from the variable length encoder 205 for each sample (sampled pixel) and the buffer memory occupancy signal sent from the buffer memory 207 for each block. Now the buffer memory capacity is 2048
A constant value is used as the control function of the control characteristic, and the constants are B 1 = 768 and B 2 = 1536.
Then, the cumulative difference information amount DC(n) determines the mode within each block according to the control characteristics shown in FIG. 3, and switches the encoding characteristics. Control for each sampled pixel is also possible, but to avoid frequent mode switching, mode switching is controlled every 32 samples, for example. If DC(n) is less than 768, mode 1; if it is 768 or more and less than 1536, mode 2;
If it is 1536 or more, it will be mode 3. For example, DC(n) is
If it becomes less than 64, a dummy code etc. is added to prevent underflow.

1標本化画素に割当てられる平均伝送符号化情
報量をB=3.5625(=9/16)、ブロツクの同期信
号と初期値信号等に必要な情報がα=32ビツトと
すれば、第l番目のブロツクにおける累積差分情
報量DCl(n)は(9)式より DCl(n)=oi=n (W(i)−3.5625)+D〓C(o) ……(11) で示される。例えばl=10のとき、前ブロツクの
終りでのバツフア容量がO(l−1)=1060とす
れば(6)式よりDCl(o)=1070・775となる。最大
2048まで変る初期値信号を8ビツトで伝送するこ
とにすればDCl(o)=1070.775は8の大きさで量
子化されてD〓Cl(o)=1064となる。したがつて8
ビツトで伝送される初期値信号としては1064から
れることになる。
If the average amount of transmission coding information allocated to one sampling pixel is B = 3.5625 (=9/16), and the information necessary for the block synchronization signal, initial value signal, etc. is α = 32 bits, then the l-th The cumulative difference information DC l (n) in a block is expressed by equation (9) as DC l (n) = oi=n (W(i) - 3.5625) + D 〓 C (o) ... (11) . For example, when l=10, if the buffer capacity at the end of the previous block is O(l-1)=1060, then DC l (o)=1070·775 from equation (6). maximum
If an initial value signal varying up to 2048 is transmitted in 8 bits, DC l (o) = 1070.775 is quantized with a size of 8 and becomes D〓C l (o) = 1064. Therefore 8
The initial value signal transmitted in bits is from 1064.

(11)式と第3図の制御特性によつて定められたモ
ード信号は量子化器202と可変長符号器205
へ送られる。量子化器202ではモード1のとき
は細かい量子化ステツプの可変長用量子特性で量
子化が、モード2のときは粗い量子化ステツプの
可変長用量子化特性で量子化が、モード3のとき
は固定長3.5ビツトの固定長用量子化特性で量子
化が行なわれ、可変長符号器205ではモード1
および2のときは可変長符号化が、モード3のと
きは3.5ビツトの固定長符号化(実際には2サン
プル合せて7ビツトの符号化が行なわれる。)が
行なわれる。
The mode signal determined by equation (11) and the control characteristics shown in FIG.
sent to. In the quantizer 202, in mode 1, quantization is performed using the variable length quantum characteristic of fine quantization steps, in mode 2, quantization is performed using the variable length quantization characteristics of coarse quantization steps, and in mode 3, quantization is performed using the variable length quantization characteristics of coarse quantization steps. is quantized using the fixed length quantization characteristic of fixed length 3.5 bits, and the variable length encoder 205 uses mode 1.
In mode 2, variable-length encoding is performed, and in mode 3, 3.5-bit fixed-length encoding (actually, 7-bit encoding is performed in total for 2 samples).

受信側では伝送路より送られてきた信号は一旦
バツフアメモリ208へ蓄えられブロツク信号お
よび初期値信号は制御器210へ送られ可変長符
号化信号は可変長復号器209へ送られる。
On the receiving side, signals sent from the transmission line are temporarily stored in buffer memory 208, block signals and initial value signals are sent to controller 210, and variable length encoded signals are sent to variable length decoder 209.

