JPS6338749A - Speed change controller for continuously variable transmission - Google Patents

Speed change controller for continuously variable transmission

Info

Publication number
JPS6338749A
JPS6338749A JP61180637A JP18063786A JPS6338749A JP S6338749 A JPS6338749 A JP S6338749A JP 61180637 A JP61180637 A JP 61180637A JP 18063786 A JP18063786 A JP 18063786A JP S6338749 A JPS6338749 A JP S6338749A
Authority
JP
Japan
Prior art keywords
pressure
speed change
vito
continuously variable
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61180637A
Other languages
Japanese (ja)
Other versions
JPH0737822B2 (en
Inventor
Motohisa Miyawaki
基寿 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP61180637A priority Critical patent/JPH0737822B2/en
Publication of JPS6338749A publication Critical patent/JPS6338749A/en
Publication of JPH0737822B2 publication Critical patent/JPH0737822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the hunting of a spool by installing a check valve for permitting only the inflow of the Pitot pressurized oil in a Pitot pressure chamber and an orifice formed in parallel to the valve into the Pitot pressurized oil passage of a speed change control valve. CONSTITUTION:An oil passage 75 having a check valve 71 and an orifice 72 formed in parallel to the valve 71 is formed into a Pitot pressurized oil passage 50 communicating to the Pitot pressure chamber 45e of a speed change control valve 44. The check valve 71 permits only the inflow of the pressurized oil into the Pitot pressure chamber 45e. The orifice 72 directly connects the Pitot pressure chamber 45e and the oil passage 50 so as to bypass the check valve 7. When the number of engine revolution reduces, and the Pitot pressure lowers, a spool 46 is shifted by a spring 47, discharging the line pressure on a primary pulley 24 side. Since, in said shift, the pressurized oil in the Pitot pressure chamber 45e is gradually discharged through the orifice 72, the hunting accompanied with the excessive return of the spool 46 is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

r産業上の利用分野】 本発明は、主として車両用に使用される無段変速機の変
速制御装置にrlAする。
rlA Field of Industrial Application The present invention is directed to a speed change control device for a continuously variable transmission mainly used for vehicles.

【従来の技術】[Conventional technology]

上述のような無段変速機の変速$り即装胃に関しては、
本件出願人の先のi定業に係る特開昭60−159 ’
I 55 ”5公報に記載の先行技術がある。これは、
油圧によりブーり比を無段階に変化させるベルト式無段
変速機を対象として、その油圧系に作動油の給油、排油
を切換える変速ルリ御弁を備えたものである。 上記変速制御弁には、制郊信8としてのビトー圧油を受
入れるビ[・−圧室が形成されて43す、変速機のブラ
イマリブーり側の回転数に応じたビ[−一圧油の流入に
伴いスプールをバネ力に抗して移動させることで、変速
比を漸次減少づ゛るJ、うになっている。
Regarding the speed change of the continuously variable transmission as mentioned above,
Japanese Patent Application Laid-open No. 60-159' related to the applicant's previous i-regular business
There is a prior art described in the I55 "5 publication. This is
This system is intended for belt-type continuously variable transmissions that use hydraulic pressure to change the boolean ratio steplessly, and is equipped with a variable speed control valve that switches between supplying and discharging hydraulic oil in the hydraulic system. The above-mentioned speed change control valve is formed with a pressure chamber for receiving Vito pressure oil as the transmission 8, and the transmission control valve receives Bi[-pressure oil according to the rotational speed on the transmission side of the transmission. By moving the spool against the spring force as the fluid flows in, the gear ratio is gradually decreased.

