JPH0214830B2 - - Google Patents

Info

Publication number
JPH0214830B2
JPH0214830B2 JP57141473A JP14147382A JPH0214830B2 JP H0214830 B2 JPH0214830 B2 JP H0214830B2 JP 57141473 A JP57141473 A JP 57141473A JP 14147382 A JP14147382 A JP 14147382A JP H0214830 B2 JPH0214830 B2 JP H0214830B2
Authority
JP
Japan
Prior art keywords
pixel
mode
interest
prediction
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57141473A
Other languages
Japanese (ja)
Other versions
JPS5930366A (en
Inventor
Fumitaka Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57141473A priority Critical patent/JPS5930366A/en
Publication of JPS5930366A publication Critical patent/JPS5930366A/en
Publication of JPH0214830B2 publication Critical patent/JPH0214830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/41Bandwidth or redundancy reduction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 本発明は中間調画像信号の高効率伝送を行なう
ための画像符号化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image encoding device for highly efficient transmission of halftone image signals.

従来、この種の画像符号化装置として、参照画
素のとる値を入力とし、注目画素のとるべき値の
予測順位を出力とする予測順位表を送受信側に備
え、注目画素信号レベルを予測順位値に変換して
符号化伝送する装置が知られている。
Conventionally, this type of image encoding device has been equipped with a prediction ranking table on the transmitting and receiving sides that inputs the value taken by the reference pixel and outputs the predicted ranking of the value that the pixel of interest should take, and uses the signal level of the pixel of interest as a predicted ranking value. There is a known device that converts the data into code and transmits the coded data.

情報理論によれば、シンボルa0、…、ao-1の各
出現確率をP0、…、Po-1とすると、1シンボルあ
たりの情報量Hは H=o-i −〓i=0 pilog2pi(ビツト) で与えられる。1画素当たりHビツトというのが
情報理論に於ける縮約限界であり、これはシンボ
ルaiの符号語長liを li=−log2pi(bit) とできる時に実現されるものである。
According to information theory, if the probability of appearance of each symbol a 0 , ..., a o-1 is P 0 , ..., P o-1 , the amount of information H per symbol is H= oi −〓 i=0 pilog It is given in 2 pi (bits). H bits per pixel is the reduction limit in information theory, and this is achieved when the codeword length l i of symbol a i can be set as l i =-log 2 p i (bit). be.

第1図は注目画素をXとする時、注目画素Xと
参照する価値の高い近隣画素A,B,C,Dとの
相対位置関を示す図である。
FIG. 1 is a diagram showing the relative positional relationship between the pixel of interest X and neighboring pixels A, B, C, and D that are of high reference value, when the pixel of interest is X.

同図において、1画素のとるレベルを0〜15の
16通りとし、参照画素としてA,Bの2画素を選
んだ時、A,Bの濃度レベル値に対する注目画素
Xの濃度レベル値の頻度順位、及びその確率の一
部を第2図に示す。
In the figure, the level taken by one pixel is 0 to 15.
When two pixels A and B are selected as reference pixels, there are 16 patterns, and FIG. 2 shows the frequency order of the density level value of the target pixel X with respect to the density level values of A and B, and part of the probability thereof.

第2図より、例えば濃度レベルがA=0、B=
0の状態では予測順位が0位でXの濃度レベルが
0となる確率は約91%である。一方、濃度レベル
がA=2、B=8の状態では予測順位が0位の確
率は約25%である。
From Figure 2, for example, the concentration level is A=0, B=
In the state of 0, the probability that the predicted ranking is 0 and the concentration level of X is 0 is approximately 91%. On the other hand, when the concentration level is A=2 and B=8, the probability that the predicted ranking is 0 is about 25%.

このような予測符号化法では次の問題があつ
た。
Such predictive coding methods have the following problems.

