JPS6338340Y2 - - Google Patents

Info

Publication number
JPS6338340Y2
JPS6338340Y2 JP1984064830U JP6483084U JPS6338340Y2 JP S6338340 Y2 JPS6338340 Y2 JP S6338340Y2 JP 1984064830 U JP1984064830 U JP 1984064830U JP 6483084 U JP6483084 U JP 6483084U JP S6338340 Y2 JPS6338340 Y2 JP S6338340Y2
Authority
JP
Japan
Prior art keywords
air
sensor
fuel ratio
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984064830U
Other languages
Japanese (ja)
Other versions
JPS59177757U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6483084U priority Critical patent/JPS59177757U/en
Publication of JPS59177757U publication Critical patent/JPS59177757U/en
Application granted granted Critical
Publication of JPS6338340Y2 publication Critical patent/JPS6338340Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 イ 産業上の利用分野 この考案は、三元触媒を用いる内燃機関の排出
ガス浄化装置に関する。
[Detailed description of the invention] A. Field of industrial application This invention relates to an exhaust gas purification device for an internal combustion engine using a three-way catalyst.

ロ 従来技術 この種の装置に使用する混合気の空燃比制御方
式としては、従来から、気化器を含む吸気系によ
つて空燃比を制御する方式と、排気系によつて空
燃比を制御する方式とが知られている。
B. Prior art The air-fuel ratio control methods for the air-fuel mixture used in this type of device have conventionally been one in which the air-fuel ratio is controlled by an intake system including a carburetor, and the other in which the air-fuel ratio is controlled by an exhaust system. The method is known.

ハ 考案が解決しようとする問題点 前者は、低温での始動に際し触媒の温度が反応
に必要な温度に達するまでのかなりの時間がかか
り、排出ガスが浄化されずに有害ガスのまゝ大気
へ放出される欠点があつた。又、後者は、気化器
からの混合気をあらかじめ過濃にしておき、排気
系に空気を混入することで浄化率の良い空燃比を
得るものであり、直接に出力に消費される量に対
し予め余分に供給する分だけは燃料消費量が多
く、特に空気を排気系に噴出するための空気ポン
プを内燃機関の出力で駆動する構造のものでは余
分の出力を要するため、この点でも燃料消費量の
増大を誘起する欠点があつた。
The former had the drawback that it took a long time for the catalyst temperature to reach the temperature required for reaction when starting at low temperatures, and the exhaust gas was released into the atmosphere as a harmful gas without being purified. The latter, on the other hand, obtained an air-fuel ratio with a good purification rate by making the mixture from the carburetor rich in advance and mixing air into the exhaust system, but the fuel consumption was high because the extra fuel was supplied in advance compared to the amount directly consumed for output, and especially in a structure in which the air pump for blowing air into the exhaust system was driven by the output of the internal combustion engine, the extra output was required, which also caused an increase in fuel consumption.

これにかんがみ、この考案は、前記両方式の欠
点を除き利点を活かした空燃比制御方式を使用し
た排出ガス浄化装置の実現を目的とする。
In view of this, the object of this invention is to realize an exhaust gas purification device using an air-fuel ratio control method that eliminates the drawbacks of both of the above methods and takes advantage of their advantages.

