JPS6338808B2 - - Google Patents

Info

Publication number
JPS6338808B2
JPS6338808B2 JP9969680A JP9969680A JPS6338808B2 JP S6338808 B2 JPS6338808 B2 JP S6338808B2 JP 9969680 A JP9969680 A JP 9969680A JP 9969680 A JP9969680 A JP 9969680A JP S6338808 B2 JPS6338808 B2 JP S6338808B2
Authority
JP
Japan
Prior art keywords
vacuum
shield
insulating
brazing
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9969680A
Other languages
Japanese (ja)
Other versions
JPS5725634A (en
Inventor
Hifumi Yanagisawa
Shinzo Sakuma
Junichi Warabi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP9969680A priority Critical patent/JPS5725634A/en
Priority to DE8181302900T priority patent/DE3173186D1/en
Priority to EP19810302900 priority patent/EP0043258B1/en
Priority to US06/283,867 priority patent/US4417110A/en
Publication of JPS5725634A publication Critical patent/JPS5725634A/en
Publication of JPS6338808B2 publication Critical patent/JPS6338808B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は真空しや断器に関し、さらに詳細に
は、金属円筒の両端を無機絶縁物からなる絶縁円
板により閉塞して真空容器を形成し、この真空容
器内に1対の電極を接触離反自在に設けてなる真
空しや断器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum chamber disconnector, and more particularly, the present invention relates to a vacuum chamber disconnector, and more specifically, a vacuum chamber is formed by closing both ends of a metal cylinder with an insulating disk made of an inorganic insulator, and a vacuum chamber is formed in the vacuum chamber. The present invention relates to a vacuum shield and disconnector having a pair of electrodes that can be brought into contact with each other and separated from each other.

従来、真空しや断器における真空容器には、真
空容器を構成する筒体と、それを閉塞すべく接合
する上下端板を構成する部材として、硬質ガラス
あるいはセラミツクから成る絶縁部材と、熱膨張
係数が絶縁部材と近似したコバール(Fe−Ni−
Co)等の金属部材が用いられ、両部材の接合に
よつて真空容器が形成されていた。
Conventionally, a vacuum vessel in a vacuum chamber or disconnector has a cylindrical body constituting the vacuum vessel, an insulating member made of hard glass or ceramic as a member constituting the upper and lower end plates that are joined to close it, and a thermal expansion material. Kovar (Fe−Ni−
Metal members such as Co) were used, and a vacuum container was formed by joining both members.

一般に此種の真空しや断器の真空容器内は
10-4Torr以下の圧力の高真空に維持しなければ
ならないことから、金属とセラミツクスとの気密
接合には細心の注意がはらわれており、特に接合
する金属板の熱膨張係数は、セラミツクと同等の
ものが最も望ましいとして先に述べた通りFe−
Ni−Co合金或はFe−Ni合金等が使用されてい
た。
Generally, the inside of the vacuum container of this type of vacuum shield and disconnector is
Since it is necessary to maintain a high vacuum with a pressure of 10 -4 Torr or less, great care is taken to ensure an airtight bond between metal and ceramics.In particular, the coefficient of thermal expansion of the metal plates to be joined is As mentioned earlier, the most desirable equivalent is Fe−
Ni-Co alloy or Fe-Ni alloy was used.

しかし、上記の絶縁部材のセラミツク等で真空
容器の筒体を形成すると、絶縁筒の価格は大径化
するに従つて急激的に高騰し、真空しや断器自体
を高価なものとする一因となる。また、真空容器
の上下端板に用いられるコバール等の金属部材
は、価格が非常に高い欠点を有するとともに、各
温度Tにおける熱膨張係数α〔α−T特性〕がセ
ラミツク等と必ずしも一致せず、両者のろう付け
による接合によつて生ずる熱応力を緩和するため
の応力緩和構造を金属端板等に施さなければなら
ないとともに、かつ、強磁性材料であるために渦
電流による温度上昇、交番磁界による磁歪現象に
よつて生ずる騒音等の問題がある。
However, if the cylindrical body of the vacuum vessel is formed of the above-mentioned insulating material such as ceramic, the price of the insulating tube will rise rapidly as the diameter increases, and the vacuum vessel and disconnector themselves will become expensive. cause In addition, metal members such as Kovar used for the upper and lower end plates of vacuum vessels have the drawback of being very expensive, and their thermal expansion coefficient α [α-T characteristic] at each temperature T does not necessarily match that of ceramics. The metal end plates, etc., must be provided with a stress relaxation structure to relieve the thermal stress caused by joining them by brazing, and since they are made of ferromagnetic material, they are susceptible to temperature rise due to eddy currents and alternating magnetic fields. There are problems such as noise caused by the magnetostrictive phenomenon.

