JPS6240809B2 - - Google Patents

Info

Publication number
JPS6240809B2
JPS6240809B2 JP9969480A JP9969480A JPS6240809B2 JP S6240809 B2 JPS6240809 B2 JP S6240809B2 JP 9969480 A JP9969480 A JP 9969480A JP 9969480 A JP9969480 A JP 9969480A JP S6240809 B2 JPS6240809 B2 JP S6240809B2
Authority
JP
Japan
Prior art keywords
brazing
vacuum
auxiliary member
metal cylinder
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9969480A
Other languages
Japanese (ja)
Other versions
JPS5725632A (en
Inventor
Hifumi Yanagisawa
Junichi Warabi
Shinzo Sakuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP9969480A priority Critical patent/JPS5725632A/en
Priority to DE8181302900T priority patent/DE3173186D1/en
Priority to EP19810302900 priority patent/EP0043258B1/en
Priority to US06/283,867 priority patent/US4417110A/en
Publication of JPS5725632A publication Critical patent/JPS5725632A/en
Publication of JPS6240809B2 publication Critical patent/JPS6240809B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は真空しや断器に関し、さらに詳細には
金属円筒の両端を無機絶縁物からなる絶縁円板に
より閉塞して真空容器を形成し、この真空容器内
に1対の電極を接触離反自在に設けてなる真空し
や断器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum chamber disconnector, and more specifically, the present invention relates to a vacuum chamber disconnector, in which a vacuum chamber is formed by closing both ends of a metal cylinder with an insulating disk made of an inorganic insulator, and a vacuum chamber is formed within the vacuum chamber. This invention relates to a vacuum shield breaker in which a pair of electrodes are provided so as to be able to come into contact with each other and separate from each other.

従来、真空しや断器における筒状の真空容器
は、円筒状に形成された硬質ガラスあるいはセラ
ミツクからなる絶縁筒の両端を、熱膨張係数が絶
縁筒を形成するセラミツク等のそれと近似したコ
バール等の金属材料からなる金属端板により直接
に、又はコバール等の封着金属を介在させた金属
端板により気密に閉塞して形成されている。しか
し、絶縁筒の価格は、大径化するに従つて急激的
に高騰し、ひいては真空しや断器自体を高価なも
のとするおそれがある。
Conventionally, a cylindrical vacuum vessel in a vacuum chamber or disconnector is made of a cylindrical insulating tube made of hard glass or ceramic, with both ends made of Kovar, etc. whose coefficient of thermal expansion is similar to that of the ceramic that forms the insulating tube. It is formed by being airtightly closed either directly by a metal end plate made of a metal material, or by a metal end plate with a sealing metal such as Kovar interposed therebetween. However, as the diameter of the insulating tube increases, the price of the insulating tube increases rapidly, and there is a risk that the vacuum shield or disconnector itself will become expensive.

また、絶縁筒を形成するセラミツク等と気密に
接合できる金属は、熱膨張係数がセラミツク等と
近似しているFe−Ni−Co合金(コバール)やFe
−Ni合金とされているが、これらの金属は、価
格が非常に高い欠点を有するとともに、各温度
(T)における熱膨張係数(α)〔α−T特性〕が
セラミツク等と必ずしも一致せず、かつ、強磁性
材料であるために、両者のろう付けによる接合に
よつて生ずる熱応力を緩和するための応力緩和構
造を金属端板等に施さなければならないととも
に、渦電流による温度上昇、交番磁界による磁歪
現象によつて生ずる騒音等の問題がある。
In addition, metals that can be airtightly bonded to ceramics, etc. that form the insulating tube include Fe-Ni-Co alloy (Kovar), which has a thermal expansion coefficient similar to that of ceramics, etc.
-Ni alloys, but these metals have the disadvantage of being very expensive and their coefficient of thermal expansion (α) [α-T characteristics] at each temperature (T) does not necessarily match that of ceramics, etc. , and because it is a ferromagnetic material, it is necessary to provide the metal end plate with a stress relaxation structure to relieve the thermal stress caused by the joining of the two by brazing. There are problems such as noise caused by the magnetostriction phenomenon caused by the magnetic field.