(1) 各予測順位の出現確率は参照画素のとる状態
によつて異なるため、状態によつて異なる符号
を用いるのが望ましいが、参照画素がとりうる
状態数はレベル数を2m、参照画素数をnとして
2m×nあるため、すべての状態毎に異なる符号を
用いると、例えば第2図のA、Bの濃度として
2m×nの組合せを考慮しなければならず、装置は
極めて複雑になる。
(1) Since the probability of appearance of each prediction rank differs depending on the state of the reference pixel, it is desirable to use a different code depending on the state. Let the number be n
Since there are 2 m×n , if we use different codes for each state, for example, the concentrations of A and B in Figure 2 are
2 m × n combinations must be considered, making the device extremely complex.

(2) また、予測順位0〜15は4ビツトで表現され
るが、予測順位の上位のものの出現確率が高い
ことを考慮すると、予測順位の符号化に際し
て、上位の順位は1〜2ビツトで符号化し、下
位の順位はより多数のビツトで符号化する方法
が、すべての順位を同じビツト数で符号化する
方法よりも優れていると言える。
(2) Also, prediction ranks 0 to 15 are expressed in 4 bits, but considering that the higher prediction ranks have a high probability of appearance, when encoding the prediction ranks, the upper ranks are expressed in 1 to 2 bits. It can be said that a method in which lower ranks are encoded using a larger number of bits is superior to a method in which all ranks are encoded using the same number of bits.

本発明は上記のような従来のものの問題点(1)、
(2)に鑑みてなされたもので、問題点(1)に対しては
複数の参照画素間の濃度レベルの差によつて注目
画素の各予測順位値のとる確率が異なることに着
目し、参照画素のとりうる状態数より少ない数の
モードを考え、各状態が属すべきモードの情報は
送受両側で有し、各モード毎にそのモードに適し
た符号を用いて予測順位値を符号化することとし
た。問題点(2)に対しては、予測順位を示す複数ビ
ツトを一括して符号化することとした。これによ
り、情報源の性質に応じた符号化が可能となり短
い時間で伝送を行なうことのできる画像符号化装
置を提供することを目的としている。
The present invention solves the problems (1) of the conventional ones as mentioned above.
This was done in view of (2), and for problem (1), it focuses on the fact that the probability of each predicted rank value of the pixel of interest differs depending on the difference in density level between multiple reference pixels. Considering a smaller number of modes than the number of possible states of the reference pixel, both the sending and receiving sides have information on the mode to which each state belongs, and encodes the predicted rank value for each mode using a code suitable for that mode. I decided to do so. To solve problem (2), we decided to encode multiple bits indicating the prediction order at once. Thereby, it is an object of the present invention to provide an image encoding device that can perform encoding according to the characteristics of an information source and can perform transmission in a short time.

以下、本発明の一実施例を図について説明す
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

各状態に於ける各予測順位値の出現確率をしら
べると、注目画素に隣接するいくつかの参照画素
のとる値が等しいとかレベル差の小さい時は、画
像の平担部に当たつており、ここでは画素間の相
関が強く比較的1画素当たりのエントロピが小さ
い。一方、参照画素のとる値がばらついている時
は画素間の相関が弱く、比較的1画素当たりのエ
ントロピが大きい。
Examining the probability of appearance of each predicted rank value in each state, when the values taken by several reference pixels adjacent to the pixel of interest are the same or the level difference is small, it corresponds to the flat part of the image, Here, the correlation between pixels is strong and the entropy per pixel is relatively small. On the other hand, when the values taken by reference pixels vary, the correlation between pixels is weak and the entropy per pixel is relatively large.