ニ 問題点を解決するための手段 この考案の排気ガス浄化装置は、内燃機関の吸
気通路に気化器を設けるとともに駆動電圧に応じ
て気化器の空気ブリード量を制御する空気ブリー
ドアクチユエータ3を設け、排気通路の流れに接
するように流れ方向に沿つて順次に、第1のO2
センサ5、第2のO2センサ6及び排出ガス浄化
用の三元触媒4を配置し、更に駆動電圧に応じて
空気量制御可能の空気ポンプ7を設けて、その排
出空気を排気通路の第1のO2センサと第2のO2
センサとの間の部分に合流させ、三元触媒の温度
を検出する温度センサ8と、この温度センサ8の
検出温度を電圧変換器10で変換した電圧が比較
電圧11より低いか高いかを判定して低いときに
低電圧の信号を出力し、高いときに高電圧の信号
を出力する比較回路12と、前記第1のO2セン
サ5が検出する空燃比に応じてそのデユーテイ比
が変化する矩形波信号を一方の入力とし前記比較
回路12の出力を他方の入力としその出力を前記
空気ブリードアクチユエータ3を駆動するパワー
回路14の制御信号とするANDゲート13と、
前記第2のO2センサ6が検出する空燃比に応じ
てそのデユーテイ比が変化する矩形波信号を一方
の入力とし前記比較回路12の出力をインバータ
15で反転させた信号を他方の入力としその出力
を前記空気ポンプ7を駆動するパワー回路17の
制御信号とするORゲート16とを設け、前記温
度センサ8の検出温度が低い間は前記両O2セン
サ5と6が検出する空燃比に関係なく空気ブリー
ド量を減少させるとともに排気通路への空気量を
増加させ、温度センサ8の検出温度が高くなると
第1のO2センサ5が検出する空燃比が理論空燃
比に接近するように空気ブリードアクチユエータ
3に駆動電圧を与えるとともに第2のO2センサ
6が検出する総合空燃比が理論空燃比に接近する
ように空気ポンプ7に駆動電圧を与えるようにし
たものである。
D. Means for Solving the Problems The exhaust gas purification device of this invention includes a carburetor provided in the intake passage of an internal combustion engine and an air bleed actuator 3 that controls the amount of air bleed from the carburetor according to the drive voltage. and sequentially along the flow direction so as to be in contact with the flow of the exhaust passage .
A sensor 5, a second O 2 sensor 6, and a three-way catalyst 4 for exhaust gas purification are arranged, and an air pump 7 whose air volume can be controlled according to the drive voltage is provided to direct the exhaust air to the exhaust gas passage. 1 O 2 sensor and 2nd O 2
A temperature sensor 8 is connected to the part between the sensor and detects the temperature of the three-way catalyst, and it is determined whether the voltage obtained by converting the detected temperature of this temperature sensor 8 with the voltage converter 10 is lower or higher than the comparison voltage 11. A comparison circuit 12 outputs a low voltage signal when the voltage is low and a high voltage signal when the voltage is high, and its duty ratio changes depending on the air-fuel ratio detected by the first O 2 sensor 5. an AND gate 13 which has a rectangular wave signal as one input, the output of the comparator circuit 12 as the other input, and the output as a control signal for the power circuit 14 that drives the air bleed actuator 3;
One input is a rectangular wave signal whose duty ratio changes according to the air-fuel ratio detected by the second O 2 sensor 6, and the other input is a signal obtained by inverting the output of the comparison circuit 12 by an inverter 15. An OR gate 16 is provided whose output is used as a control signal for the power circuit 17 that drives the air pump 7, and while the temperature detected by the temperature sensor 8 is low, the output is connected to the air-fuel ratio detected by both the O 2 sensors 5 and 6. The amount of air bleed is reduced without any problem, and the amount of air to the exhaust passage is increased. When the temperature detected by the temperature sensor 8 becomes high, the air bleed is performed so that the air-fuel ratio detected by the first O 2 sensor 5 approaches the stoichiometric air-fuel ratio. A driving voltage is applied to the actuator 3 and a driving voltage is applied to the air pump 7 so that the total air-fuel ratio detected by the second O 2 sensor 6 approaches the stoichiometric air-fuel ratio.

ホ 作用 このように構成してあるから、温度センサ8の
検出温度が低いとき、つまり三元触媒の温度が反
応に必要な温度に達していないとき、特に冷間時
における始動・暖機時は、気化器2から供給され
る混合気の空燃比は若干過濃となり、空気ポンプ
7から大量の空気を排気通路10に送り、酸化反
応を促進し、有害ガス(主にHC,CO)の排出を
防止しながら三元触媒4の温度を上昇させ、三元
触媒の活性状態をより早期に到来させる。
E. Effect Because of this configuration, when the temperature detected by the temperature sensor 8 is low, that is, when the temperature of the three-way catalyst has not reached the temperature required for the reaction, especially when starting or warming up in a cold state, , the air-fuel ratio of the mixture supplied from the carburetor 2 becomes slightly rich, and a large amount of air is sent from the air pump 7 to the exhaust passage 10, promoting the oxidation reaction and emitting harmful gases (mainly HC, CO). The temperature of the three-way catalyst 4 is increased while preventing the above, and the active state of the three-way catalyst is brought to an earlier stage.