【発明が解決しようとづる問題点] ところでこの先行技術では、変速制御弁のビトー圧室に
ビトー圧油がダイレクトに流入、流出する構成のため、
ビトー圧の微小変動に伴いバネ付勢されたスプールがハ
ンヂ〜ングを生じ易かった。 殊に第3図のグラフにおいて符@Aで示す大変速領域で
は、ビトー圧自体が比較的に低く、かつプライマリプー
リの回転数変化に対づるビ[・−圧の変化量も小さいた
め、この傾向が大きかった。そのため、変速制御にヒス
テリシスが生じて変速比が周期的に変化し、車体に前後
方向の不快な振動が生じろという不都合があった。 そこで本発明は、変速比の制御を安定状態で行うことに
J、す、車体に発生する不快な前後振動や、油圧の異常
変動を防止することを目的とする。 【問題点を解決するための手段】 この目的のため本発明は、無段変速機の油圧系に、変速
機入力軸側の回転速度に応じたビトー圧油を制御信号と
して受入れるビトー圧室を有する変速制御弁を偵占え、
この変速制御弁のスプール動作に応じて無段変速機を変
速操作する無段変速機の変速制御装置において、上記変
速制御弁のビトー圧油路中には、ビトー圧室内のビトー
圧油の流入のみ許容するチェックバルブとそれに並設し
たオリフィスを設けたことを要旨とする。
[Problems to be Solved by the Invention] However, in this prior art, since the Vito pressure oil directly flows into and out of the Vito pressure chamber of the speed change control valve,
The spring-loaded spool was prone to hang due to minute fluctuations in Vito pressure. Particularly in the high speed region indicated by the symbol @A in the graph of Fig. 3, the Vito pressure itself is relatively low, and the amount of change in Vito pressure with respect to the change in the rotational speed of the primary pulley is also small. The trend was great. As a result, hysteresis occurs in the gear change control, causing the gear ratio to change periodically, causing unpleasant longitudinal vibrations in the vehicle body. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to control the gear ratio in a stable state, thereby preventing unpleasant longitudinal vibrations occurring in the vehicle body and abnormal fluctuations in oil pressure. [Means for Solving the Problems] For this purpose, the present invention includes a Vito pressure chamber in the hydraulic system of a continuously variable transmission that receives Vito pressure oil according to the rotational speed of the input shaft of the transmission as a control signal. Find out the speed change control valve that has
In a speed change control device for a continuously variable transmission that changes the speed of the continuously variable transmission according to the spool operation of the speed change control valve, Vito pressure oil in the Vito pressure chamber flows into the Vito pressure oil path of the speed change control valve. The gist is that a check valve and an orifice installed in parallel with the check valve are installed.

【作   用】[For production]

このような手段により、ビトー圧油は、チェックバルブ
を通って直ちに変速制御弁のビトー圧室内に流入するが
、そこからの流出は、オリフィスを通ることにより緩や
かに行われる。 従って、スプールの動作にダンピング効果゛がj9られ
、スプールのハンチングが防止されることにより変速比
制御の(−ステリシス現象がなくなり、変速比が安定状
態下で制御される。
With this means, the Vito pressure oil immediately flows into the Vito pressure chamber of the speed change control valve through the check valve, but flows out from there slowly by passing through the orifice. Therefore, a damping effect is applied to the operation of the spool, and hunting of the spool is prevented, thereby eliminating the -steresis phenomenon in speed ratio control and controlling the speed ratio in a stable state.