そのため、本発明の一実施例では注目画素の直
上画素Bとすぐ左の画素Aの信号レベルとを比較
し、その差が0か或いは比較的小さい値であれば
そのモードをS(Strong;相関が強い)モードと
し、そうでない時をW(Weak;相関が弱い)モ
ードとしている。この両モードの境となるレベル
差は原信号のもつレベル数2mと関連があり、例え
ばm=4であれば0とし、m=7であれば±3と
いうように設定する。また本発明の他の実施例で
は、更に注目画素の右斜め上の画素Dも考慮に入
れてモードを決定しているが、これは、画像の標
本化密度と関連しており、ある程度標本化密度が
細かいと、画素Dも考慮に入れる必要があること
を示している。
Therefore, in one embodiment of the present invention, the signal levels of pixel B directly above the pixel of interest and pixel A immediately to the left are compared, and if the difference is 0 or a relatively small value, the mode is set to S (Strong; When this is not the case, the W (weak; correlation is weak) mode is defined. The level difference between these two modes is related to the number of levels 2 m of the original signal, and is set to 0 if m=4, and ±3 if m=7, for example. In other embodiments of the present invention, the mode is determined by taking into consideration the pixel D diagonally to the upper right of the pixel of interest, but this is related to the sampling density of the image, and the sampling density is A fine density indicates that pixel D also needs to be taken into account.

第3図は標本化密度8×8(本/mm)、m=4で
A=B=DをSモード、それ以外をWモードとし
た時の両モードの各順位値の出現確率例であり、
この場合各モード毎に異なる符号を適用するとし
て、2モードに分離しない場合より約10%エント
ロピを低下させうる。
Figure 3 shows an example of the appearance probability of each rank value for both modes when the sampling density is 8 x 8 (pieces/mm), m = 4, and A = B = D is set to S mode, and the others are set to W mode. ,
In this case, if a different code is applied to each mode, the entropy can be reduced by about 10% compared to the case where the two modes are not separated.

このように両モードに分離した場合、その符号
化信号の送出形式が問題となるが、まずランレン
グス符号化を行なわないのであれば、モードを示
すための信号は、その必要はなく、受信側では各
画素を復元するごとに次の画素の属するモードが
わかり、従つて使用されている符号もわかるた
め、次の符号語の復号が可能となる。また、ラン
レングス符号化を用いるには一方のモードの複数
の順位値が同時に符号化されることになるわけで
あるが、復号された画素を複数の長いレジスタに
蓄積すればまわりの画素の状態からモードが分か
り、やはり特に区別するための信号は不要であ
る。受信側では復号された複数の順位値をレジス
タ等に蓄積しておいて適宜設定すれば各画素を順
次復元でき、次の画素の属するモードもわかるた
め符号語の復号は常に可能となる。
When separating into both modes in this way, the transmission format of the encoded signal becomes a problem, but if run-length encoding is not performed first, there is no need for a signal to indicate the mode, and the receiving side In this case, each time each pixel is restored, the mode to which the next pixel belongs is known, and therefore the code used is also known, making it possible to decode the next code word. In addition, when using run-length encoding, multiple rank values of one mode are encoded simultaneously, but if decoded pixels are stored in multiple long registers, the states of surrounding pixels can be The mode can be determined from the above, and no special signal is required for differentiation. On the receiving side, by storing a plurality of decoded ranking values in a register or the like and setting them appropriately, each pixel can be sequentially restored, and since the mode to which the next pixel belongs can also be known, code words can always be decoded.