可変長復号器209では制御器210から送ら
れるモード信号にしたがつて可変長符号化信号よ
りその符号の長さを示す符号長信号および可変長
符号器205で当該可変長符号化信号に変換され
た量子化出力信号のレベルに相当するレベルの量
子化レベル信号を出力する。符号長信号は制御器
210へ送られ、量子化レベル信号は高次予測
DPCM復号器215へ送られる。制御器210
では制御器206と同じようにブロツク信号と初
期値信号および符号長信号より累積差分情報量
DC(n)を求め、この値を用いて制御特性にした
がつて送信側と同様にモードを決定し、モード信
号を可変長復号器209へ送る。予測器204と
同様の機能を有する予測器213および加算器2
12より構成される。高次予測DPCM復号器2
15では量子化レベル信号から復号化が行なわれ
出力にPCMのテレビ信号の復号信号が出力され
る。
The variable length decoder 209 converts the variable length encoded signal into a code length signal indicating the length of the code according to the mode signal sent from the controller 210, and the variable length encoder 205 converts the variable length encoded signal into the variable length encoded signal. A quantization level signal having a level corresponding to the level of the quantized output signal is output. The code length signal is sent to the controller 210, and the quantization level signal is sent to the high-order prediction
It is sent to the DPCM decoder 215. Controller 210
Then, in the same way as the controller 206, the cumulative difference information amount is determined from the block signal, initial value signal, and code length signal.
DC(n) is determined, this value is used to determine the mode in accordance with the control characteristics in the same way as on the transmitting side, and the mode signal is sent to the variable length decoder 209. Predictor 213 and adder 2 having similar functions as predictor 204
Consists of 12. High-order predictive DPCM decoder 2
At step 15, decoding is performed from the quantized level signal, and a decoded signal of the PCM television signal is output.

以上示したようにある区間ごとに切期値を送る
だけでその区間内においてはモード信号(切換え
情報)なしに可変長符号化信号(符号化情報)の
符号長から累積差分情報量DC(n)を求めこの値
を用いて制御特性にしたがつて符号化特性(この
場合は量子化特性)を切換えて符号化することに
よりバツフアメモリ占有率を制御できることにな
る。
As shown above, by simply sending the cutoff value for each section, the cumulative difference information DC (n ) and use this value to switch the encoding characteristic (quantization characteristic in this case) according to the control characteristic and perform encoding, thereby making it possible to control the buffer memory occupancy rate.

本実施例において予測関数、符号化特性の種
類、制御特性におけるモードの種類およびモード
を分割する制御関数等の特性や値はこれらに限定
されることはない。
In this embodiment, the characteristics and values of the prediction function, the type of encoding characteristic, the type of mode in the control characteristic, the control function for dividing the mode, etc. are not limited to these.

たとえば制御特性の制御関数は一定値を用いて
モード領域を区切るのでなくnを含む関数を用い
て領域を区切ることができ、またモードの切換り
が頻繁に生じないように制御特性にヒステリシス
を持たせることも可能である。1つのブロツクの
大きさは一定値でなくブロツクごとに可変にして
も、ブロツク信号と初期値信号を用いて初期セツ
トを行なえば同様に制御できる。また可変長符号
は1種類でなく複数種類のものを用いてモードに
対応して切換えることも可能である。
For example, the control function of the control characteristic can divide the mode region using a function including n instead of using a constant value, and also has hysteresis in the control characteristic so that mode switching does not occur frequently. It is also possible to Even if the size of one block is not a constant value but is made variable for each block, the same control can be achieved by performing initial setting using the block signal and the initial value signal. Furthermore, it is also possible to use not one type of variable length code but a plurality of types and switch them according to the mode.