【実 施 例] 以下、図面を参照して本発明の一実施例を具体的に説明
する。 第2図は本発明が適用される無段変速成が組込まれた車
両の伝動系を示し、符号1は雷磁粉式りラッヂ、2は無
段変速機を示す。この無段変速機2は、入力側から順に
前後進の切換部3.プーリ比変換部4.終減速部51′
3よび油圧制御部6がら構成されている。 電磁粉式クラッチ1は、エンジンからのクランク軸7に
コイル6を内蔵したドライブメンバ9が一体結合し、こ
れに対し変速機入力軸1oにドリブンメンバ11が回転
方向に一体的にスプライン結合し、これらのドライブお
よびドリブンメンバ9゜11がギャップ12を介して遊
■して、このギャップ12にパウダ室13から電磁料)
を集積するようになっェいる。また、ドライブメンバ9
にはボルダ14ヲ介してスリップリング15が設置され
、スリップリング15に給電用のブラシ16が摺接して
コイル8にクラッチ電流を流すようにしである。 こうして、コイル8にクラッチ電流を流すと、ドライブ
およびドリブンメンバ9.11の間に生じる磁力線によ
り両者のギャップ12に電磁粉が鎮状に結合して集積し
、これによる結合力でドライブメンバ9に対しドリブン
メンバ11が滑りながら一体結合して接続した状態にな
る。一方、クラッチ電流をカットすると、電磁粉による
ドライブおよびドリブンメンバ9.11の結合力が消失
してクラッチ切断状態になる。そしてこの場合のクラッ
チ電流の供給およびカット・を、無段変速機2のI/J
換部3をシフトレバ−等で操作する際に連動して行うよ
うにすれば、P(パーキング)またはNにュートラル)
レンジからD(ドライブ)、L(ロー)またはR(リバ
ース)レンジへの切換時に自動的にクラッチ1が接部し
て、クラッチペダル操作は不要になる。 次いで無段変速機2において、前後進切換部3は、上記
クラッチ1からの入力軸10とこれに同軸上に配置され
た無段変速R2の主軸17との間に設けられるもので、
入力軸10に一体結合する後進用ドライブメンバ18と
主軸11に回転自在に■合する後進用ドリブンイー71
9とがカウンタギヤ20J3よびアイドラギヤ21を介
して噛合い構成され、更にこれらの主軸17とギS?1
8.19の間に切換クラッチ22が設けられる。そして
PまたはNレンジの中立位置から切換クラッチ22をギ
ヤ18側に係合すると、入力軸10に主軸17が直結し
てDまたはLレンジの前進状態になり、切換クラッチ2
2をギヤ19側に係合すると、入力軸10の動力がギヤ
18ないし21により減速逆転して主軸17に伝達され
、Rレンジの後進状態になる。 ブーり比変換部4は、上記主軸17に対し副軸23が平
行配置され、これらの両輪17.23にそれぞれプライ
マリプーリ24.セカンダリプーリ25が設けられ、且
つ両プーリ24.25の間にエンドレスの駆動ベルト2
Gがトドは渡しである。上記プーリ24.25はいずれ
も2分割に構成され、可動側ブー1ノ半休24a 、 
25aには油圧サーボ装置27.213が付設されてブ
ーり間隔を可変にしである。そしてこの場合に、プライ
マリプーリ24は固定側ブーり半体24bに対して可動
側プーリ半休24aを近づ【ノてプーリ間隔を順次狭く
させ、セカンダリプーリ25は逆に固定側プーリ半休2
5bに対し可動側ブーり半体25aを遠ざけてプーリ間
隔を順次広げ、これにより駆動ベルト2Gのプーリ24
.25における巻付は径の比を変化させて無段変速した
動力を副軸23に取出すようになっている。 終減速部5は、上記副軸23に中間減速ギA′I29を
介して連結される出力軸30の出力ギヤ31に大径のフ
ァイナルギヤ32が噛合い、このファイナルギヤ32か
ら差動機構33を介して左右の駆動輪の車軸34゜35
に伝動構成される。 更に油圧制御部6にはプライマリプーリ24側に、その
主軸17および入力軸10の内部を貫通してエンジンク
ランク軸7に直結するポンプ駆動軸36でエンジン運転
中常に油圧を生じるように油圧ポンプ37が設けられる
。そ()てこのポンプ油圧が、変速制御装置38でアク
t2ルの踏込みに応じたスロットル開度およびエンジン
回転数等により制御されて油路39.40を介しブライ
マリブーりおよびセカンダリプーリ側の各油圧サーボ装
置27.211に供給され、ブーり比変換部4の無段変
速ルリ郊を行うように構成される。 第1図において変速制御装芦38について説明すると、
プライマリプーリ24側の油圧サーボ装置27において
可動側プーリ半休24aがビス[・ンを兼ねてシリンダ
27aに嵌合し、サーボ室27bのライン圧で動作する
ようにされ、セカンダリプーリ25側の油圧サーボ装′
f12Bにおいても可動側ブーり半体25aがシリンダ
28aに嵌合し、サーボ室28bのライン圧で動作する
ようにされ、この場合にプーリ半休24aの方がプーリ
半体25aに比べてライン圧の受圧面積が太き(なって
いる。そしてセカンダリプーリ25のサーボ室28bか
らの油路40が、油圧ポンプ37.フィルター41を介
して油溜42に連通し、この油路40の油圧ポンプ吐出
側から分岐してプライマリプーリ24のサーボ室27b
 I、:連通する油路39に圧力調整弁43および変速
制御弁44が設けられている。 変速制御lO弁44は、弁本体45.スプール4G、ス
プール46の一方に付勢されるスプリング47およびス
プリング力を変化する作動部材48から成り、スプール
46のスプリング47と反対側のビトー圧’945eに
通ずるボート45aに、プライマリプーリ24側に設け
られる回転センサ49からのエンジン回転数に応じたビ
トー圧が油路50を介して導かれ、作動部材48にはス
ロットル開度に応じて回動するスロットルカム51が当
接しである。また弁本体45のボート45bは、スプー
ル46のランド46a 、 46bの位置に応じライン
圧供給用ボート450またはドレンボート45dの一方
に選択的に連通ずるようになっており、ボート45bが
油路39の油路39aによりサーボ室27bに連通し、
ボート45cが油路39bにより圧力調整弁43側に連
通し、ドレンボー)−45dがドレン油路52により油
溜42側に連通する。 これにより、変速制御弁44のスプール46においては
、ビトー圧室450のエンジン回転数に応じたビトー圧
と、ス[1ツトルカム51の回動に伴うスロッ[−ル開
度に応じたスプリング47の力とが対抗して作用し、こ
れら両者の関係により動作する。即ち、エンジン回転数
が上界するに伴ってビトー圧が上界すると、スプール4
6が図上左へ移動することでボート451)と45cが
連通し、プライマリプーリ24のサーボ室27bにライ
ン圧を供給して変速比が小になる高速段側への変速を開
始する。このときスロットル開度に応じたスプリング4
7の力が大きいほど、上記変速開始点はエンジン回転数
の高い方に移行する。 次いで、圧力調整弁43は、弁本体53.スプール54
、スプール54の一方に付勢されるスプリング55から
成り、スプール54のスプリング55と反対側のボート
53a 、 53bにはそれぞれ油路50のビトー圧。 油路39cのライン圧が導かれる。またスプリング55
には、プライマリプーリ24の可動側ブーり半体24a
に係合して実際のブーり比を検出するフィードバックセ
ンサ5Gが、ブーり比が人なるほどスブリング力を11
9すべく連結される。更に、ポンプ側油路39cは、ス
プール54の位置にかかわらず1官に変速制御弁44の
油路39bに連通している。そしてスプール54は、ボ
ート53aに及ぶビトー圧とスプリング55の力とによ
りバランスし、スプール54のランド548部の移動に
より、ライン圧のボート53Cとドレン油路52側のボ
ート53dとの連通が制御されることで排圧制御するよ
うになっている。 なお、ドレン油路52のボールチエツク弁60より上流
側から潤滑油路61が分岐し、このrn滑油路61に、
絞り62.排圧用デユーティソレノイド弁63を介して
圧力SI!J整弁43におけるライン圧低下側のボート
64が連通している。そして上記ソレノイド弁63が、
図示省略した手段によりスロットル開度が小さいはど排
圧恐を少なく制御されることで、ボート64には、エン
ジントルクが小さいときほど大きな潤滑油圧が作用する
ようになっている。 ここで本発明によれば、前記変速制御弁44のビトー圧
室45 eに通ずるビトー圧の油路50中に、チェック
バルブ71とそれに並設したオリフィス72を有する油
路15が段ジノられる。このチェックバルブ71は、ビ
[・−圧室45eに通ずる弁本体45のボート45aに
組込まれたイ・1勢バネ73とボール弁74よりなり、
ビトー圧室45eへの圧油の流入のみ許容し、流出は阻
止するようにされている。そしてこのチェックバルブ7
1をバイパスするようにして弁本体45には、ビトー圧
室45eと油路50を直接に連通ずるオリフィス72付
の油路75が形成されている。 次に、このような構成の無段変速機の変速制御装置につ
き、その作用を説明する。 いま、無段変速機2の前後進切換部3がパーキングレン
ジまたはニュートラルレンジとするとプライマリプーリ
24には、エンジン回転が伝達されないことからビトー
圧は発生していない。そこで変速制御弁44は、スプー
ル46がスプリング47のバネ力のみを受けてボート4
5bとボート45dを連通し、プライマリプーリ24の
サーボ室27bをドレンしている。このときエンジン回
転に伴い油圧ポンプ37は双に作動しているので、ライ
ン圧がセカンダリプーリ25のサーボ室28bに供給さ
れており、ブーり比変換部4は、セカンダリプーリ25
のベルト巻掛は半径が最大の、tなわち変速比が最大の
低速段になっている。 次に、前後進切換部3をドライブレンジとしてアクセル
操作すると、プライマリプーリ24の回転に応じてビト
ー圧が発生し、この圧油が、油路50゜チェックバルブ
71を通って変速制御弁44のビトー圧室45cに流入
づる。このためエンジン回転数の上界に伴ってビトー圧
が上昇すると、スプール46がスプリング47のバネ圧
に抗して移動を開始し、やがてボート45bとボート4
5cとを連通してプライマリプーリ24のサーボ室27
bにライン圧が供給される。このライン圧は、圧力調!
!!!1ft−43におけるスプリング55がフィード
バックヒンサ56によるバネ力付加の作用を受けており
、スプール54がυ[圧作用していないことから高い圧
力に保持されている。そしてこのようなライン圧が、プ
ライマリプーリ24およびセカンダリプーリ25のそれ
ぞれのサーボ’ff27b 、 28bに供給されるε
とから、各プーリ半休24a 、 25aがその受圧面
積の相違に岳づいて移動し、駆動ベルト26の巻掛【)
半径を漸次変化して高速段への無段変速が開始されるの
である。 上記無段変速の開始点は、アクセル操作が緩やかでスロ
ットル開度が小さい場合に対し、スロットル開度の大き
い急加速の場合は、スロットルカム51により変速制御
弁44のスプリング47にバネ力が付加されることによ
り、その分遅れることになる。、例えば緩やかな加速の
場合、エンジン回転数1600rpm付近が変速開始点
であるのに対し、急加速の1合は、4000rl)Il
l付近が変速開始点となる。 従って緩やかな加速では、発進後比較的♀く無段変速が
開始されて、その間エンジン回転数が略一定に保たれる
のに対し、急加速では、エンジン回転数が略4000r
pmに至るまでの間、変速比の大きい低速段のロー18
態で力強く加速する(第3図参照)、。 アクセルペダルの踏込みを緩めると、エンジン回転数が
低下してビトー圧が減少するので、変速制御弁44では
、スプリング47のバネ圧によりスプール46がプライ
マリプーリ24側のライン圧を排油すべく移動する。こ
のスプール46の移動は、ビトー 圧v 450内の圧
油がオリフィス72を通って徐々に流出することにより
充分なダンピング効果をもって安定して行われ、スプー
ル46の戻りすぎに伴うハンチングが防止される。この
ハンチング防止の効果は、ビトー圧自体が比較的低い低
速段側の大きな変速比の領域で特に顕著である。 このようにスプールがハンチングすることなく移動する
ことで、変速比は安定して円滑に制御される。 【発明の効果】 以上説明したとおり本発明によれば、変速制御弁のスプ
ールのハンチングが防止されて無段変速機の変速比が安
定状態下で制御されることにより、従来のような変速比
の周期的変動に伴う車体の不快な前後撮動が防止され、