本発明は上述した問題に鑑みてなされたもの
で、その目的とするところは、真空しや断器にお
ける筒状の真空容器を、金属円筒の両端にセラミ
ツク等とのろう付け後の冷却によつて生ずる熱応
力によりろう付け後の徐冷過程において塑性変形
自在な金属材料あるいはセラミツク等と近似した
熱膨張係数の金属材料からなり、リング状にして
かつ断面L字形に形成された補助部材を同一方向
に配置して気密に接合するとともに、各補助部材
に無機絶縁物からなる絶縁円板をその外周縁部付
近の一端面に設けたメタライズ層を介しこのメタ
ライズ層が同一方向になるようにして気密に接合
して真空容器を構成することによつて、真空容器
の大径化を容易にしてかつ安価に可能とするとと
もに、その各構成部材間のろう付けを効果的にし
てかつ良好に行ない得るようにした真空しや断器
の提供にある。以下、図面を用いてこの発明の一
実施例を詳細に説明する。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a cylindrical vacuum container in a vacuum shield cutter by cooling ceramics etc. at both ends of a metal cylinder after brazing. The auxiliary member is made of a metal material that can be plastically deformed during the slow cooling process after brazing due to the thermal stress generated, or a metal material with a thermal expansion coefficient similar to that of ceramic, etc., and is formed into a ring shape and an L-shaped cross section. At the same time, each auxiliary member is provided with an insulating disk made of an inorganic insulator through a metallized layer provided on one end surface near the outer peripheral edge of the metallized layer so that the metallized layer is oriented in the same direction. By configuring the vacuum container by airtightly joining it, it is possible to easily and inexpensively increase the diameter of the vacuum container, and the brazing between its constituent members can be done effectively and well. The purpose of the present invention is to provide a vacuum shield and disconnector that achieves this goal. Hereinafter, one embodiment of the present invention will be described in detail using the drawings.

図は本発明に係る真空しや断器の半截断面図
で、この真空しや断器は、金属円筒1の両端に無
機絶縁円板2,2をリング状にしてかつ断面L字
形の補助部材3,3を介在させて気密に接合して
真空容器4を構成し、この真空容器4内に各絶縁
円板2の中央部から相対的に接近離反自在に導入
した対をなす固定、可動電極棒5,6を介し1対
の固定、可動電極7,8を接触離反自在に設けて
構成されている。
The figure is a half-cut sectional view of a vacuum sheath disconnector according to the present invention. 3, 3 are interposed and airtightly joined to form a vacuum vessel 4, and a pair of fixed and movable electrodes are introduced into the vacuum vessel 4 from the center of each insulating disk 2 so as to be able to approach and separate from each other. A pair of fixed and movable electrodes 7 and 8 are provided via rods 5 and 6 so as to be able to come into contact with and separate from each other.

すなわち、真空容器4の一部を構成する金属円
筒1は、非磁性材料にして、かつ、比較的機械的
強度の高いオーステナイト系ステンレス鋼(以
下、単に「ステンレス鋼」という。)からなるも
ので、その両端内周部には、その内径より適宜大
径の段付嵌合部9がそれぞれ形成されている。な
お、金属円筒1は、ステンレス鋼からなるものに
限定されるものではなく、例えば非磁性材料にし
て、かつ、補助部材3とのろう付け後の冷却によ
つて生ずる熱応力によりろう付け後の徐冷過程に
おいて塑性変形自在な銅、あるいは真空しや断器
の通電容量が小さい場合には、磁性材料にして、
かつ、補助部材3とのろう付け後の冷却によつて
生ずる熱応力によりろう付け後の徐冷過程におい
て塑性変形自在な鉄からなるものを用いてもよ
い。そして、金属円筒1内の両端付近には、ステ
ンレス鋼からなるカツプ状の補助シールド10,
10がそれぞれの底部を内方に位置せしめて対向
配置されており、一方(図において上方)の補助
シールド10は開口縁に一体成形したフランジ部
10aを介し一端の段付嵌合部9に嵌合されると
ともにろう付けによりその段部に固着され、また
他方の補助シールド10は開口縁に一体成形した
フランジ部10aを介し他端の段付嵌合部9付近
に嵌合されるとともにろう付けにより後述する如
く補助部材3のフランジ部に固着されている。な
お、各補助シールド10は、ステンレス鋼からな
るものに限らず、例えば真空しや断器の通電容量
が小さい場合には鉄からなるものを用いてもよい
ものであり、また、各補助シールド10の底部に
は、固定電極棒5、可動電極棒6等を挿通するた
めの孔11が設けられているものである。
That is, the metal cylinder 1 constituting a part of the vacuum vessel 4 is made of austenitic stainless steel (hereinafter simply referred to as "stainless steel"), which is a non-magnetic material and has relatively high mechanical strength. , stepped fitting portions 9 having an appropriately larger diameter than the inner diameter are formed on the inner peripheral portions of both ends thereof. Note that the metal cylinder 1 is not limited to being made of stainless steel, but may be made of a non-magnetic material, for example, and may be made of a non-magnetic material after brazing due to thermal stress caused by cooling after brazing with the auxiliary member 3. If copper is plastically deformable during the slow cooling process, or if the current carrying capacity of the vacuum shield or disconnector is small, use a magnetic material.
In addition, a material made of iron that can be plastically deformed during the slow cooling process after brazing due to thermal stress generated by cooling after brazing with the auxiliary member 3 may be used. Near both ends of the metal cylinder 1 are cup-shaped auxiliary shields 10 made of stainless steel.
10 are arranged facing each other with their respective bottoms positioned inward, and the auxiliary shield 10 (on the upper side in the figure) is fitted into the stepped fitting part 9 at one end via the flange part 10a integrally formed on the edge of the opening. The other auxiliary shield 10 is fitted near the stepped fitting part 9 at the other end via the flange part 10a integrally formed on the edge of the opening, and is then fixed to the stepped part by brazing. As will be described later, it is fixed to the flange portion of the auxiliary member 3. Note that each auxiliary shield 10 is not limited to being made of stainless steel; for example, if the current carrying capacity of the vacuum shield or disconnector is small, a material made of iron may be used. A hole 11 for inserting the fixed electrode rod 5, movable electrode rod 6, etc. is provided at the bottom of the electrode.