第4図は本発明における画像符号化装置を含む
送受信側のブロツク図を示す。図において、41
は予測変換表を記憶している予測変換器で、注目
画素Xの濃度レベル信号を予測順位値Cに変換す
る。また42はモード信号発生器であり、画素メ
モリ43より出力される画像信号A,B濃度パタ
ーンに応じて上記予測順位値の属するモードを示
す信号Mを発生する。45はSモードの符号器、
46はWモードの符号器であり、予測順位値Cは
上記モード信号Mに従つてそのいずれかに入力さ
れる。47は伝送符号語選択器で、受信側で復号
可能なように上記モード信号Mに応じて両モード
の符号語送出順序を制御する。51は受信信号バ
ツフアで、逐次入力されるモード指示信号M′に
従い、Sモード復号器52、Wモード復号器53
のどちらかへ受信信号を送る。54は切換器で、
復号された予測順位値C′を予測逆変換器55に送
り、該逆変換器55で再生信号X′が得られる。
57は画素メモリで、既に復元ずみの画素信号
A′,B′を予測逆変換器55、及びモード信号発
生器56に送る。両モード復号器52,53の内
部には復号された予測順位値を保つレジスタを有
しており、ランレングス符号化の場合も復号可能
としている。
FIG. 4 shows a block diagram of the transmitting and receiving side including the image encoding apparatus according to the present invention. In the figure, 41
is a prediction converter that stores a prediction conversion table, and converts the density level signal of the pixel of interest X into a prediction rank value C. Reference numeral 42 denotes a mode signal generator, which generates a signal M indicating the mode to which the predicted ranking value belongs in accordance with the image signal A and B density patterns output from the pixel memory 43. 45 is an S mode encoder;
46 is a W-mode encoder, and the prediction rank value C is inputted to one of them according to the mode signal M. Reference numeral 47 denotes a transmission code word selector which controls the transmission order of code words in both modes in accordance with the mode signal M so that the receiving side can decode the data. Reference numeral 51 denotes a received signal buffer, which operates an S-mode decoder 52 and a W-mode decoder 53 according to a mode instruction signal M' that is sequentially input.
Send the received signal to either. 54 is a switch,
The decoded prediction rank value C' is sent to the prediction inverse transformer 55, and the reproduced signal X' is obtained by the inverse transformer 55.
57 is a pixel memory, which contains already restored pixel signals.
A' and B' are sent to a predictive inverse transformer 55 and a mode signal generator 56. Both mode decoders 52 and 53 have registers for holding the decoded prediction ranking values, so that decoding is possible even in the case of run-length encoding.

次に動作について説明する。 Next, the operation will be explained.

以上のような構成になる本装置では、予測変換
器41は参照画素A,Bの濃度レベル信号に応じ
て注目画素Xの濃度レベル信号を予測順位値Cに
変換し、モード信号発生器42は上記両画素A,
Bの濃度パターンにより決まる予測順位値Cの属
するモードを示すモード信号Mを出力する。そし
て切換器44はモード信号Mにより予測順位値C
をSモード符号器45又はWモード符号器46の
一方に入力し、符号語選択器47は両モード符号
器45,46のうち一方の出力を伝送路100に
送出する。
In this apparatus configured as described above, the prediction converter 41 converts the density level signal of the pixel of interest X into a prediction rank value C according to the density level signals of the reference pixels A and B, and the mode signal generator 42 Both pixels A above,
A mode signal M indicating the mode to which the predicted ranking value C determined by the density pattern of B belongs is output. Then, the switch 44 selects the predicted rank value C based on the mode signal M.
is input to either the S mode encoder 45 or the W mode encoder 46, and the code word selector 47 sends the output of one of the mode encoders 45 and 46 to the transmission line 100.

一方、受信側では既に復号、逆変換済みの画素
信号A′,B′に応じてモード信号発生器56はモ
ード信号M′を発生し、受信信号バツフア51は
モード指示信号M′に従い受信信号をSモード復
号器52またはWモード復号器53のどちらかへ
送る。切換器54は復号された予測順位値C′を予
測逆変換器55に送り、該逆変換器55で再生信
号X′が得られる。
On the other hand, on the receiving side, the mode signal generator 56 generates the mode signal M' according to the pixel signals A' and B' which have already been decoded and inversely transformed, and the receiving signal buffer 51 generates the receiving signal according to the mode instruction signal M'. It is sent to either the S mode decoder 52 or the W mode decoder 53. The switch 54 sends the decoded prediction rank value C' to the prediction inverse transformer 55, and the inverse transformer 55 obtains a reproduced signal X'.