また、油圧系の油圧の異常変動も防止される。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the drawings. FIG. 2 shows a transmission system of a vehicle incorporating a continuously variable transmission to which the present invention is applied, in which reference numeral 1 indicates a lightning powder type ludge and 2 indicates a continuously variable transmission. This continuously variable transmission 2 has a forward/reverse switching section 3. Pulley ratio converter 4. Final reduction section 51'
3 and a hydraulic control section 6. In the electromagnetic powder clutch 1, a drive member 9 having a built-in coil 6 is integrally connected to a crankshaft 7 from the engine, and a driven member 11 is integrally connected in the rotation direction by a spline to a transmission input shaft 1o. These drives and driven members 9゜11 are loosely connected through a gap 12, into which electromagnetic material is supplied from the powder chamber 13).
We are starting to accumulate more and more. In addition, drive member 9
A slip ring 15 is installed through the boulder 14, and a brush 16 for power supply is in sliding contact with the slip ring 15 to cause a clutch current to flow through the coil 8. In this way, when a clutch current is applied to the coil 8, electromagnetic particles are bonded and accumulated in the gap 12 between the drive and driven members 9 and 11 due to the lines of magnetic force generated between the drive and driven members 9 and 11, and the resulting bonding force causes the electromagnetic particles to be attracted to the drive member 9. On the other hand, the driven member 11 slides and becomes integrally connected. On the other hand, when the clutch current is cut, the drive due to the electromagnetic powder and the coupling force between the driven members 9 and 11 disappear, resulting in a clutch disengaged state. In this case, the clutch current is supplied and cut by the I/J of the continuously variable transmission 2.
If the switching part 3 is operated in conjunction with the shift lever etc., it can be changed to P (parking) or neutral to N.
Clutch 1 is automatically engaged when switching from range to D (drive), L (low) or R (reverse) range, eliminating the need for clutch pedal operation. Next, in the continuously variable transmission 2, the forward/reverse switching section 3 is provided between the input shaft 10 from the clutch 1 and the main shaft 17 of the continuously variable transmission R2 disposed coaxially therewith.
A reverse drive member 18 that is integrally connected to the input shaft 10 and a reverse driven drive member 18 that is rotatably fitted to the main shaft 11.
9 are meshed with each other through a counter gear 20J3 and an idler gear 21, and furthermore, these main shaft 17 and gear S? 1
A switching clutch 22 is provided between 8.19 and 19. Then, when the switching clutch 22 is engaged from the neutral position of the P or N range to the gear 18 side, the main shaft 17 is directly connected to the input shaft 10, and the switching clutch 22 is in the forward state of the D or L range.
2 is engaged with the gear 19 side, the power of the input shaft 10 is decelerated and reversed by the gears 18 to 21, and is transmitted to the main shaft 17, resulting in a reverse drive state in the R range. In the boolean ratio conversion unit 4, a subshaft 23 is arranged parallel to the main shaft 17, and primary pulleys 24. A secondary pulley 25 is provided, and an endless drive belt 2 is provided between both pulleys 24.25.
G is sea lion passing. Each of the pulleys 24 and 25 is divided into two parts, with a movable side boot 1 and a half-rest 24a,
Hydraulic servo devices 27 and 213 are attached to 25a to make the boob interval variable. In this case, the primary pulley 24 moves the movable pulley half 24a closer to the fixed bobbin half 24b, and the pulley interval is gradually narrowed;
5b, the movable half-boot half 25a is moved away from the pulley half 25a, and the pulley interval is gradually widened.
.. The winding at 25 changes the ratio of diameters so that continuously variable speed power is extracted to the subshaft 23. In the final reduction section 5, a large-diameter final gear 32 meshes with an output gear 31 of an output shaft 30 connected to the subshaft 23 via an intermediate reduction gear A'I 29, and a differential mechanism 33 is connected to the final gear 32 from the final gear 32. Through the left and right drive wheel axles 34°35
Transmission is configured. Further, the hydraulic control unit 6 includes a hydraulic pump 37 on the primary pulley 24 side so as to constantly generate hydraulic pressure during engine operation through a pump drive shaft 36 that passes through the main shaft 17 and the input shaft 10 and is directly connected to the engine crankshaft 7. is provided. The pump oil pressure of the () lever is controlled by the speed change control device 38 according to the throttle opening degree and engine rotation speed according to the depression of the actuator 2, and is transmitted to the briny brake and each hydraulic pressure on the secondary pulley side via the oil passage 39,40. It is supplied to the servo devices 27 and 211 and is configured to perform continuously variable transmission of the boolean ratio converter 4. To explain the shift control device 38 in FIG. 1,