本実施例は可変長符号化高次予測DPCMの場
合について示したが高次予測DPCMの代りに例
えばアダマール変換を用いて各シークエンシーの
出力を複数種類の量子化特性で量子化してその量
子化出力を可変長符号化することも可能である。
また、他の構成例としてフレーム間符号化で予測
誤差信号がある閾値をこえた所だけの予測誤差お
よびアドレスを符号化して一旦バツフアメモリに
蓄えてから伝送する場合その予測誤差とアドレス
を符号化した符号量を符号化情報として用いれば
同様に制御特性にしたがつて符号化特性(例えば
複数種数の閾値レベル)を切換えてバツフア占有
率を制御できるようにすることができる。
This example shows the case of variable-length coding high-order predictive DPCM, but instead of high-order predictive DPCM, for example, Hadamard transform is used to quantize the output of each sequence with multiple types of quantization characteristics. It is also possible to variable length encode the output.
In addition, as another configuration example, when using interframe coding, the prediction error and address are encoded only where the prediction error signal exceeds a certain threshold, and the prediction error and address are encoded once stored in buffer memory and then transmitted. If the code amount is used as the encoding information, the buffer occupancy rate can be controlled by switching the encoding characteristics (for example, threshold levels of a plurality of types) in accordance with the control characteristics.

また符号化情報とは可変長符号の語長やアドレ
スと予測誤差を符号化したときの符号量等符号化
を行なうのに直接必要な情報の意味で用いてきた
が他に符号化伝送をする上で必要な初期値信号や
同期信号等の情報も含めて符号化情報として積算
してその積算値より制御特性にしたがつて符号化
特性の切換え制御を行なうこともできる。
Encoding information has been used to mean information directly necessary for encoding, such as the word length of a variable length code, the address, and the amount of code when encoding prediction errors. It is also possible to integrate information such as the initial value signal and synchronization signal necessary above as encoding information, and to control switching of the encoding characteristic according to the control characteristic based on the accumulated value.

以上説明したように、本発明によれば、バツフ
アメモリの占有量を用いて1区間ごとに初期状態
のセツトを行ないながら区間内の符号化情報の符
号量の積算値を求め、この値を用いて制御特性に
したがつて符号化特性を切換えて符号化を行な
い、区間内における符号化特性の切換え情報の伝
送なしに符号化特性の切換えができるようにした
符号化方式の装置を提供できる。
As explained above, according to the present invention, the initial state is set for each section using the occupied amount of the buffer memory, and the cumulative value of the code amount of the encoded information in the section is calculated, and this value is used to set the initial state for each section. It is possible to provide an encoding system device that performs encoding by switching the encoding characteristic according to the control characteristic, and enables switching of the encoding characteristic without transmitting encoding characteristic switching information within an interval.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は制御特性を示す説明図、第2図は本発
明の実施例を示すブロツク図、第3図は制御性の
一例を示す図である。 214は高次予測DPCM符号器、215は高
次予測DPCM復号器、201は減算器、203
および212は加算器、202は量子化器、20
4および213は予測器、205は可変長符号
器、209は可変長復号器、206および210
は制御器、207および208はバツフアメモリ
である。
FIG. 1 is an explanatory diagram showing control characteristics, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing an example of controllability. 214 is a high-order predictive DPCM encoder, 215 is a high-order predictive DPCM decoder, 201 is a subtracter, 203
and 212 is an adder, 202 is a quantizer, 20
4 and 213 are predictors, 205 is a variable length encoder, 209 is a variable length decoder, 206 and 210
is a controller, and 207 and 208 are buffer memories.

Claims (1)