以上のように本発明にすれば、参照画素パター
ンによつて注目画素の各予測順位値のとる確率が
異なることに着目し、参照画素のとりうる状態数
より少ない数のモードを考え、各状態が属すべき
モードの情報は送受両側で有し、各モード毎にそ
のモードに適した符号を用いて予測順位値を符号
化し、且つ予測順位値を示す複数ビツトを一括し
て符号化するようにしたので、情報源の性質に応
じた符号化が可能となり、伝送時間の短縮が可能
となる効果がある。
As described above, the present invention focuses on the fact that the probability of each predicted rank value of the pixel of interest differs depending on the reference pixel pattern, and considers a smaller number of modes than the number of possible states of the reference pixel, and each state Information on the mode to which the prediction rank belongs is held on both the transmitting and receiving sides, and the predicted rank value is encoded for each mode using a code suitable for that mode, and multiple bits indicating the predicted rank value are encoded at once. Therefore, it is possible to perform encoding according to the characteristics of the information source, and the transmission time can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は画素配置を示す図、第2図は参照画素
のとる値に対して予測順位の高い順にXの値を並
べたもの及びその確率を示したものの一部の表を
示す図、第3図は両モードに於ける各予測順位値
の出現確率を示す図、第4図は本発明の一実施例
による画像符号化装置のブロツク図である。 41は予測変換器、42はモード信号発生器、
43は画素メモリ、44は切換器、45,46は
Sモード符号器、Wモード符号器(複数の符号
器)、47は伝送符号語選択器、51は受信信号
バツフア、52はSモード復号器、53はWモー
ド復号器、54は切換器、55は予測逆変換器、
56はモード信号発生器、57は画素メモリ、X
は注目画素、A,B,Dは参照画素である。なお
図中、同一符号は同一又は相当部分を示す。
Figure 1 is a diagram showing the pixel arrangement, Figure 2 is a diagram showing a part of the table showing the values of X arranged in descending order of prediction order with respect to the values taken by reference pixels and their probabilities. FIG. 3 is a diagram showing the appearance probability of each predicted ranking value in both modes, and FIG. 4 is a block diagram of an image encoding apparatus according to an embodiment of the present invention. 41 is a prediction converter, 42 is a mode signal generator,
43 is a pixel memory, 44 is a switch, 45 and 46 are S mode encoders, W mode encoders (plural encoders), 47 is a transmission code word selector, 51 is a received signal buffer, and 52 is an S mode decoder. , 53 is a W mode decoder, 54 is a switch, 55 is a predictive inverse transformer,
56 is a mode signal generator, 57 is a pixel memory,
is the pixel of interest, and A, B, and D are reference pixels. In the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 複数の参照画素の濃度レベル信号および注目
画素の濃度レベル信号に対して注目画素の予測順
位値を定めている予測順位表を有し該予測順位表
の内容に従つて上記注目画素の濃度レベル状態を
複数ビツトの予測順位値に変換する予測変換器
と、 上記複数の参照画素間の濃度レベルの差が一定
値以下であるか否かで異なるモード信号を発生す
るモード信号発生器と、 該モード信号発生器の出力が示すモードに応じ
各モードに適した符号を用いて上記予測順位値を
示す複数ビツトを一括して符号化する各モードに
対応して設けられた複数の符号器と 上記モード信号に応じて上記複数の符号器の符
号化出力のうち一つを選択して伝送路に送出させ
る伝送符号語選択器とを備えたことを特徴とする
画像符号化装置。 2 上記複数の参照画素は、上記注目画素の左隣
の画素と上記注目画素の真上の画素であることを
特徴とする特許請求の範囲第1項記載の画像符号
化装置。 3 上記複数の参照画素は、上記注目画素の左隣
の画素、上記注目画素の真上の画素及び上記注目
画素の右上の画素であることを特徴とする特許請
求の範囲第1項記載の画像符号化装置。
[Scope of Claims] 1. A prediction ranking table that defines a predicted ranking value of a pixel of interest with respect to density level signals of a plurality of reference pixels and a density level signal of a pixel of interest, and according to the contents of the prediction ranking table. A prediction converter that converts the density level state of the pixel of interest into a predicted rank value of multiple bits; and a mode that generates a different mode signal depending on whether the difference in density level between the plurality of reference pixels is less than or equal to a certain value. a signal generator, and a mode provided corresponding to each mode for collectively encoding the plurality of bits indicating the predicted rank value using a code suitable for each mode according to the mode indicated by the output of the mode signal generator. Image encoding, comprising a plurality of encoders and a transmission code word selector that selects one of the encoded outputs of the plurality of encoders and sends it to a transmission path in accordance with the mode signal. Device. 2. The image encoding device according to claim 1, wherein the plurality of reference pixels are a pixel to the left of the pixel of interest and a pixel directly above the pixel of interest. 3. The image according to claim 1, wherein the plurality of reference pixels are a pixel to the left of the pixel of interest, a pixel directly above the pixel of interest, and a pixel to the upper right of the pixel of interest. Encoding device.
JP57141473A 1982-08-12 1982-08-12 Device for encoding picture Granted JPS5930366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57141473A JPS5930366A (en) 1982-08-12 1982-08-12 Device for encoding picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57141473A JPS5930366A (en) 1982-08-12 1982-08-12 Device for encoding picture