In the hydraulic servo device 27 on the primary pulley 24 side, the movable pulley half-rest 24a is fitted into the cylinder 27a, which also serves as a screw, and is operated by the line pressure of the servo chamber 27b, and the hydraulic servo device on the secondary pulley 25 side Equipment
Also at f12B, the movable bobber half 25a is fitted into the cylinder 28a and is operated by the line pressure of the servo chamber 28b, and in this case, the pulley half 24a has a lower line pressure than the pulley half 25a. The pressure receiving area is large.The oil passage 40 from the servo chamber 28b of the secondary pulley 25 communicates with the oil reservoir 42 via the hydraulic pump 37 and filter 41, and the oil passage 40 is connected to the hydraulic pump discharge side. Branching from the servo chamber 27b of the primary pulley 24
I: A pressure regulating valve 43 and a speed change control valve 44 are provided in the communicating oil passage 39. The speed change control lO valve 44 has a valve body 45. It consists of a spool 4G, a spring 47 biased to one side of the spool 46, and an actuating member 48 that changes the spring force. Vito pressure corresponding to the engine speed from a rotation sensor 49 provided is guided through an oil passage 50, and a throttle cam 51 that rotates in accordance with the throttle opening is in contact with the operating member 48. Further, the boat 45b of the valve body 45 is configured to selectively communicate with either the line pressure supply boat 450 or the drain boat 45d depending on the positions of the lands 46a and 46b of the spool 46, and the boat 45b is connected to the oil passage 39. communicates with the servo chamber 27b through an oil passage 39a,
The boat 45c communicates with the pressure regulating valve 43 side through the oil passage 39b, and the drain boat 45d communicates with the oil sump 42 side through the drain oil passage 52. As a result, in the spool 46 of the speed change control valve 44, the Vito pressure in the Vito pressure chamber 450 is adjusted according to the engine speed, and the spring 47 is applied in accordance with the throttle opening degree caused by the rotation of the throttle cam 51. The forces act in opposition to each other, and the operation is based on the relationship between these two forces. That is, when the Vito pressure increases as the engine speed increases, the spool 4
6 moves to the left in the drawing, the boats 451) and 45c communicate with each other, supplying line pressure to the servo chamber 27b of the primary pulley 24, and starting a shift to the high speed side where the gear ratio becomes smaller. At this time, the spring 4 corresponding to the throttle opening
The larger the force 7 is, the more the shift start point shifts to the higher engine speed. Next, the pressure regulating valve 43 is connected to the valve body 53. Spool 54
, a spring 55 biased on one side of the spool 54, and boats 53a and 53b on the opposite side of the spool 54 from the spring 55 are each supplied with the Vito pressure of the oil passage 50. The line pressure of the oil passage 39c is guided. Also spring 55
, there is a movable bobbin half 24a of the primary pulley 24.
The feedback sensor 5G that engages with the spring force and detects the actual spring ratio increases the springing force by 11 as the spring ratio increases.
9 are connected to each other. Further, the pump side oil passage 39c is in communication with the oil passage 39b of the speed change control valve 44 regardless of the position of the spool 54. The spool 54 is balanced by the Vito pressure applied to the boat 53a and the force of the spring 55, and communication between the line pressure boat 53C and the boat 53d on the drain oil path 52 side is controlled by movement of the land 548 of the spool 54. This allows exhaust pressure to be controlled. Note that a lubricating oil path 61 branches from the upstream side of the ball check valve 60 of the drain oil path 52, and this rn oil path 61 has a
Aperture 62. Pressure SI! via the exhaust pressure duty solenoid valve 63! A boat 64 on the line pressure decreasing side of the J regulating valve 43 is in communication. And the solenoid valve 63 is
By controlling the exhaust pressure to a small extent when the throttle opening is small by means not shown, a larger lubricating oil pressure acts on the boat 64 as the engine torque becomes smaller. According to the present invention, an oil passage 15 having a check valve 71 and an orifice 72 arranged in parallel with the check valve 71 is stepped in the Vito pressure oil passage 50 communicating with the Vito pressure chamber 45e of the speed change control valve 44. This check valve 71 is made up of a ball valve 74 and a spring 73 built into the boat 45a of the valve body 45 that communicates with the pressure chamber 45e.
Only the inflow of pressure oil into the Vito pressure chamber 45e is allowed, and the outflow is prevented. And this check valve 7
An oil passage 75 with an orifice 72 that directly communicates the Vito pressure chamber 45e and the oil passage 50 is formed in the valve body 45 so as to bypass the oil passage 1. Next, the operation of the shift control device for a continuously variable transmission having such a configuration will be explained. Now, when the forward/reverse switching section 3 of the continuously variable transmission 2 is in the parking range or the neutral range, the engine rotation is not transmitted to the primary pulley 24, so no Vito pressure is generated. Therefore, the speed change control valve 44 operates so that the spool 46 receives only the spring force of the spring 47 so that the boat 4