【特許請求の範囲】[Claims] 1 複数種類の符号化特性を有し、不規則に発生
する符号化情報をバツフアメモリに一旦蓄えてか
ら伝送する符号化復号化装置において、ある区間
ごとにバツフアメモリの占有量を用いて、累積差
分情報量の初期値を設定し、その区間内での累積
差分情報量を順次求め、その値により定められる
モードにしたがつて符号化特性を区間内で適応的
に切換えて符号化を行ない符号化情報と区間ごと
の初期値を伝送する符号化装置と、受信側では受
信した符号化情報とある区間ごとに送られてくる
初期値を用いて累積差分情報量を求め、その値に
より定められるモードにしたがつて符号化特性を
区間内で適応的に切換えて符号化情報の復号化を
行なう復号化装置とからなり、区間内における符
号化特性の切換えを、切換え情報の伝送なしに行
なえるようにしたことを特徴とする符号化復号化
装置。
1. In an encoding/decoding device that has multiple types of encoding characteristics and that temporarily stores encoded information that occurs irregularly in a buffer memory and then transmits it, the cumulative difference information is calculated using the amount of buffer memory occupied in each section. The initial value of the amount is set, the cumulative difference information amount within the interval is sequentially determined, and the encoding characteristics are adaptively switched within the interval according to the mode determined by the value to perform encoding, and the encoded information is generated. and an encoding device that transmits the initial value for each section, and the receiving side calculates the cumulative difference information amount using the received encoded information and the initial value sent for each section, and selects the mode determined by that value. Therefore, the present invention includes a decoding device that decodes encoded information by adaptively switching encoding characteristics within an interval, and is capable of switching encoding characteristics within an interval without transmitting switching information. An encoding/decoding device characterized by:
JP12497779A 1979-09-28 1979-09-28 Coding-decoding device Granted JPS5648737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12497779A JPS5648737A (en) 1979-09-28 1979-09-28 Coding-decoding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12497779A JPS5648737A (en) 1979-09-28 1979-09-28 Coding-decoding device

Publications (2)

Publication Number Publication Date
JPS5648737A JPS5648737A (en) 1981-05-02
JPS6338898B2 true JPS6338898B2 (en) 1988-08-02

Family

ID=14898885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12497779A Granted JPS5648737A (en) 1979-09-28 1979-09-28 Coding-decoding device

Country Status (1)

Country Link
JP (1) JPS5648737A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862946A (en) * 1981-10-09 1983-04-14 Nec Corp Encoder
JPS5857836A (en) * 1981-09-30 1983-04-06 Nec Corp Forecasting encoder
JPS5854748A (en) * 1981-09-29 1983-03-31 Nec Corp Forecasting encoder
JPH0644712B2 (en) * 1984-05-22 1994-06-08 株式会社アドバンス Signal processing method
JPS63151225A (en) * 1986-12-16 1988-06-23 Victor Co Of Japan Ltd Adaptive high efficiency coding system
DE69133320T2 (en) 1990-03-16 2004-07-22 Canon K.K. Image encoding and recording device and method
JP2657358B2 (en) * 1994-03-31 1997-09-24 株式会社中村自工 Hydraulic fixed coupling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114913A (en) * 1974-02-18 1975-09-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114913A (en) * 1974-02-18 1975-09-09

Also Published As

Publication number Publication date
JPS5648737A (en) 1981-05-02

Similar Documents

Publication Publication Date Title
US5528628A (en) Apparatus for variable-length coding and variable-length-decoding using a plurality of Huffman coding tables
US4420771A (en) Technique for encoding multi-level signals
JP4865757B2 (en) Apparatus, image processing system, camera module, and image processing circuit for image processing using a limited number of bits
US5563593A (en) Video coding with optimized low complexity variable length codes
US4922510A (en) Method and means for variable length coding
CA2108338A1 (en) Adaptive Video Encoder for Two-Layer Encoding of Video Signals on ATM (Asynchronous Transfer Mode) Networks
JPS61242481A (en) Image data sorting for digital tv signal
RU93050815A (en) HIGH DEFINITION COMPRESSION SYSTEM
WO1991003128A1 (en) Control system for encoding image
JPS5851471B2 (en) TV synopsis
US4942467A (en) Predictor controlled encoder for digital transmission systems
EP0945021B1 (en) Data efficient quantization table for a digital video signal processor
EP0782341A2 (en) Image data compression system
JPS6338898B2 (en)
US5506623A (en) Data compression methods and systems with quantization distortion measurement means
JPS6342988B2 (en)
JPH04316294A (en) Variable-length coding circuit
JPH0237748B2 (en)
JPS6243593B2 (en)
WO1987004032A1 (en) Method of transmitting a video signal in sampled form
JPH0221600B2 (en)
JPS59215184A (en) Buffer memory control system
JPS6028453B2 (en) Encoding method
JPS633529A (en) Variable length quantization adaptive predicating dpcm transmission equipment
JPH0214830B2 (en)