JPS6338533Y2 - - Google Patents

Info

Publication number
JPS6338533Y2
JPS6338533Y2 JP1981092517U JP9251781U JPS6338533Y2 JP S6338533 Y2 JPS6338533 Y2 JP S6338533Y2 JP 1981092517 U JP1981092517 U JP 1981092517U JP 9251781 U JP9251781 U JP 9251781U JP S6338533 Y2 JPS6338533 Y2 JP S6338533Y2
Authority
JP
Japan
Prior art keywords
chamber
inert gas
valve
fuel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981092517U
Other languages
Japanese (ja)
Other versions
JPS57204666U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981092517U priority Critical patent/JPS6338533Y2/ja
Publication of JPS57204666U publication Critical patent/JPS57204666U/ja
Application granted granted Critical
Publication of JPS6338533Y2 publication Critical patent/JPS6338533Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【考案の詳細な説明】 本考案は水素ガス等の燃料ガスと空気等の酸化
剤ガスとを受入れて発電を行なうマトリツクス型
燃料電池に関し、とくに電池休止時に窒素ガス等
の不活性ガスを燃料室および酸化剤室に封入して
密封保管する際の電極間過差圧の発生を防止する
装置に関するものである。
[Detailed description of the invention] The present invention relates to a matrix fuel cell that generates electricity by receiving a fuel gas such as hydrogen gas and an oxidizing gas such as air. The present invention also relates to a device for preventing the generation of differential pressure between electrodes when sealed and stored in an oxidizer chamber.

一般にこの種の燃料電池の燃料室と酸化剤室と
の間は、比較的薄い電極基材と電解液含浸マトリ
ツクスなどから形成されているため、両室間の差
圧に対する強度はあまり期待できない。これを解
決する最も簡単な方法は両室の排出側を大気開放
して同圧とする方法であるが、燃料電池の休止時
に不活性ガスを充填する場合には、密封状態とす
ることが要求されるため、この方法は採用できな
い。
Generally, the space between the fuel chamber and the oxidizer chamber in this type of fuel cell is formed from a relatively thin electrode base material and an electrolyte-impregnated matrix, so that it cannot be expected to have much strength against the differential pressure between the two chambers. The easiest way to solve this problem is to open the exhaust sides of both chambers to the atmosphere and maintain the same pressure, but when filling with inert gas when the fuel cell is stopped, it is necessary to keep them sealed. Therefore, this method cannot be adopted.

さらに不活性ガスを充填して密封しただけで
は、停止時の温度、圧力条件により冷却過程で差
圧を生じるだけでなく、冷却時に負圧となつて機
器を破損する危険すら生じる。
Furthermore, if the equipment is simply filled with inert gas and sealed, not only will differential pressure be generated during the cooling process depending on the temperature and pressure conditions at the time of shutdown, but there will also be a risk of damage to the equipment due to negative pressure during cooling.

そこで、本考案はマトリツクス型燃料電池の休
止期間の長短または周囲の大気条件に影響される
ことなしに、両室間の差圧を一定範囲内におさめ
る装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a device that can keep the differential pressure between both chambers within a certain range without being affected by the length of the rest period of the matrix fuel cell or the surrounding atmospheric conditions.