前記金属円筒1の各段付嵌合部9には、リング
状にして、かつ軸方向(図において上下方向)の
筒部3aとその一端に連設されるとともに径方向
(図において左右方向)内方へ延設したフランジ
部3bとにより断面L字形に形成した前記補助部
材3が、それぞれのフランジ部3bを同一方向
(図においては上方)に位置するが如くして筒部
3aを介し嵌合されるとともにろう付けにより気
密に接合されている。各補助部材3は、熱膨張係
数の異なる金属円筒1と絶縁円板2との接合部
が、ろう付け後の冷却によつて生ずる熱応力によ
り気密性及び機械的結合力の点において低下する
のを防止するためのもので、非磁性材料にして、
かつ、絶縁円板2とのろう付け後の冷却によつて
生ずる熱応力によりろう付け後の徐冷過程におい
て塑性変形自在な銅からなる。なお、多補助部材
3は、銅からなるものに限定されず、例えば真空
しや断器の通電容量が小さい場合には、磁性材料
にして、かつ、絶縁円板2とのろう付け後の冷却
によつて生ずる熱応力によりろう付け後の徐冷過
程において塑性変形自在な鉄、あるいはセラミツ
ク等の無機絶縁物からなる絶縁円板2と近似した
熱膨張係数のFe−Ni−Co合金、Fe−Ni合金から
なるものを用いてもよいものであり、また、他方
の補助部材3のフランジ部3bには、前記他方の
補助シールド10がフランジ部10aを介しろう
付けにより固着されているものである。
Each stepped fitting part 9 of the metal cylinder 1 has a ring-shaped cylindrical part 3a extending in the axial direction (vertical direction in the figure) and connected to one end of the cylindrical part 3a and in the radial direction (horizontal direction in the figure). The auxiliary member 3, which is formed into an L-shaped cross section by the flange portions 3b extending inward, is fitted through the cylindrical portion 3a such that the respective flange portions 3b are positioned in the same direction (upward in the figure). They are fitted together and airtightly joined by brazing. Each auxiliary member 3 is constructed so that the joint between the metal cylinder 1 and the insulating disk 2, which have different coefficients of thermal expansion, is reduced in airtightness and mechanical bonding strength due to thermal stress caused by cooling after brazing. It is made of non-magnetic material to prevent
In addition, it is made of copper that can be plastically deformed during the slow cooling process after brazing due to thermal stress generated by cooling after brazing with the insulating disk 2. Note that the multi-auxiliary member 3 is not limited to being made of copper; for example, if the current carrying capacity of the vacuum shield or disconnector is small, it may be made of a magnetic material and the Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, Fe-Ni-Co alloy, etc. A material made of Ni alloy may be used, and the other auxiliary shield 10 is fixed to the flange portion 3b of the other auxiliary member 3 via the flange portion 10a by brazing. .