そして、温度センサの検出温度が高いとき、つ
まり三元触媒4の温度が反応に必要な温度に達し
てからは、主として、気化器2の空気ブリードア
クチユエータ3を第1のO2センサ5の出力に基
づき電子的制御装置9を介して駆動制御すること
により、第1のO2センサ5が検出する空燃比は
理論空燃比に近いものが得られる。従つて有害ガ
ス(HC,CO,NOx)の排出を防止し、しかも
燃料消費量を低減させる。更に、空気ポンプ7か
ら排気通路10への空気量を第2のO2センサ6
の出力に基づき電子的制御装置9を介して制御す
ることにより、第2のO2センサ6が検出する総
合空燃比は理論空燃比に近いものが得られる。
When the temperature detected by the temperature sensor is high, that is, after the temperature of the three-way catalyst 4 reaches the temperature required for the reaction, the air bleed actuator 3 of the vaporizer 2 is mainly connected to the first O 2 sensor 5. The air-fuel ratio detected by the first O 2 sensor 5 is close to the stoichiometric air-fuel ratio by controlling the drive via the electronic control device 9 based on the output. Therefore, it prevents the emission of harmful gases (HC, CO, NOx) and reduces fuel consumption. Furthermore, the amount of air flowing from the air pump 7 to the exhaust passage 10 is measured by a second O 2 sensor 6.
By controlling via the electronic control device 9 based on the output of , the overall air-fuel ratio detected by the second O 2 sensor 6 can be obtained close to the stoichiometric air-fuel ratio.

ヘ 実施例 次に実施例について説明する。Example Next, an example will be described.

第1図において、1は内燃機関、2は内燃機関
1の吸気通路に設けた気化器、3は気化器2から
供給する混合気の空燃比を制御するため空気ブリ
ード量と制御する空気ブリードアクチユエータ、
4は排気通路10の流れに接するように設けた排
出ガス浄化用の三元触媒、5と6とは、排気通路
10の流れに接するように、内燃機関1から三元
触媒4に至る流れに沿つて順次に配置した、それ
ぞれ、第1のO2センサ及び第2のO2センサ、7
は、内燃機関1に駆動され、空気量制御可能で、
排出空気を排気通路10の第1のO2センサ5と
第2のO2センサ6との間の部分に合流させてあ
る空気ポンプ、8は、三元触媒4の温度又はそれ
と並行的に温度変化する個所、例えば排気通路1
0又はその近辺の外気の温度を検出する温度セン
サ、9は、温度センサ8の出力と第1のO2、セ
ンサ5の出力と第2のO2センサ6の出力とを受
けてこれらに対応して空気ブリードアクチユエー
タ3と空気ポンプ7とのそれぞれに制御信号を与
える電子的制御装置である。
In FIG. 1, 1 is an internal combustion engine, 2 is a carburetor installed in the intake passage of the internal combustion engine 1, and 3 is an air bleed actuator that controls the amount of air bleed to control the air-fuel ratio of the air-fuel mixture supplied from the carburetor 2. Yueta,
Reference numeral 4 denotes a three-way catalyst for exhaust gas purification provided in contact with the flow of the exhaust passage 10; 5 and 6 refer to the flow from the internal combustion engine 1 to the three-way catalyst 4 in contact with the flow of the exhaust passage 10; a first O 2 sensor and a second O 2 sensor, respectively, arranged sequentially along the
is driven by an internal combustion engine 1 and can control the amount of air,
An air pump 8 that causes exhaust air to join the exhaust passage 10 between the first O 2 sensor 5 and the second O 2 sensor 6 is operated at a temperature of the three-way catalyst 4 or in parallel thereto. Locations that change, e.g. exhaust passage 1
A temperature sensor 9 detects the outside air temperature at or near 0, and receives and responds to the output of the temperature sensor 8 and the first O 2 sensor, the output of the sensor 5, and the output of the second O 2 sensor 6. This is an electronic control device that provides control signals to the air bleed actuator 3 and the air pump 7, respectively.