このため真空容器の上下端板はセラミツク等の
絶縁部材で構成し、筒体はコバール等の高価な金
属ではなく、入手が容易で、価格の安い金属部材
で構成することが要望されていた。
For this reason, it has been desired that the upper and lower end plates of the vacuum vessel be constructed of an insulating material such as ceramic, and that the cylindrical body be constructed of an easily available and inexpensive metal material, rather than an expensive metal such as Kovar.

本発明は上述した問題に鑑みてなされたもの
で、真空しや断器の真空容器の大径化を容易にし
てかつ安価に行い得るようにするとともに、金属
円筒と絶縁円板との接合を気密性及び機械的強度
の高いものとし得、かつ、金属円筒を耐アーク性
及び機械的強度に優れたものとし得るようにした
真空しや断器の提供を目的とする。
The present invention has been made in view of the above-mentioned problems, and makes it possible to easily and inexpensively increase the diameter of the vacuum vessel of a vacuum shield or disconnector, and to make it possible to join a metal cylinder and an insulating disk. The purpose of the present invention is to provide a vacuum shield and disconnector which can have high airtightness and mechanical strength, and can have a metal cylinder with excellent arc resistance and mechanical strength.

本発明は、真空容器の筒体にコバール等の特殊
合金を使用せずに一般的な金属(例えば非磁性の
ステンレス鋼等)を用いることを可能とする、絶
縁部材との気密接合を確実に且つ熱応力による破
損の防止を図るため、接合部に補助シールドを介
して接合することを特徴としたものである。この
ため具体的に用いる手段として筒状の真空容器
を、金属円筒の両端にセラミツク等のろう付け後
の冷却によつて生ずる熱応力によりろう付け後の
徐冷過程において塑性変形自在な金属材料からな
る補助シールドのフランジ部を介在させて無機絶
縁物からなる絶縁円板を気密に接合して構成す
る。以下、図面を用いてこの発明の一実施例を詳
細に説明する。
The present invention makes it possible to use common metals (for example, non-magnetic stainless steel) for the cylindrical body of the vacuum container without using special alloys such as Kovar, and to ensure airtight connection with insulating members. In addition, in order to prevent damage due to thermal stress, the joint is bonded via an auxiliary shield at the joint portion. For this reason, as a concrete means to use, a cylindrical vacuum container is made of a metal material such as ceramic which can be plastically deformed during the slow cooling process after brazing due to the thermal stress generated by cooling after brazing. It is constructed by airtightly joining insulating disks made of an inorganic insulator with the flange portion of the auxiliary shield interposed therebetween. Hereinafter, one embodiment of the present invention will be described in detail using the drawings.

図は本発明に係る真空しや断器の半截断面図
で、この真空しや断器は、金属円筒1の両端に無
機絶縁物からなる絶縁円板2,2を熱応力により
塑性変形自在な金属材料からなる補助シールド3
のフランジ部3aを介在させ気密に接合して真空
容器4を構成し、この真空容器4内に各絶縁円板
2の中央部から相対的に接近離反自在に導入した
対をなす固定、可動電極棒5,6を介し1対の固
定、可動電極7,8を接触離反自在に設けて構成
されている。
The figure is a half-cut sectional view of a vacuum shear breaker according to the present invention, which has insulating disks 2, 2 made of an inorganic insulator at both ends of a metal cylinder 1, which can be plastically deformed by thermal stress. Auxiliary shield 3 made of metal material
A vacuum container 4 is constructed by airtightly joining the flange portions 3a of the insulating disks 2, and a pair of fixed and movable electrodes are introduced into the vacuum container 4 from the center of each insulating disk 2 so as to be able to approach and separate from each other. A pair of fixed and movable electrodes 7 and 8 are provided via rods 5 and 6 so as to be able to come into contact with and separate from each other.

すなわち、真空容器4の一部を構成する金属円
筒1は、非磁性材料にして、かつ、比較的機械的
強度が高いとともに、耐アーク性に優れたオース
テナイト系ステンレス鋼(以下、単に「ステンレ
ス鋼」という。)からなるもので、円筒状に形成
されており、その両端内周部には、その内径より
適宜大径の段付嵌合部9が設けられている。
That is, the metal cylinder 1 constituting a part of the vacuum vessel 4 is made of austenitic stainless steel (hereinafter simply referred to as "stainless steel") which is non-magnetic, has relatively high mechanical strength, and has excellent arc resistance. ), and is formed into a cylindrical shape, and stepped fitting portions 9 having an appropriately larger diameter than the inner diameter are provided on the inner peripheral portions of both ends thereof.