前記各補助部材3には、前記絶縁円板2がそれ
ぞれ筒部3aに嵌合されるとともにフランジ部3
bと気密に接合されている。すなわち、各絶縁円
板2は、アルミナセラミツクあるいは結晶化ガラ
ス等の無機絶縁物からなるもので、中央部に孔1
2を設けるとともに金属円筒1の内径より適宜大
径の円板状に形成されており、その外周縁部付近
及び孔12の周辺における一端面には、アルミナ
セラミツク等と近似した熱膨張係数のMn−Ti合
金あるいはMo−Mn−Ti合金等からなるメタライ
ズ層13,14が形成されている。なお、絶縁円
板2のメタライズ層13,14の形成に際しては
研削加工が施されるものであり、この研削加工を
容易にするため各メタライズ層13,14間に
は、0.1〜0.5mm程度の深さの溝15が円形に形成
されている。そして、各絶縁円板2は、それぞれ
のメタライズ層13,14が同一方向(図におい
て上方)に位置するが如くして補助部材3の筒部
3aに嵌合されるとともに、外周縁部付近のメタ
ライズ層13を介しろう付けにより補助部材3の
フランジ部3bと気密に接合されている。
In each of the auxiliary members 3, the insulating disk 2 is fitted into the cylinder part 3a, and the flange part 3 is fitted into the cylinder part 3a.
It is hermetically joined to b. That is, each insulating disk 2 is made of an inorganic insulator such as alumina ceramic or crystallized glass, and has a hole 1 in the center.
2 and is formed into a disk shape with a suitably larger diameter than the inner diameter of the metal cylinder 1, and near the outer periphery and on one end surface around the hole 12, Mn having a thermal expansion coefficient similar to that of alumina ceramic etc. is provided. -Metallized layers 13 and 14 made of a Ti alloy or a Mo-Mn-Ti alloy are formed. Incidentally, when forming the metallized layers 13 and 14 of the insulating disk 2, a grinding process is performed, and in order to facilitate this grinding process, a gap of about 0.1 to 0.5 mm is placed between each metallized layer 13 and 14. A deep groove 15 is formed in a circular shape. Each insulating disk 2 is fitted into the cylindrical portion 3a of the auxiliary member 3 such that the respective metallized layers 13 and 14 are located in the same direction (upward in the figure), and It is hermetically joined to the flange portion 3b of the auxiliary member 3 by brazing via the metallized layer 13.

前記一方の絶縁円板2における孔12の周辺の
メタライズ層14には、孔12を挿通して真空容
器4内に導入された銅あるいは銅合金からなる前
記固定電極棒5が、その外端部に一体成形した径
大部5aの径違い段部を介しろう付けにより気密
に接合されている。固定電極棒5の内端部には、
皿状のアークシールド16がその中央部に一体成
形した筒部16aを介して嵌装されるとともにろ
う付けにより固着されている。アークシールド1
6は、前記一方の補助シールド10と相俟つて金
属蒸気が一方の絶縁円板2の内端面(真空側)に
付着するのを防止するためのもので、各補助シー
ルド10と同様の金属材料からなる。また、固定
電極棒5の内端部には、ほぼ円板状に形成された
前記固定電極7が、その接触裏面(図において上
面)中央部に穿設した凹部7aを介し嵌合される
とともにろう付けにより固着されている。
In the metallized layer 14 around the hole 12 in the one insulating disk 2, the fixed electrode rod 5 made of copper or copper alloy, which is introduced into the vacuum vessel 4 through the hole 12, is attached at its outer end. The large-diameter portion 5a is integrally molded with the large-diameter portion 5a, and is airtightly joined by brazing through a stepped portion having a different diameter. At the inner end of the fixed electrode rod 5,
A dish-shaped arc shield 16 is fitted into the central portion of the arc shield 16 through an integrally formed cylindrical portion 16a, and is secured by brazing. arc shield 1
Numeral 6 is for preventing metal vapor from adhering to the inner end surface (vacuum side) of one of the insulating discs 2 together with the one of the auxiliary shields 10, and is made of the same metal material as each of the auxiliary shields 10. Consisting of The fixed electrode 7, which is formed in a substantially disk shape, is fitted into the inner end of the fixed electrode rod 5 through a recess 7a formed in the center of the contact back surface (upper surface in the figure). It is fixed by brazing.