本考案によれば、この目的は燃料電池の燃料室
と酸化剤室との間の差圧と両室のうち少なくとも
一方の圧力とを測定し、この測定結果に基づいて
それぞれの室への不活性ガス供給ないし排出を司
る弁を制御することにより達成される。具体的に
は燃料電池の燃料室に不活性ガスを供給する第2
の弁と、該燃料室から不活性ガスを排出する第3
の弁と、燃料電池の酸化剤室に不活性ガスを供給
する第1の弁と、該酸化剤室から不活性ガスを排
出する第4の弁と、燃料室と酸化剤室との間の差
圧を検出する差圧測定器と、燃料室または酸化剤
室の圧力を測定する圧力測定器とを備え、前記圧
力測定器の出力に基づいて第1(または第2)の
弁を制御し、前記差圧測定器の出力に基づいて第
2または第3の弁(第1または第4の弁)を、制
御して燃料室と酸化剤室との差圧が所定値以下と
なるようにする。
According to the present invention, this purpose is to measure the differential pressure between the fuel chamber and the oxidizer chamber of the fuel cell and the pressure in at least one of the two chambers, and, based on the measurement results, to control the pressure in each chamber. This is achieved by controlling the valves that control the supply or discharge of active gas. Specifically, the second part supplies inert gas to the fuel chamber of the fuel cell.
a third valve for discharging inert gas from the fuel chamber.
a first valve for supplying inert gas to the oxidizer chamber of the fuel cell, a fourth valve for discharging inert gas from the oxidizer chamber, and a valve between the fuel chamber and the oxidizer chamber. A pressure measuring device that detects a differential pressure and a pressure measuring device that measures the pressure in a fuel chamber or an oxidizer chamber, and controls a first (or second) valve based on the output of the pressure measuring device. , a second or third valve (first or fourth valve) is controlled based on the output of the differential pressure measuring device so that the differential pressure between the fuel chamber and the oxidizer chamber is below a predetermined value. do.

次に本考案の実施例の構成と動作を図面にもと
づいて説明する。
Next, the configuration and operation of an embodiment of the present invention will be explained based on the drawings.

第1図において、燃料電池は燃料室2,燃料
電極3,マトリツクス4,酸化剤(空気)電極5
および酸化剤(空気)室6とから成る。水素ガス
等の燃料ガスは入口弁7を介して燃料処理装置
(図示せず)から燃料室2に供給され、出口弁8
を介して排出される。酸化剤ガスとしての空気は
入口弁9を介して空気室6に送り込まれ、出口弁
10を介して排出される。常時はこのような燃料
ガスと酸化剤ガスとの供給により電極の触媒によ
る公知の反応によつて燃料電池の発電作用が行な
われる。
In FIG. 1, a fuel cell 1 includes a fuel chamber 2, a fuel electrode 3, a matrix 4, and an oxidizer (air) electrode 5.
and an oxidizer (air) chamber 6. Fuel gas such as hydrogen gas is supplied to the fuel chamber 2 from a fuel processing device (not shown) via an inlet valve 7 and an outlet valve 8.
is discharged through. Air as oxidant gas is fed into the air chamber 6 via the inlet valve 9 and discharged via the outlet valve 10. Normally, the power generation action of the fuel cell is performed by a known reaction by the catalyst of the electrode by supplying such fuel gas and oxidant gas.

燃料電池を停止ないし休止させる際には、弁7
〜10が閉じられ、不活性ガスたとえば窒素ガス
N2が第2の弁(不活性ガス供給弁)11を介し
て燃料室2に供給される。それまで燃料室2内に
存在していたガスおよび置換が完了するまで連続
供給される窒素ガスは第3の弁12(不活性ガス
排出弁)を介して排出される。同時に空気室側に
も第1の弁13(不活性ガス供給弁)および第4
の弁(不活性ガス排出弁)14を介して窒素ガス
が供給される。
When stopping or resting the fuel cell, close valve 7.
~10 is closed and inert gas e.g. nitrogen gas
N 2 is supplied to the fuel chamber 2 via the second valve (inert gas supply valve) 11 . The gas that has been present in the fuel chamber 2 and the nitrogen gas that is continuously supplied until the replacement is completed are discharged via the third valve 12 (inert gas discharge valve). At the same time, a first valve 13 (inert gas supply valve) and a fourth valve are installed on the air chamber side.
Nitrogen gas is supplied through the valve (inert gas discharge valve) 14.