5b and the boat 45d, and drain the servo chamber 27b of the primary pulley 24. At this time, since the hydraulic pump 37 is operating in two directions as the engine rotates, line pressure is supplied to the servo chamber 28b of the secondary pulley 25, and the boost ratio converter 4
The belt winding has the maximum radius, t, that is, the low gear ratio has the maximum gear ratio. Next, when the forward/reverse switching unit 3 is operated as a drive range and the accelerator is operated, Vito pressure is generated in accordance with the rotation of the primary pulley 24, and this pressure oil passes through the oil passage 50° check valve 71 and the transmission control valve 44. It flows into the Vito pressure chamber 45c. Therefore, when the Vito pressure increases with the upper limit of the engine speed, the spool 46 starts to move against the spring pressure of the spring 47, and eventually the boat 45b and the boat 4
5c to communicate with the servo chamber 27 of the primary pulley 24.
Line pressure is supplied to b. This line pressure is pressure regulated!
! ! ! The spring 55 at 1 ft-43 is subjected to the action of applying spring force by the feedback hinger 56, and the spool 54 is held at a high pressure because υ[pressure is not applied. Then, such line pressure is supplied to the servos 'ff27b and 28b of the primary pulley 24 and the secondary pulley 25, respectively.
Therefore, each pulley half-rest 24a, 25a moves according to the difference in pressure receiving area, and the drive belt 26 is wound [).
By gradually changing the radius, continuously variable shifting to a high speed gear is started. The starting point of the continuously variable transmission is when the accelerator operation is gentle and the throttle opening is small, whereas in the case of sudden acceleration with a large throttle opening, the throttle cam 51 applies spring force to the spring 47 of the speed change control valve 44. This will result in a corresponding delay. For example, in the case of gentle acceleration, the shift start point is around 1600 rpm, whereas in the case of rapid acceleration, the shift start point is around 4000 rl) Il
The shift start point is near l. Therefore, with gentle acceleration, the continuously variable speed starts relatively quickly after starting, and the engine speed is kept approximately constant during that time, whereas with sudden acceleration, the engine speed is approximately 4000 rpm.
Until pm, the low speed gear with a large gear ratio is low 18.
(See Figure 3). When the accelerator pedal is released, the engine speed decreases and the Vito pressure decreases, so in the speed change control valve 44, the spool 46 is moved by the spring pressure of the spring 47 to drain the line pressure on the primary pulley 24 side. do. This movement of the spool 46 is performed stably with sufficient damping effect as the pressure oil in the Vito pressure V 450 gradually flows out through the orifice 72, and hunting caused by the spool 46 returning too much is prevented. . This anti-hunting effect is particularly noticeable in the large gear ratio region on the low gear side where the Vito pressure itself is relatively low. By moving the spool without hunting in this way, the gear ratio can be controlled stably and smoothly. Effects of the Invention As explained above, according to the present invention, hunting of the spool of the speed change control valve is prevented and the speed ratio of the continuously variable transmission is controlled in a stable state, thereby reducing the speed change ratio as in the conventional case. This prevents unpleasant front and rear shots of the vehicle body due to periodic fluctuations in
Further, abnormal fluctuations in the oil pressure of the hydraulic system are also prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による無段変速機の変速制御
I装置を示す油圧回路図、第2図は本発明が適用される
無段変速機が組込まれた車両伝動系のスケルトン図、第
3図は無段変速機の変速特性線図である。 1・・・電磁粉式クラッチ、2・・・p((段変速成、
3・・・前後進切換部、4・・・プーリ比変換部、5・
・・終減速部、6・・・油圧制御部、24・・・プライ
マリプーリ、25・・・セカンダリプーリ、27.28
・・・油圧サーボ装置、38・・・変速制御装置、39
.40・・・ライン圧油路、43・・・圧力調整弁、4
4・・・変速制御弁、45・・・弁本体、45e・・・
ビトー圧室、4G・・・スプール、50・・・ピ[・−
圧油路、71・・・チェックバルブ、72・・・オリフ
ィス、73・・・付勢バネ、74・・・ボール弁。
FIG. 1 is a hydraulic circuit diagram showing a shift control I device for a continuously variable transmission according to an embodiment of the present invention, and FIG. 2 is a skeleton diagram of a vehicle transmission system incorporating a continuously variable transmission to which the present invention is applied. , FIG. 3 is a shift characteristic diagram of the continuously variable transmission. 1... Electromagnetic powder clutch, 2... p ((speed change configuration,
3... Forward/forward switching section, 4... Pulley ratio conversion section, 5.
... Final reduction section, 6... Hydraulic control section, 24... Primary pulley, 25... Secondary pulley, 27.28
...hydraulic servo device, 38...speed change control device, 39
.. 40...Line pressure oil path, 43...Pressure regulating valve, 4
4... Speed change control valve, 45... Valve body, 45e...
Vito pressure chamber, 4G...spool, 50...pi [-
Pressure oil passage, 71... Check valve, 72... Orifice, 73... Biasing spring, 74... Ball valve.