前記他方(図において下方)の絶縁円板2にお
ける孔12の周辺のメタライズ層14には、真空
容器4内に同心状に収納されたステンレス鋼から
なるベローズ17が、一端の内径側を軸方向へ延
伸して形成した筒部17aの端部を介しろう付け
により気密に接合されている。ベローズ17の他
端には、内径側を径方向内方へ延伸して形成した
載置部17bが設けられており、この載置17b
には、他方の絶縁円板の孔12及びベローズ17
の中心を挿通して真空容器4内に導入された銅あ
るいは銅合金からなる前記可動電極棒6が、その
内端部に一体成形した径大部6aの径違い段部を
介しろう付けにより気密に接合されている。そし
て、可動電極棒6の径大部6aには、固定電極棒
5に固着したアークシールド16と同様の金属材
料からなるとともに、同様の皿状に形成されたア
ークシールド18が、その中央部に一体成形した
筒部18aを介して嵌装されるとともにろう付け
により固着されている。また、可動電極棒6の内
端部には、ほぼ円板状に形成された前記可動電極
8が、その接触裏面(図において下面)中央部に
穿設した凹部8aを介して嵌合されるとともにろ
う付けにより固着されている。可動電極棒8の接
触面には、その中心を中心として溝8bが円形に
穿設されており、この溝8bには、リング状の接
触子19が接触面から適宜に突出して嵌合される
とともにろう付けにより固着されている。
In the metallized layer 14 around the hole 12 in the other insulating disk 2 (lower in the figure), a bellows 17 made of stainless steel and housed concentrically in the vacuum container 4 is attached with the inner diameter side of one end extending in the axial direction. They are airtightly joined by brazing through the end portion of the cylindrical portion 17a formed by extending the cylindrical portion 17a. The other end of the bellows 17 is provided with a mounting portion 17b formed by extending the inner diameter side radially inward, and this mounting portion 17b
includes the hole 12 and bellows 17 in the other insulating disc.
The movable electrode rod 6 made of copper or copper alloy is introduced into the vacuum vessel 4 by passing through the center thereof, and is made airtight by brazing through the stepped portion of the large diameter portion 6a formed integrally with the inner end thereof. is joined to. The large-diameter portion 6a of the movable electrode rod 6 has an arc shield 18 made of the same metal material as the arc shield 16 fixed to the fixed electrode rod 5 and formed in a similar dish shape in the center thereof. It is fitted through the integrally molded cylindrical portion 18a and is fixed by brazing. Further, the movable electrode 8 formed in a substantially disk shape is fitted into the inner end of the movable electrode rod 6 via a recess 8a bored in the center of the contact back surface (lower surface in the figure). They are also fixed together by brazing. A circular groove 8b is formed in the contact surface of the movable electrode rod 8 with its center as the center, and a ring-shaped contact 19 is fitted into the groove 8b, protruding appropriately from the contact surface. They are also fixed together by brazing.

なお、上述した実施例においては、金属円筒1
の両端内周部に段付嵌合部9を設けこの段付嵌合
部9に補助部材3を嵌合することにより、金属円
筒1に対する補助部材3の位置決めをする場合に
ついて述べたが、金属円筒1の両端内周部に段付
嵌合部を設けることなく、その端面に直線補助部
材3をろう付けにより気密に接合したり、あるい
は金属円筒1の両端外周部に段付嵌合部を設け、
この段付嵌合部に補助部材3をその筒部3aを介
して嵌合することにより金属円筒1に対して位置
決めするようにしてもよいものであり、また、一
方の絶縁円板2に対する固定電極棒5の移動規制
を行なうには、その外端部に径大部5aを設ける
場合に限らず、例えばその外端部付近に周溝を設
け、この周溝にスナツプリングの如き止め輪を嵌
合するようにしてもよいものである。
In addition, in the embodiment described above, the metal cylinder 1
The case has been described in which the auxiliary member 3 is positioned relative to the metal cylinder 1 by providing stepped fitting parts 9 on the inner periphery of both ends and fitting the auxiliary member 3 into the stepped fitting parts 9. Instead of providing stepped fitting parts on the inner periphery of both ends of the cylinder 1, the linear auxiliary member 3 is airtightly joined to the end face by brazing, or stepped fitting parts are provided on the outer periphery of both ends of the metal cylinder 1. established,
The auxiliary member 3 may be positioned with respect to the metal cylinder 1 by fitting the auxiliary member 3 into this stepped fitting portion via its cylindrical portion 3a, and may also be fixed to one of the insulating discs 2. In order to restrict the movement of the electrode rod 5, the method is not limited to providing the large diameter portion 5a at the outer end. For example, it is also possible to provide a circumferential groove near the outer end and fit a retaining ring such as a snap spring into this circumferential groove. It is also possible to make it match.