Publications (2)

Publication Number Publication Date
JPS5930366A JPS5930366A (en) 1984-02-17
JPH0214830B2 true JPH0214830B2 (en) 1990-04-10

Family

ID=15292699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57141473A Granted JPS5930366A (en) 1982-08-12 1982-08-12 Device for encoding picture

Country Status (1)

Country Link
JP (1) JPS5930366A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1041097A (en) 1996-03-19 1997-10-10 Mitsubishi Denki Kabushiki Kaisha Encoder, decoder and methods used therefor
US6744925B2 (en) 1996-03-19 2004-06-01 Mitsubishi Denki Kabushiki Kaisha Encoding apparatus, decoding apparatus, encoding method, and decoding method
US6636641B1 (en) 1996-03-19 2003-10-21 Mitsubishi Denki Kabushiki Kaisha Encoding apparatus, decoding apparatus, encoding method and decoding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624877A (en) * 1979-08-06 1981-03-10 Nec Corp Coder for multi-video signal
JPS5673975A (en) * 1979-11-20 1981-06-19 Nec Corp Coding and decoding system for multivalue video signal and its device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624877A (en) * 1979-08-06 1981-03-10 Nec Corp Coder for multi-video signal
JPS5673975A (en) * 1979-11-20 1981-06-19 Nec Corp Coding and decoding system for multivalue video signal and its device

Also Published As

Publication number Publication date
JPS5930366A (en) 1984-02-17

Similar Documents

Publication Publication Date Title
EP1258994B1 (en) Lossless encoding and decoding system
KR100425613B1 (en) Image encoding apparatus and image encoding method
EP0776569B1 (en) Method and system for encoding and decoding image data
JPS6145429B2 (en)
JP2535932B2 (en) Halftone image coding device
JPH0214830B2 (en)
US5453789A (en) Moving-image signal encoding apparatus
JPH07162859A (en) Image encoder and image decoder
JP2634793B2 (en) Color image signal encoding device
EP0817500A2 (en) Image coding and decoding method and apparatus
JPH0687578B2 (en) Image coding device
JPS6358509B2 (en)
JPH04178074A (en) Coding decoding system for picture signal and its device
JPS5915553B2 (en) Predictive coding device
JPH09135357A (en) Decoder for color image signal
JP3937471B2 (en) Encoding device, decoding device, and image processing device
JPH01158825A (en) Adaptive type coding control system
JPS6150426B2 (en)
JP2000092333A (en) Image coding and decoding device
JPH05199421A (en) Picture transmission method
JP2000261812A (en) Image coder and decoder
JPS63197172A (en) Prediction encoder
JPH0759091A (en) Code converter
JPH0813144B2 (en) Image coding method
JPH0669812A (en) Information compression-encoding device and information expansion-decoding device