窒素ガスによる置換が完了した時点で第1の弁
〜第4の弁13,11,12,14を全閉して放
置しておくと、それまで高温であつた燃料電池ま
たは熱衝撃を避けるために予熱されていた窒素ガ
スが次第に降温していく過程で、燃料室側と空気
室側との熱容量その他の差に起因して両室間に差
圧が生じたり、あるいは負圧となつて機器の機械
強度を脅す可能性がある。
When the replacement with nitrogen gas is completed, it is recommended to leave the first to fourth valves 13, 11, 12, and 14 fully closed to avoid thermal shock to the fuel cell, which was at a high temperature until then. As the temperature of the nitrogen gas, which had been preheated in may threaten the mechanical strength of the

りん酸型燃料電池においては、酸化剤として一
般に空気を用い、この空気を燃料ガスより多量に
電池に供給するようにしていることから、電池を
構成するマニホールドや配管器材は空気側におい
て大きくなり、必然的にその熱容量は両ガス室間
において異なるものとなる。このため、電池の休
止時にガス室内を不活性ガスで密封すると、温度
が低下する過程で室内の圧力が低下し燃料室側と
空気室側との間に差圧が生じる。これを防ぐた
め、休止時に不活性ガスを室内に流し続ける方法
もあるが、これはマトリツクスに保持された電解
室の蒸発を招き、また不活性ガスの消費量も多く
なり経済的でない。
In phosphoric acid fuel cells, air is generally used as the oxidizing agent, and this air is supplied to the battery in a larger amount than the fuel gas, so the manifolds and piping equipment that make up the battery become larger on the air side. Naturally, the heat capacity will be different between the two gas chambers. For this reason, if the gas chamber is sealed with an inert gas when the battery is at rest, the pressure inside the chamber decreases as the temperature decreases, creating a pressure difference between the fuel chamber side and the air chamber side. To prevent this, there is a method of continuing to flow inert gas into the room during shutdown, but this leads to evaporation of the electrolytic chamber held in the matrix and also consumes a large amount of inert gas, which is not economical.

そこで、本考案によれば、空気室6の圧力を圧
力測定器Pで測定して空気室圧力が所定値を保つ
ように第1の弁13を制御し、他方で両室間の差
圧を差圧測定器ΔPで測定してこの差圧が所定値
以下になるように第2の弁11または第3の弁1
2を制御することによつて、両室の差圧を所定値
以下に保つようにする。
Therefore, according to the present invention, the pressure in the air chamber 6 is measured by the pressure measuring device P, the first valve 13 is controlled so that the air chamber pressure maintains a predetermined value, and the pressure difference between the two chambers is controlled on the other hand. The second valve 11 or the third valve 1 is operated so that the differential pressure measured by the differential pressure measuring device ΔP is equal to or less than a predetermined value.
2, the differential pressure between the two chambers is maintained at a predetermined value or less.

以上の制御は燃料室と空気室との関係を逆にし
ても同一の効果が得られることは自明である。
It is obvious that the same effect can be obtained in the above control even if the relationship between the fuel chamber and the air chamber is reversed.

また許容される差圧の大きさによつては、差圧
測定器ΔPのかわりにもう一方の室にも圧力測定
器を設け、二つの圧力測定器の出力差から実質的
に差圧を測定するようにしてもよい。
Also, depending on the allowable differential pressure, a pressure measuring device may be installed in the other chamber instead of the differential pressure measuring device ΔP, and the differential pressure can be effectively measured from the difference in output between the two pressure measuring devices. You may also do so.

かくして本考案によればマトリツクス型燃料電
池の内部を大気から遮断した状態で停止しておく
ことが可能となり、燃料電池の性能保持期間を延
長させる効果が得られる。また休止時に不活性ガ
スを流し続ける場合に比べ、電池電解質の蒸発を
防ぐことができ、不活性ガスの消費量も少なくで
きるという効果が得られる。
Thus, according to the present invention, it is possible to stop the matrix-type fuel cell in a state where the inside thereof is isolated from the atmosphere, and it is possible to obtain the effect of extending the performance retention period of the fuel cell. Furthermore, compared to the case where inert gas is continued to flow during rest, evaporation of the battery electrolyte can be prevented and the amount of inert gas consumed can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の要部系統図である。 ……燃料電池、2……燃料室、6……空気
室、11,13……不活性ガス供給弁、12,1
4……不活性ガス排出弁、P……圧力測定器、
ΔP……差圧測定器。
FIG. 1 is a system diagram of main parts of an embodiment of the present invention. 1 ... Fuel cell, 2... Fuel chamber, 6... Air chamber, 11, 13... Inert gas supply valve, 12, 1
4...Inert gas discharge valve, P...Pressure measuring device,
ΔP……Differential pressure measuring device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] マトリツクス型燃料電池の休止時に燃料室と酸
化剤室に不活性ガスを密封するものにおいて、一
方の室の圧力に基づいて当該室への不活性ガス供
給量を制御する第1の制御弁と、両室の差圧に基
づいて他方の室への不活性ガス供給量または当該
他方の室からの不活性ガス排出量を制御する第2
または第3の制御弁とを有することを特徴とする
マトリツクス型燃料電池の過差圧防止装置。
A first control valve that controls the amount of inert gas supplied to one of the chambers based on the pressure of one of the chambers, in which the fuel chamber and the oxidizer chamber are sealed with inert gas when the matrix fuel cell is stopped; A second control unit that controls the amount of inert gas supplied to the other chamber or the amount of inert gas discharged from the other chamber based on the differential pressure between the two chambers.
or a third control valve.
JP1981092517U 1981-06-23 1981-06-23 Expired JPS6338533Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981092517U JPS6338533Y2 (en) 1981-06-23 1981-06-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981092517U JPS6338533Y2 (en) 1981-06-23 1981-06-23