以上の構成からなる真空しや断器を製造するに
は、まず、他方の絶縁円板2をそのメタライズ層
13,14が上面となるように水平に支持し、こ
の絶縁円板2上に各構成部材をその接合部間にろ
う材を介装し図に示す如く仮組立する。ついで、
仮組立した真空しや断器を真空炉中に納置し加熱
する。この加熱は排気と脱ガス及びろう付け部の
酸化皮膜の除去を兼ねるので、ろう材が溶融しな
い温度以下の可能な限りの高温であることが望ま
しく、真空炉内も10-4Torr以下の圧力となるよ
うにすることが望ましい。そして、真空炉中を、
ステンレス鋼の表面の活性化のため900℃以上
1050℃未満の温度に上昇するとともに、
10-5Torr以下の圧力となるように排気しながら
ろう材により各構成部材間を気密に接合する。最
後に、真空炉内を徐冷(炉冷)によりろう付け温
度から所定温度まで下降させ、この温度で所定時
間保持した後再び徐冷により室温まで低下させた
後、あるいは真空炉内を徐冷によりろう付け温度
から室温まで低下させた後に真空しや断器を取出
すと所望のものが得られる。
To manufacture the vacuum shield and disconnector having the above configuration, first, the other insulating disc 2 is supported horizontally with its metallized layers 13 and 14 facing upward, and each insulating disc 2 is The structural members are temporarily assembled as shown in the figure by interposing a brazing material between the joints. Then,
Place the temporarily assembled vacuum shield and disconnector in a vacuum furnace and heat it. This heating also serves to exhaust, degas, and remove the oxide film on the brazed parts, so it is desirable that the temperature be as high as possible, below the temperature at which the brazing material does not melt, and the pressure inside the vacuum furnace should be below 10 -4 Torr. It is desirable to do so. Then, inside the vacuum furnace,
Above 900℃ for activation of stainless steel surface
With an increase in temperature below 1050℃,
While evacuating to a pressure of 10 -5 Torr or less, each component is airtightly joined using a brazing filler metal. Finally, the inside of the vacuum furnace is lowered from the brazing temperature to a predetermined temperature by slow cooling (furnace cooling), held at this temperature for a predetermined time, and then lowered to room temperature by slow cooling again, or the inside of the vacuum furnace is slowly cooled. If the vacuum shield and disconnector are removed after the brazing temperature has been lowered to room temperature, the desired result can be obtained.

なお、上述した製造方法において、ステンレス
鋼からなる金属円筒1あるいはベローズ17等の
ろう付け部分に、あらかじめニツケルメツキ処理
を施しておくことにより、加熱温度の上限を900
℃以下とすることができる。
In addition, in the above-mentioned manufacturing method, by applying nickel plating treatment to the brazed parts of the metal cylinder 1 or bellows 17 made of stainless steel in advance, the upper limit of the heating temperature can be increased to 900°C.
℃ or less.

ここで、アルミナセラミツク等の無機絶縁物か
らなる絶縁円板2とステンレス鋼あるいは銅、鉄
からなる金属円筒1との接合を、両者の熱膨張係
数が大きく異なるにもかかわらず、気密性及び機
械的結合力の良好なものとすることができるの
は、以下の理由によるものと考えられる。
Here, the insulating disk 2 made of an inorganic insulator such as alumina ceramic and the metal cylinder 1 made of stainless steel, copper, or iron are bonded to each other in an airtight and mechanical manner, despite the large difference in coefficient of thermal expansion between the two. It is thought that the reason why the bonding force can be made good is as follows.