なお、金属円筒1は、ステンレス鋼からなるも
のに限定されるものではなく、例えば比較的肉厚
に設けた銅からなるもの、あるいは真空しや断器
の通電容量が小さい場合には比較的安価な鉄から
なるものを用いてもよいものである。そして、金
属円筒1における両端の段付嵌合部9には、この
金属円筒内の両端付近に対向配置されるほぼ円筒
状の前記補助シールド3が、それぞれ外端部に一
体成形したフランジ部3aを介して嵌合されると
ともに段部とろう付けにより気密に接合されてい
る。各補助シールド3は、後述するアークシール
ドと相俟つて金属蒸気が絶縁円板2の内端面(真
空側)及びベローズ等に付着するのを防止するた
めのものであり、絶縁円板2とのろう付け後の冷
却によつて生ずる熱応力によりろう付け後の徐冷
過程において塑性変形自在にして、かつ、非磁性
材料である銅からなる。なお、各補助シールド3
は、銅からなるものに限らず、例えば真空しや断
器の通電容量が小さい場合には、絶縁円板2との
ろう付け後の冷却によつて生ずる熱応力によりろ
う付け後の徐冷過程において塑性変形自在である
とともに、磁性材料にして、かつ、銅より安価な
鉄からなるものを用いてもよいものである。
Note that the metal cylinder 1 is not limited to one made of stainless steel; for example, it can be made of relatively thick copper, or relatively inexpensive if the current carrying capacity of the vacuum shield or disconnector is small. A material made of iron may also be used. The stepped fitting portions 9 at both ends of the metal cylinder 1 have flange portions 3a integrally molded on the outer ends thereof, respectively. It is fitted through the step and is airtightly joined to the step by brazing. Each auxiliary shield 3 is used to prevent metal vapor from adhering to the inner end surface (vacuum side) of the insulating disk 2 and the bellows, etc. together with the arc shield described later. It is made of copper, which is a non-magnetic material, and can be plastically deformed during the slow cooling process after brazing due to thermal stress caused by cooling after brazing. In addition, each auxiliary shield 3
Not limited to those made of copper, for example, if the current carrying capacity of the vacuum shield is small, the thermal stress generated by cooling after brazing with the insulating disk 2 may cause the slow cooling process after brazing. In addition to being plastically deformable, it is also possible to use a magnetic material made of iron, which is cheaper than copper.

前記金属円筒1の両端の段付嵌合部9には、前
記絶縁円板2がそれぞれ嵌合されるとともに補助
シールド3のフランジ部3aと気密に接合されて
いる。すなわち、各絶縁円板2は、アルミナセラ
ミツクあるいは結晶化ガラス等の無機絶縁物から
なるもので、中央部に孔10を有する円板状に形
成されており、その外周縁部付近及び孔10の周
辺における一端面には、アルミナセラミツク等と
近似した熱膨張係数のMn−Ti合金あるいはMo
−Mn−Ti合金等からなるメタライズ層11,1
2が形成されている。なお、各メタライズ層1
1,12の形成に際しては、絶縁円板2に研削加
工が施されるものであり、この研削加工を容易に
するため、各メタライズ層11,12間には、
0.1〜0.5mm程度の深さの溝13が円形に形成され
ている。そして、各絶縁円板2は、金属円筒1の
両端の段付嵌合部9に嵌合されるとともに、外周
縁部付近のメタライズ層11を介し補助シールド
3のフランジ部3aとろう付けにより気密に接合
されている。
The insulating disks 2 are fitted into the stepped fitting parts 9 at both ends of the metal cylinder 1, and are hermetically joined to the flange part 3a of the auxiliary shield 3. That is, each insulating disk 2 is made of an inorganic insulator such as alumina ceramic or crystallized glass, and is formed into a disk shape with a hole 10 in the center. One end surface in the periphery is made of Mn-Ti alloy or Mo with a thermal expansion coefficient similar to that of alumina ceramic.
-Metallized layer 11, 1 made of Mn-Ti alloy etc.
2 is formed. In addition, each metallized layer 1
1 and 12, the insulating disk 2 is subjected to a grinding process, and in order to facilitate this grinding process, between each metallized layer 11, 12,
A groove 13 having a depth of about 0.1 to 0.5 mm is formed in a circular shape. Each insulating disc 2 is fitted into stepped fitting parts 9 at both ends of the metal cylinder 1, and is airtightly connected to the flange part 3a of the auxiliary shield 3 through the metallized layer 11 near the outer peripheral edge. is joined to.