電子的制御装置9の具体例を第2図に示す。冷
間時における始動・暖機時のように、三元触媒4
の温度が反応に必要な温度に達していないとき
は、温度センサ8の検出温度が低く、温度センサ
8の信号を電圧変換器10で変換した電圧信号は
比較電圧11より低い。そのた比較器12の出力
電圧がローレベルとなり、ANDゲート13が閉
じて、その出力がローレベルとなるため、空気ブ
リードアクチユエータ3に駆動電圧がかからな
い。空気ブリードアクチユエータ3は公知のアク
チユエータで、パワー回路14からの開閉信号
(駆動電圧)で開閉される電磁弁で、駆動電圧が
かかつていない状態(つまり開閉信号が閉側のと
き)には閉じる。従つて、温度センサ8の検出温
度が低いときは空気ブリードアクチユエータ3は
閉じていて、気化器2から供給される混合気の空
燃比は若干過濃となる。又、このとき比較器12
の出力はインバータ15で反転されてハイレベル
の信号となつて、ORゲート16に印加される。
そのためORゲート16の出力がハイレベルとな
り、パワー回路17で増幅されて空気ポンプ7を
駆動するから、空気ポンプ7から排気通路10へ
供給する空気量は最大となり、酸化反応を促進
し、有害ガスの排出を防止しながら三元触媒4の
温度を上昇させ、三元触媒の活性状態をより早期
に到来させる。
A specific example of the electronic control device 9 is shown in FIG. Three-way catalyst 4
When the temperature has not reached the temperature required for the reaction, the temperature detected by the temperature sensor 8 is low, and the voltage signal obtained by converting the signal of the temperature sensor 8 by the voltage converter 10 is lower than the comparison voltage 11. In addition, the output voltage of the comparator 12 becomes a low level, the AND gate 13 closes, and its output becomes a low level, so that no driving voltage is applied to the air bleed actuator 3. The air bleed actuator 3 is a known actuator, and is a solenoid valve that is opened and closed by an opening/closing signal (driving voltage) from the power circuit 14, and when the driving voltage is not present (that is, when the opening/closing signal is on the closing side), the air bleed actuator 3 is a known actuator. close. Therefore, when the temperature detected by the temperature sensor 8 is low, the air bleed actuator 3 is closed, and the air-fuel ratio of the air-fuel mixture supplied from the carburetor 2 becomes slightly rich. Also, at this time, the comparator 12
The output is inverted by the inverter 15 to become a high level signal and applied to the OR gate 16.
Therefore, the output of the OR gate 16 becomes high level, is amplified by the power circuit 17, and drives the air pump 7, so that the amount of air supplied from the air pump 7 to the exhaust passage 10 is maximized, promoting the oxidation reaction and causing harmful gases. The temperature of the three-way catalyst 4 is raised while preventing the discharge of the three-way catalyst, and the three-way catalyst reaches an active state earlier.

なおこのときは、第1のO2センサ5の信号に
応じて、ANDゲート13の一方の入力端13a
にパルス信号が印加されているが、ANDゲート
13は他方の入力端13bに、上述のように、比
較器12からのローレベルの信号が印加されて閉
じているため、その出力は第1のO2センサ5の
信号の影響を受けない。
Note that at this time, one input terminal 13a of the AND gate 13 is
However, as mentioned above, the low level signal from the comparator 12 is applied to the other input terminal 13b of the AND gate 13, and the output is closed. Not affected by the O2 sensor 5 signal.

又、このとき、第2のO2センサ6の信号に応
じたパルス信号がORゲート16の一方の入力端
16aに印加されているが、ORゲート16の他
方の入力端16bには、上述のようにインバータ
15からのハイレベルの信号が印加されているた
め、ORゲート16の出力は第2のO2センサ6の
信号の影響を受けない。
Also, at this time, a pulse signal corresponding to the signal from the second O 2 sensor 6 is applied to one input terminal 16a of the OR gate 16, but the above-mentioned pulse signal is applied to the other input terminal 16b of the OR gate 16. Since the high level signal from the inverter 15 is applied, the output of the OR gate 16 is not affected by the signal from the second O 2 sensor 6.