すなわち、温度に対する銅あるいは鉄の抗張力
は、温度の低下に従つて増大し、また、温度に対
する銅あるいは鉄の伸びは、温度の低下に従つて
ほぼ減少することが知られている。従つて、銅、
鉄からなる補助部材3あるいは金属円筒1が、
900℃以上1050℃未満の高温でアルミナセラミツ
ク等の無機絶縁物からなる絶縁円板2あるいは
Fe−Ni−Co合金、Fe−Ni合金からなる補助部材
3にろう付けされると、銅、鉄からなる補助部材
3あるいは金属円筒1は、その抗張力がアルミナ
セラミツク等の無機絶縁物からなる絶縁円板2の
機械的強度に比して極めて小さいので、ろう付け
後の冷却によつて生ずる熱応力によりろう付け後
の徐冷過程において塑性変形される。ために、室
温まで冷却した際における両者の接合部の気密性
が損なわれることがなく、かつ、残留熱応力が極
めて小さくなるものと考えられる。
That is, it is known that the tensile strength of copper or iron with respect to temperature increases as the temperature decreases, and that the elongation of copper or iron with respect to temperature decreases as the temperature decreases. Therefore, copper,
The auxiliary member 3 or metal cylinder 1 made of iron is
An insulating disk 2 made of an inorganic insulator such as alumina ceramic or
When brazed to the auxiliary member 3 made of Fe-Ni-Co alloy or Fe-Ni alloy, the auxiliary member 3 made of copper or iron or the metal cylinder 1 is Since the mechanical strength of the disc 2 is extremely small compared to the mechanical strength of the disc 2, it is plastically deformed during the slow cooling process after brazing due to thermal stress generated by cooling after brazing. Therefore, it is considered that the airtightness of the joint between the two is not impaired when the two are cooled to room temperature, and the residual thermal stress is extremely small.

なお、鉄は各温度における抗張力が銅のそれよ
り大きく、かつ、一定温度条件下における荷重時
間に対するクリープ伸びが銅のそれより小さいに
もかかわらず、銅と同様にアルミナセラミツク等
の無機絶縁物と良好に接合できるのは、その熱膨
張係数が銅のそれより小さいためであると考えら
れる。
Although iron has a higher tensile strength at various temperatures than copper, and its creep elongation with respect to loading time under constant temperature conditions is smaller than that of copper, it is similar to copper when it is used with inorganic insulators such as alumina ceramics. It is thought that the reason why it can be bonded well is because its coefficient of thermal expansion is smaller than that of copper.

また、アルミナセラミツク等の無機絶縁物から
なる絶縁円板2とステンレス鋼からなるベローズ
17との接合を、気密性及び機械的強度の高いも
のとすることができるのは、ベローズ17は、
0.1〜〜0.2mm程度と極めて薄く形成され、かつ、
両者のろう付け後の冷却によつて生ずる熱応力が
無機絶縁物からなる絶縁円板2の機械的強度に比
して極めて小さいので、ベローズ17自身がろう
付け後の徐冷過程において塑性変形するためと考
えられる。
In addition, the reason why the insulating disc 2 made of an inorganic insulating material such as alumina ceramic and the bellows 17 made of stainless steel can be made to have high airtightness and mechanical strength is because the bellows 17 is
It is formed extremely thin, about 0.1 to 0.2 mm, and
Since the thermal stress generated by cooling the two after brazing is extremely small compared to the mechanical strength of the insulating disk 2 made of an inorganic insulator, the bellows 17 itself is plastically deformed during the slow cooling process after brazing. It is thought that this is because of this.

以上の如く本発明は、金属円筒の両端に、リン
グ状にしてかつ筒部とその一端を径方向内方へ延
設したフランジ部とからなる補助部材をそれぞれ
のフランジ部が同一方向に位置するが如くして気
密に接合するとともに、各補助部材のフランジ部
に、金属円筒1の内径より大径の円板状に形成さ
れかつ外周縁部付近の一端面にメタライズ層を形
成した絶縁円板をそれぞれのメタライズ層を介し
気密に接合して真空容器を構成し、前記真空容器
内に各絶縁円板の中央部から相対的に接近離反自
在に導入した対をなす電極棒を介し1対の電極を
接触離反自在に設けてなるものであるから、真空
容器の大径化を容易にして、かつ、安価に行なう
ことができる。また、真空容器の構成部材間のろ
う付けを効果的にして良好に行なうことができ
る。さらに、両端の補助部材及び絶縁円板をそれ
ぞれ同一形状のものとすることができるので量産
に適する等の効果を奏する。
As described above, the present invention provides an auxiliary member having a ring shape at both ends of a metal cylinder and comprising a cylindrical portion and a flange portion extending radially inward from one end of the auxiliary member, the flange portions of which are located in the same direction. At the same time, an insulating disk is attached to the flange portion of each auxiliary member, which is formed into a disk shape with a diameter larger than the inner diameter of the metal cylinder 1, and has a metallized layer formed on one end surface near the outer peripheral edge. are airtightly joined through the respective metallized layers to form a vacuum container, and a pair of electrode rods are introduced into the vacuum container from the center of each insulating disk so as to be able to approach and separate from each other. Since the electrodes are provided so as to be able to come into contact with each other and separate from each other, the diameter of the vacuum container can be increased easily and at low cost. Moreover, the brazing between the constituent members of the vacuum container can be effectively and satisfactorily performed. Furthermore, since the auxiliary members and the insulating disks at both ends can be made to have the same shape, it is suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る真空しや断器の半截断面図で
ある。 1……金属円筒、2……絶縁円板、3……補助
部材、3a……筒部、3b……フランジ部、4…
…真空容器、5,6……電極棒、7,8……電
極、13……メタライズ層。
The figure is a half-cut sectional view of a vacuum shield disconnector according to the present invention. DESCRIPTION OF SYMBOLS 1...Metal cylinder, 2...Insulating disk, 3...Auxiliary member, 3a...Cylinder part, 3b...Flange part, 4...
...Vacuum container, 5, 6... Electrode rod, 7, 8... Electrode, 13... Metallized layer.