前記一方(図において上方)の絶縁円板2にお
ける孔10の周辺のメタライズ層12には、リン
グ状にして断面ほぼJ字形に形成された補助部材
14が、その外周部14aの端部を介しろう付け
により気密に接合されている。
A ring-shaped auxiliary member 14 having a substantially J-shaped cross section is attached to the metallized layer 12 around the hole 10 in the one (upper side in the figure) insulating disk 2 through the end of its outer peripheral portion 14a. Airtightly joined by brazing.

補助部材14は、一方の絶縁円板2とこれに気
密に接合される前記固定電極棒5との接合部が、
両者の熱膨張係数の差異によつて生ずる熱応力に
より気密性及び機械的結合力の点において低下す
るのを防止するためのもので、絶縁円板2とのろ
う付け後の冷却によつて生ずる熱応力によりろう
付け後の徐冷過程において塑性変形自在な銅ある
いは鉄からなる。そして、補助部材14の内周部
14bの端部には、一方の絶縁円板2の孔10及
び補助部材14の内周部14bを挿通して真空容
器4内に導入された銅あるいは銅合金からなる前
記固定電極棒5が、その外端部に一体成形した径
大部5aの径違い段部を介しろう付けにより気密
に接合されている。固定電極棒5の内端部付近に
は、前記補助シールド3より大径のカツプ状に形
成されたアークシールド15が、その開口端を一
方の絶縁円板2に対向せしめて底部中央に設けた
孔16を介して嵌装されるとともに、固定電極棒
5の内端部付近の周溝5bに嵌合したスナツプリ
ングの如き止め輪17により一方の絶縁円板2方
向への移動を規制されつつろう付けにより固着さ
れている。アークシールド15は、ステンレス
鋼、銅あるいは鉄からなるもので、その開口端部
付近を一方の補助シールド3の内端部付近と固定
電極棒5を中心とする同心状に重畳されている。
The auxiliary member 14 has a joint portion between one insulating disc 2 and the fixed electrode rod 5 that is hermetically joined to the insulating disc 2.
This is to prevent deterioration in airtightness and mechanical bonding strength due to thermal stress caused by the difference in coefficient of thermal expansion between the two, which is caused by cooling after brazing with the insulating disk 2. Made of copper or iron that can be plastically deformed during the slow cooling process after brazing due to thermal stress. Then, at the end of the inner peripheral part 14b of the auxiliary member 14, copper or copper alloy is introduced into the vacuum vessel 4 by passing through the hole 10 of one insulating disk 2 and the inner peripheral part 14b of the auxiliary member 14. The fixed electrode rod 5 is hermetically joined to the outer end of the fixed electrode rod 5 by brazing via a stepped portion of a larger diameter portion 5a formed integrally with the fixed electrode rod 5. Near the inner end of the fixed electrode rod 5, an arc shield 15 formed in a cup shape with a larger diameter than the auxiliary shield 3 is provided at the center of the bottom with its open end facing one of the insulating discs 2. While being fitted through the hole 16, movement in the direction of one insulating disk 2 is regulated by a retaining ring 17 such as a snap spring fitted into the circumferential groove 5b near the inner end of the fixed electrode rod 5. It is fixed by attaching it. The arc shield 15 is made of stainless steel, copper, or iron, and the vicinity of its open end is concentrically overlapped with the vicinity of the inner end of one of the auxiliary shields 3 and the fixed electrode rod 5 .

また、固定電極棒5の内端部には、ほぼ円板状
に形成された前記固定電極7が、その接触裏面
(図において上面)中央部に穿設した凹部7aを
介して嵌合されるとともにろう付けにより固着さ
れている。
Further, the fixed electrode 7 formed in a substantially disk shape is fitted into the inner end of the fixed electrode rod 5 via a recess 7a bored in the center of the contact back surface (upper surface in the figure). They are also fixed together by brazing.