Publications (2)

Publication Number Publication Date
JPS57204666U JPS57204666U (en) 1982-12-27
JPS6338533Y2 true JPS6338533Y2 (en) 1988-10-11

Family

ID=29887547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981092517U Expired JPS6338533Y2 (en) 1981-06-23 1981-06-23

Country Status (1)

Country Link
JP (1) JPS6338533Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617647B2 (en) * 2003-08-25 2011-01-26 パナソニック株式会社 Fuel cell system and operation method thereof
JP4629986B2 (en) * 2004-03-17 2011-02-09 本田技研工業株式会社 Fuel cell system
JP4699010B2 (en) * 2004-11-09 2011-06-08 本田技研工業株式会社 Fuel cell system
JP5040411B2 (en) 2007-04-18 2012-10-03 トヨタ自動車株式会社 Fuel cell system
JP5984411B2 (en) * 2012-02-06 2016-09-06 大阪瓦斯株式会社 Fuel cell storage method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144936A (en) * 1978-05-04 1979-11-12 Fuji Electric Co Ltd Method of resting fuel battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144936A (en) * 1978-05-04 1979-11-12 Fuji Electric Co Ltd Method of resting fuel battery

Also Published As

Publication number Publication date
JPS57204666U (en) 1982-12-27

Similar Documents

Publication Publication Date Title
JP2951025B2 (en) Operating method of small phosphoric acid type fuel cell
US8895200B2 (en) Fuel cell system
JPS6010425B2 (en) How to reduce the output power of a fuel cell
JP2003516615A (en) Method and system for operating a fuel cell
EP2210304B1 (en) System and method for operating a high temperature fuel cell as a back-up power supply with reduced performance decay
JP2924009B2 (en) How to stop fuel cell power generation
JP2000208161A (en) Operating method of and operating device for fuel cell
US7883811B2 (en) Control apparatus for fuel cell stack
US20090263679A1 (en) Shutdown operations for an unsealed cathode fuel cell system
JPS6338533Y2 (en)
CN101292385B (en) Fuel cell system and its operation method
US20100261094A1 (en) Apparatus for containing metal-organic frameworks
JP2705241B2 (en) Shutdown method of phosphoric acid fuel cell
CA2450595C (en) Method for controlling flow rate of oxidizer in fuel cell system
JPH0690932B2 (en) How to operate a fuel cell
JPH07183039A (en) Stopping method for power generation at fuel cell plant
JP2752987B2 (en) Phosphoric acid fuel cell power plant
JP5720584B2 (en) Fuel cell system and control method thereof
JP2004158274A (en) Moisture state estimation apparatus of fuel cell and fuel cell system
JP2948037B2 (en) Fuel cell power plant
JP4109724B2 (en) Fuel cell power generator
JP2702402B2 (en) Fuel cell power generation system and operation method thereof
JPH07249423A (en) Fuel cell power generating device
JPH08190929A (en) Fuel cell power generating plant
US20040146762A1 (en) Reactant supply for a fuel cell power system