Claims (1)

【特許請求の範囲】[Claims] 1 金属円筒の両端に、リング状にしてかつ筒部
とその一端を径方向内方へ延設したフランジ部と
からなる補助部材をそれぞれのフランジ部が同一
方向に位置するが如くして気密に接合するととも
に、各補助部材のフランジ部に、金属円筒1の内
径より大径の円板状に形成され、かつ外周縁部付
近の一端面にメタライズ層を形成した絶縁円板を
それぞれのメタライズ層を介し気密に接合して真
空容器を構成し、前記真空容器内に各絶縁円板の
中央部から相対的に接近離反自在に導入した対を
なす電極棒を介し1対の電極を接触離反自在に設
けてなる真空しや断器。
1 At both ends of a metal cylinder, an auxiliary member made of a ring-shaped cylindrical part and a flange part extending radially inward from one end of the cylindrical part is installed so that each flange part is located in the same direction so as to be airtight. At the same time, an insulating disk formed in the shape of a disk with a diameter larger than the inner diameter of the metal cylinder 1 and having a metallized layer formed on one end surface near the outer peripheral edge is attached to the flange portion of each auxiliary member. A pair of electrodes can be brought into contact with and separated from each other through a pair of electrode rods which are introduced into the vacuum container from the center of each insulating disk so that they can be relatively approached and separated. A vacuum cutter installed in
JP9969480A 1980-06-30 1980-07-21 Vacuum breaker Granted JPS5725632A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9969480A JPS5725632A (en) 1980-07-21 1980-07-21 Vacuum breaker
DE8181302900T DE3173186D1 (en) 1980-06-30 1981-06-26 A vacuum interrupter and methods of manufacturing the same
EP19810302900 EP0043258B1 (en) 1980-06-30 1981-06-26 A vacuum interrupter and methods of manufacturing the same
US06/283,867 US4417110A (en) 1980-07-21 1981-07-16 Vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9969480A JPS5725632A (en) 1980-07-21 1980-07-21 Vacuum breaker

Publications (2)

Publication Number Publication Date
JPS5725632A JPS5725632A (en) 1982-02-10
JPS6240809B2 true JPS6240809B2 (en) 1987-08-31

Family

ID=14254146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9969480A Granted JPS5725632A (en) 1980-06-30 1980-07-21 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS5725632A (en)

Also Published As

Publication number Publication date
JPS5725632A (en) 1982-02-10

Similar Documents

Publication Publication Date Title
JPS6245654B2 (en)
US4365127A (en) Vacuum power interrupter
JPH03119618A (en) Vacuum switch chamber forming method
EP0040933B1 (en) Vacuum-housed circuit interrupter
JP3361932B2 (en) Vacuum valve
JPH0113620B2 (en)
US4408107A (en) Vacuum interrupter
US4414448A (en) Vacuum circuit interrupter
US5753876A (en) Clad end seal for vacuum interrupter
US2680824A (en) Electric discharge device
JPS633067Y2 (en)
EP0043258B1 (en) A vacuum interrupter and methods of manufacturing the same
US4446346A (en) Vacuum interrupter
JPS6240809B2 (en)
JPS6327405Y2 (en)
KR860000796B1 (en) Vacuum breaker
EP0043186B1 (en) Vacuum circuit interrupter
JPH0226335B2 (en)
JPS631692B2 (en)
JPS6338808B2 (en)
JPH0211704Y2 (en)
US4733456A (en) Method of assembling a shield assembly of a vacuum interrupter
US4417110A (en) Vacuum interrupter
GB2182804A (en) Casing of vacuum interrupters
US4450327A (en) Vacuum interrupter