前記他方(図において下方)の絶縁円板2にお
ける孔10の周辺のメタライズ層12には、真空
容器4内に同心状に収納されたステンレス鋼から
なるベローズ18が、一端の内径側を軸方向(図
において上下方向)に延伸して形成した筒部18
aの端部を介しろう付けにより気密に接合されて
いる。ベローズ18の他端には、内径側を径方向
(図において左右方向)内方へ延伸して載置部1
8bがリング状に形成されており、この載置部1
8bには、他方の絶縁円板2の孔10及びベロー
ズ18の中心を挿通して真空容器4内に導入され
た銅あるいは鋼合金からなる前記可動電極棒6
が、その内端部付近に一体成形したフランジ部6
aを介しろう付けにより気密に接合されている。
可動電極棒6の内端部付近には、固定電極棒5に
固着したアークシールド15と同様の金属材料に
して、同様のカツプ状に形成されたアークシール
ド19が、開口端を他方の絶縁円板2に対向せし
め底部中央に設けた孔20を介して嵌装されると
ともに、可動電極棒6のフランジ部6aにより他
方の絶縁円板2方向への移動を規制されつつろう
付けにより固着されている。なお、このアークシ
ールド19の開口端部付近と他方の補助シールド
3の内端部付近とは、図に示す如き投入状態にお
いて、可動電極棒6を中心とする同心状に重畳さ
れているものである。また、可動電極棒6の内端
部には、ほぼ円板状に形成された前記可動電極8
が、その接触裏面(図において下面)中央部に穿
設した凹部8aを介して嵌合されるとともにろう
付けにより固着されている。可動電極8の接触面
には、その中心を中心として溝8bが円形に穿設
されており、この溝8bには、リング状の接触子
21が接触面から適宜に突出して嵌合されるとと
もにろう付けにより固着されている。
In the metallized layer 12 around the hole 10 in the other insulating disk 2 (lower in the figure), a bellows 18 made of stainless steel and housed concentrically in the vacuum container 4 is attached with the inner diameter side of one end extending in the axial direction. Cylindrical portion 18 formed by extending in the vertical direction (in the figure)
They are hermetically joined by brazing through the ends of a. At the other end of the bellows 18, a mounting portion 1 is provided with the inner diameter side extending inward in the radial direction (horizontal direction in the figure).
8b is formed in a ring shape, and this mounting portion 1
8b, the movable electrode rod 6 made of copper or steel alloy is introduced into the vacuum vessel 4 by passing through the hole 10 of the other insulating disk 2 and the center of the bellows 18.
However, there is a flange part 6 integrally formed near the inner end of the flange part 6.
They are airtightly joined by brazing through a.
Near the inner end of the movable electrode rod 6, an arc shield 19 made of the same metal material as the arc shield 15 fixed to the fixed electrode rod 5 and formed in a similar cup shape has an open end connected to the other insulating circle. It is fitted through a hole 20 formed in the center of the bottom facing the plate 2, and is fixed by brazing while being restricted from moving in the direction of the other insulating disk 2 by the flange 6a of the movable electrode rod 6. There is. It should be noted that the vicinity of the opening end of this arc shield 19 and the vicinity of the inner end of the other auxiliary shield 3 are concentrically overlapped with the movable electrode rod 6 in the closed state as shown in the figure. be. Moreover, the movable electrode 8 formed in a substantially disk shape is provided at the inner end of the movable electrode rod 6.
are fitted through a recess 8a formed in the center of the contact back surface (lower surface in the figure) and are fixed by brazing. A groove 8b is formed in the contact surface of the movable electrode 8 in a circular shape around the center thereof, and a ring-shaped contact 21 is fitted into the groove 8b so as to protrude appropriately from the contact surface. It is fixed by brazing.

なお、上述した実施例においては、金属円筒1
に対する補助シールド3及び絶縁円板2の位置決
めを行なうため、金属円筒1の両端内周部に段付
嵌合部9を設ける場合について述べたが、この手
段に限られるものではなく、例えば金属円筒1に
段付嵌合部を設けることなく、補助シールド3の
フランジ部3aに金属円筒1の内径とほぼ同径の
筒部とこれに連設した断面L字形の段付筒部を設
け、筒部と段付筒部の段部とにより金属円筒に対
する補助シールド3の位置決め及び接合を行な
い、段付筒部により絶縁円板2の補助シールド3
に対する位置決めと接合を行なうようにしてもよ
いものである。
In addition, in the embodiment described above, the metal cylinder 1
Although a case has been described in which stepped fitting parts 9 are provided on the inner periphery of both ends of the metal cylinder 1 in order to position the auxiliary shield 3 and the insulating disk 2 against the metal cylinder 1, the method is not limited to this method. Instead of providing a stepped fitting part on the auxiliary shield 3, a cylindrical part with approximately the same diameter as the inner diameter of the metal cylinder 1 and a stepped cylindrical part with an L-shaped cross section connected to the flange part 3a of the auxiliary shield 3 are provided. The auxiliary shield 3 of the insulating disk 2 is positioned and joined to the metal cylinder by the step part and the stepped part of the stepped cylinder part.
Alternatively, the positioning and joining may be performed.