Claims (1)

【特許請求の範囲】[Claims]  無段変速機の油圧系に、変速機入力軸側の回転速度に
応じたビトー圧油を制御信号として受入れるビトー圧室
を有する変速制御弁を備え、この変速制御弁のスプール
動作に応じて無段変速機を変速操作する無段変速機の変
速制御装置において、上記変速制御弁のビトー圧油路中
には、ビトー圧室内のビトー圧油の流入のみ許容するチ
ェックバルブとそれに並設したオリフィスを設けたこと
を特徴とする無段変速機の変速制御装置。
The hydraulic system of the continuously variable transmission is equipped with a speed change control valve having a Vito pressure chamber that receives Vito pressure oil according to the rotational speed of the input shaft of the transmission as a control signal. In a speed change control device for a continuously variable transmission that operates a step change transmission, the speed change control valve has a check valve in the Vito pressure oil path that allows only the inflow of Vito pressure oil in the Vito pressure chamber, and an orifice installed in parallel with the check valve. A speed change control device for a continuously variable transmission, characterized in that it is provided with:
JP61180637A 1986-07-31 1986-07-31 Shift control device for continuously variable transmission Expired - Lifetime JPH0737822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180637A JPH0737822B2 (en) 1986-07-31 1986-07-31 Shift control device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180637A JPH0737822B2 (en) 1986-07-31 1986-07-31 Shift control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS6338749A true JPS6338749A (en) 1988-02-19
JPH0737822B2 JPH0737822B2 (en) 1995-04-26