以上の構成からなる真空しや断器を製造するに
は、まず、他方の絶縁円板2をそのメタライズ層
11,12が上面となるように水平に支持し、こ
の絶縁円板2上に各構成部材をその接合部間にろ
う材を介装し図に示す仮組立する。ついで、仮組
立した真空しや断器を真空炉中に納置し加熱す
る。この加熱は排気と脱ガス及びろう付け部の酸
化皮膜の除去を兼ねるので、ろう材が溶融しない
温度以下の可能な限りの高温であることが望まし
く、真空炉内も10-4Torr以下の圧力となるよう
にすることが望ましい。そして、真空炉中を、ス
テンレス鋼の表面の活性化のため900℃以上1050
℃未満の温度に上昇するとともに、10-5Torr以
下の圧力となるように排気しながらろう材により
各構成部材間を気密に接合する。最後に、真空炉
内を徐冷(炉冷)によりろう付け温度から所定温
度まで下降させ、この温度で所定時間保持した後
再び徐冷により室温まで低下させた後、あるいは
真空炉内を徐冷によりろう付け温度から室温まで
低下させた後に真空しや断器を取出すと所望のも
のが得られる。
To manufacture the vacuum shield and disconnector having the above configuration, first, the other insulating disc 2 is supported horizontally with its metallized layers 11 and 12 facing upward, and each The structural members are temporarily assembled as shown in the figure by interposing a brazing material between the joints. Next, the temporarily assembled vacuum shield and disconnector is placed in a vacuum furnace and heated. This heating also serves to exhaust, degas, and remove the oxide film on the brazed parts, so it is desirable that the temperature be as high as possible, below the temperature at which the brazing material does not melt, and the pressure inside the vacuum furnace should be below 10 -4 Torr. It is desirable to do so. Then, in a vacuum furnace, the stainless steel is heated to 1050°C or above 900°C to activate the surface of the stainless steel.
While evacuation is carried out so that the temperature rises to less than ℃ and the pressure becomes less than 10 -5 Torr, each component is hermetically joined using a brazing filler metal. Finally, the inside of the vacuum furnace is lowered from the brazing temperature to a predetermined temperature by slow cooling (furnace cooling), held at this temperature for a predetermined time, and then lowered to room temperature by slow cooling again, or the inside of the vacuum furnace is slowly cooled. If the vacuum shield and disconnector are removed after the brazing temperature has been lowered to room temperature, the desired result can be obtained.

なお、上述した製造方法において、ステンレス
鋼からなる金属円筒1あるいはベローズ18のろ
う付け部分に、あらかじめニツケルメツキ処理を
施しておくことにより、加熱温度の上限を900℃
以下とすることができる。
In the above manufacturing method, the upper limit of the heating temperature can be increased to 900°C by applying nickel plating treatment to the brazed portion of the metal cylinder 1 or bellows 18 made of stainless steel in advance.
It can be as follows.

ここで、アルミナセラミツク等の無機絶縁物か
らなる絶縁円板2とステンレス鋼あるいは銅、鉄
からなる金属円筒1との接合を、両者の熱膨張係
数が大きく異なるにもかかわらず、銅あるいは鉄
からなる補助シールド3のフランジ部3aを介在
させることにより気密性及び機械的結合力の良好
なものとすることができるのは、以下の理由によ
るものと考えられる。
Here, the insulating disk 2 made of an inorganic insulator such as alumina ceramic and the metal cylinder 1 made of stainless steel, copper, or iron are bonded to each other using copper or iron, even though their thermal expansion coefficients are significantly different. The reason why good airtightness and mechanical bonding force can be achieved by interposing the flange portion 3a of the auxiliary shield 3 is considered to be due to the following reason.

上記の真空しや断器の製造工程の説明にあるよ
うに、絶縁円板2にろう付けされる部材は補助シ
ールド3であり、金属円筒1は補助シールド3に
ろう付けされる構成である。このろう付けは金属
円筒1、絶縁円板2、補助シールド3の3つの部
材が、同一の加熱条件下で同時に実施されること
により、ろう付け後の冷却によつて生じる金属円
筒1の熱応力は、銅あるいは鉄から成る補助シー
ルド3の塑性変形として吸収され、絶縁円板2の
機械的強度を下回るためであると考えられる。
As described above for the manufacturing process of the vacuum shield and disconnector, the member brazed to the insulating disc 2 is the auxiliary shield 3, and the metal cylinder 1 is brazed to the auxiliary shield 3. This brazing is performed simultaneously on the three members of the metal cylinder 1, the insulating disk 2, and the auxiliary shield 3 under the same heating conditions, resulting in thermal stress in the metal cylinder 1 caused by cooling after brazing. It is thought that this is because the mechanical strength of the insulating disc 2 is lowered because it is absorbed as plastic deformation of the auxiliary shield 3 made of copper or iron.