Family

ID=16086678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180637A Expired - Lifetime JPH0737822B2 (en) 1986-07-31 1986-07-31 Shift control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH0737822B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010111145A (en) * 2000-06-08 2001-12-17 이계안 Hydraulic control system of continuously variable transmission for vehicle
JP2008175319A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Hydraulic control device for transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010111145A (en) * 2000-06-08 2001-12-17 이계안 Hydraulic control system of continuously variable transmission for vehicle
JP2008175319A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Hydraulic control device for transmission

Also Published As

Publication number Publication date
JPH0737822B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
GB2076084A (en) Torque ratio control device for a v-belt type continuously variable transmission for vehicles
JPH0563662B2 (en)
JPS6060361A (en) Hydraulic pressure control device of continuously variable transmission
JPH0262467A (en) Oil pressure control device for transmission
JP3861840B2 (en) Fluid pressure control circuit
JPS6338749A (en) Speed change controller for continuously variable transmission
JPH0526968B2 (en)
JPS62127554A (en) Oil pressure control for continuously variable transmission
JP6094381B2 (en) Vehicle hydraulic control device
JPH01172667A (en) Oil pressure control device for transmission
JPS6362954A (en) Belt slip detecting method for v-belt type continuously variable transmission
JPS61105361A (en) Stepless transmission for vehicles
JP2852548B2 (en) Hydraulic control device for continuously variable transmission
JP2985550B2 (en) Hydraulic control device for vehicle power transmission
JP2840718B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JP2016191407A (en) Hydraulic control device of belt-type continuously variable transmission
JP3916181B2 (en) Hydraulic clutch control device for transmission
JPH04254052A (en) Control device for belt-type continuously variable transmission
JPH0758109B2 (en) Shift control device for continuously variable transmission
KR100279428B1 (en) Hydraulic control system of continuously variable transmission for automobile
JP2840719B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JPH0526972B2 (en)
JPS604659A (en) Hydraulic controller for continuously variable transmission
JPS6148658A (en) Speed-change controller for continuously variable transmission
JPS63269740A (en) Speed change control device for continuously variable transmission