すなわち、温度に対する銅あるいは鉄の抗張力
は、温度の低下に従つて増大し、また、温度に対
する銅あるいは鉄の伸びは、温度の低下に従つて
ほぼ減少することが知られている。従つて、銅、
鉄からなる補助シールド3が、900℃以上1050℃
未満の高温でアルミナセラミツク等の無機絶縁物
からなる絶縁円板2にろう付けされると、銅、鉄
からなる補助シールド3は、その抗張力がアルミ
ナセラミツク等の無機絶縁物からなる絶縁円板2
の機械的強度に比して極めて小さいので、ろう付
け後の冷却によつて生ずる熱応力によりろう付け
後の徐冷過程において塑性変形される。ために、
室温まで冷却した際における両者の接合部の気密
性が損なわれることがなく、かつ、残留熱応力が
極めて小さくなるものと考えられる。
That is, it is known that the tensile strength of copper or iron with respect to temperature increases as the temperature decreases, and that the elongation of copper or iron with respect to temperature decreases as the temperature decreases. Therefore, copper,
The auxiliary shield 3 made of iron is heated to a temperature of 900°C or higher to 1050°C.
When the auxiliary shield 3 made of copper or iron is brazed to the insulating disk 2 made of an inorganic insulating material such as alumina ceramic at a high temperature below 200 yen, the tensile strength of the auxiliary shield 3 made of copper or iron will exceed that of the insulating disk 2 made of an inorganic insulating material such as alumina ceramic.
Since the mechanical strength is extremely small compared to the mechanical strength of the material, it is plastically deformed during the slow cooling process after brazing due to thermal stress generated by cooling after brazing. for,
It is considered that the airtightness of the joint between the two is not impaired when the two are cooled to room temperature, and the residual thermal stress is extremely small.

なお、鉄は各温度における抗張力が銅のそれよ
り大きく、かつ、一定温度条件下における荷重時
間に対するクリープ伸びが銅のそれより小さいに
もかかわらず、銅と同様にアルミナセラミツク等
の無機絶縁物と良好に接合できるのは、その熱膨
張係数が銅のそれより小さいためであると考えら
れる。
Although iron has a higher tensile strength at various temperatures than copper, and its creep elongation with respect to loading time under constant temperature conditions is smaller than that of copper, it is similar to copper when it is used with inorganic insulators such as alumina ceramics. It is thought that the reason why it can be bonded well is because its coefficient of thermal expansion is smaller than that of copper.

また、アルミナセラミツク等の無機絶縁物から
なる絶縁円板2とステンレス鋼からなるベローズ
18との接合を、気密性及び機械的強度の高いも
のとすることができるのは、ベローズ18は、
0.1〜0.2mm程度と極めて薄く形成され、かつ、両
者のろう付け後の冷却によつて生ずる熱応力が無
機絶縁物からなる絶縁円板2の機械的強度に比し
て極めて小さいので、ベローズ18自身がろう付
け後の徐冷過程において塑性変形するためと考え
られる。
Furthermore, the bellows 18 can achieve high airtightness and mechanical strength by joining the insulating disk 2 made of an inorganic insulator such as alumina ceramic and the bellows 18 made of stainless steel.
The bellows 18 is extremely thin, approximately 0.1 to 0.2 mm, and the thermal stress caused by cooling after brazing the two is extremely small compared to the mechanical strength of the insulating disk 2 made of an inorganic insulator. This is thought to be because the material itself undergoes plastic deformation during the slow cooling process after brazing.

以上の如く本発明は、熱応力により塑性変形自
在な金属材料からなる補助シールドを金属円筒内
の両端付近に対向配置するとともに、各補助シー
ルドをそれぞれの外端部に一体成形したフランジ
部を介し金属円筒の端部に気密に接合し、前記各
補助シールドのフランジ部に無機絶縁物からなる
絶縁円板をその外周部付近により気密に接合して
真空容器を構成し、前記真空容器内に各絶縁円板
の中央部から相対的に接近離反自在に導入した対
をなす電極棒を介し1対の電極を接触離反自在に
設けてなるものであるから、真空容器の大径化を
容易にして、かつ、安価に行なうことができると
ともに、熱膨張係数の異なる金属円筒と絶縁円板
との接合を気密性、機械的結合力の高いものとす
ることができる。また、金属円筒を耐アーク性及
び機械的強度に優れた金属材料によつて形成する
ことができる。さらに、真空容器の構成部材の数
を削減することができるとともに仮組立を容易に
行なうことができる等の効果を奏する。
As described above, in the present invention, auxiliary shields made of a metal material that can be plastically deformed by thermal stress are disposed facing each other near both ends in a metal cylinder, and each auxiliary shield is attached to the outer end of the cylinder via a flange integrally molded. A vacuum vessel is constructed by airtightly bonding an insulating disk made of an inorganic insulator to the flange portion of each of the auxiliary shields near the outer periphery of the auxiliary shield. Since a pair of electrodes are provided so that they can come into contact with and separate from each other through a pair of electrode rods that are introduced from the center of an insulating disk so that they can approach and separate from each other, it is easy to increase the diameter of the vacuum vessel. Moreover, it can be performed at low cost, and the metal cylinder having different coefficients of thermal expansion and the insulating disk can be joined with high airtightness and mechanical bonding strength. Furthermore, the metal cylinder can be made of a metal material with excellent arc resistance and mechanical strength. Further, the number of constituent members of the vacuum container can be reduced and temporary assembly can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る真空しや断器の半截断面図で
ある。 1……金属円筒、2……絶縁円板、3……補助
シールド、3a……フランジ部、4……真空容
器、5,6……電極棒、7,8……電極。
The figure is a half-cut sectional view of a vacuum shield disconnector according to the present invention. DESCRIPTION OF SYMBOLS 1... Metal cylinder, 2... Insulating disk, 3... Auxiliary shield, 3a... Flange part, 4... Vacuum container, 5, 6... Electrode rod, 7, 8... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 熱応力により塑性変形自在な金属材料からな
る補助シールドを金属円筒内の両端付近に対向配
置するとともに、各補助シールドをそれぞれの外
端部に一体成形したフランジ部を介し金属円筒の
端部に気密に接合し、前記各補助シールドのフラ
ンジ部に無機絶縁物からなる絶縁円板をその外周
部付近により気密に接合して真空容器を構成し、
前記真空容器内に各絶縁円板の中央部から相対的
に接近離反自在に導入した対をなす電極棒を介し
1対の電極を接触離反自在に設けてなる真空しや
断器。
1. Auxiliary shields made of a metal material that can be plastically deformed by thermal stress are placed opposite each other near both ends of the metal cylinder, and each auxiliary shield is attached to the end of the metal cylinder via a flange integrally molded to the outer end of each auxiliary shield. and an insulating disc made of an inorganic insulator is hermetically joined to the flange portion of each of the auxiliary shields near the outer periphery thereof to form a vacuum vessel;
A vacuum breaker comprising a pair of electrodes that are movable into contact with each other through a pair of electrode rods that are introduced into the vacuum container from the center of each insulating disk so as to be able to move toward and away from each other.
JP9969680A 1980-06-30 1980-07-21 Vacuum breaker Granted JPS5725634A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9969680A JPS5725634A (en) 1980-07-21 1980-07-21 Vacuum breaker
DE8181302900T DE3173186D1 (en) 1980-06-30 1981-06-26 A vacuum interrupter and methods of manufacturing the same
EP19810302900 EP0043258B1 (en) 1980-06-30 1981-06-26 A vacuum interrupter and methods of manufacturing the same
US06/283,867 US4417110A (en) 1980-07-21 1981-07-16 Vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9969680A JPS5725634A (en) 1980-07-21 1980-07-21 Vacuum breaker

Publications (2)

Publication Number Publication Date
JPS5725634A JPS5725634A (en) 1982-02-10
JPS6338808B2 true JPS6338808B2 (en) 1988-08-02

Family

ID=14254205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9969680A Granted JPS5725634A (en) 1980-06-30 1980-07-21 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS5725634A (en)

Also Published As

Publication number Publication date
JPS5725634A (en) 1982-02-10

Similar Documents

Publication Publication Date Title
JPS6245654B2 (en)
US4365127A (en) Vacuum power interrupter
JP3361932B2 (en) Vacuum valve
EP0040933B1 (en) Vacuum-housed circuit interrupter
JPH0113620B2 (en)
US5753876A (en) Clad end seal for vacuum interrupter
US4408107A (en) Vacuum interrupter
US4414448A (en) Vacuum circuit interrupter
JPS633067Y2 (en)
EP0043258B1 (en) A vacuum interrupter and methods of manufacturing the same
JPS6327405Y2 (en)
JPS6338808B2 (en)
KR860000796B1 (en) Vacuum breaker
EP0043186B1 (en) Vacuum circuit interrupter
JPH0211704Y2 (en)
JPS6240809B2 (en)
JPS631692B2 (en)
JPH0226335B2 (en)
US4417110A (en) Vacuum interrupter
JPS62150620A (en) Covering assembly of vacuum breaker
JPH0113619B2 (en)
US4450327A (en) Vacuum interrupter
JPS5889732A (en) Vacuum breaker
JPH0211966B2 (en)
JPS6236335B2 (en)