温度センサ8の検出温度が高くなつてくると、
電圧変換器10の出力電圧が高くなり、三元触媒
4の温度が反応に必要な温度に達すると、電圧変
換器10の出力電圧が比較電圧11の値を越え、
比較器12の出力がハイレベルに転じ、ANDゲ
ート13が開く。そのためANDゲート13は入
力端13aに印加されているパルス信号に応じて
出力が変化する。入力端13aに印加されている
パルス信号は、第1のO2センサ5が検出する空
燃比に応じてそのデユーテイ比が変化する矩形波
信号であり、空燃比判定回路18、積分器19、
比例器20、三角波発信器21及び比較器22よ
りなる公知の電気回路で発生する。O2センサ5
の出力電圧は、理論空燃比を境に急変する特性が
あり、空燃比がリツチであるかリーンであるかに
より、空燃比判定回路18の出力電圧レベルが変
わる。リツチのときは空燃比を薄くする制御信号
が、又リーンのときは空燃比を濃くする制御信号
を出すように電気回路が作動する。積分器19と
比例器20の出力電圧は加算されて比較器22の
マイナス入力端に印加され、三角波発信器21か
らの一定周波数の三角波電圧と比較されて矩形波
形のパルス信号に変換されるが、このパルス信号
のデユーテイ比は、比較器22のマイナス入力端
に印加される信号のレベルで定まる。O2センサ
5の出力電圧が空燃比判定回路18で判定され
て、空燃比がリツチになつたと判定されると、比
例器20によりステツプ状の電圧が発生し、比較
回路22で、対応するデユーテイ比の矩形波に変
換され、ANDゲート13、パワー回路14を経
て空気ブリードアクチユエータ3の平均開度を増
し、空燃比を薄くする方向に比例分だけ変化させ
る。しかし、O2センサの出力電圧はすぐには変
化しなく、リツチの状態が続く。このとき積分器
19の作動により、比較器22のマイナス入力端
の信号レベルがだんだんと空燃比を薄くする方向
に変化し、その信号レベルい応じたデユーテイ比
で空気ブリードアクチユエータ3が開閉駆動さ
れ、その平均開度がだんだん増し、空燃比はだん
だん薄くなる。その結果、O2センサの出力電圧
が急変すると、空燃比判定回路18が理論空燃比
より薄くなつたと判定する。そこで、前述の場合
とは逆向きのステツプ状電圧が比例器20で発生
し、続いてだんだん空燃比を濃くする方向に比較
器22のマイナス入力端の信号レベルが変化する
よう積分器19が作動する。そして、空気ブリー
ドアクチユエータ3の平均開度がだんだん小さく
なつて、濃くなる。このようにして、第1のO2
センサ5で検出した空燃比が理論空燃比に近ずく
ように、空気ブリードアクチユエータ3が操作さ
れる。
As the temperature detected by the temperature sensor 8 becomes higher,
When the output voltage of the voltage converter 10 becomes high and the temperature of the three-way catalyst 4 reaches the temperature required for the reaction, the output voltage of the voltage converter 10 exceeds the value of the comparison voltage 11,
The output of the comparator 12 changes to high level, and the AND gate 13 opens. Therefore, the output of the AND gate 13 changes depending on the pulse signal applied to the input terminal 13a. The pulse signal applied to the input end 13a is a rectangular wave signal whose duty ratio changes according to the air-fuel ratio detected by the first O 2 sensor 5, and is connected to the air-fuel ratio determination circuit 18, the integrator 19,
It is generated by a known electric circuit consisting of a proportional device 20, a triangular wave oscillator 21, and a comparator 22. O2 sensor 5
The output voltage of the air-fuel ratio determination circuit 18 has a characteristic of rapidly changing after reaching the stoichiometric air-fuel ratio, and the output voltage level of the air-fuel ratio determination circuit 18 changes depending on whether the air-fuel ratio is rich or lean. An electric circuit is operated to issue a control signal to lean the air-fuel ratio when the fuel is rich, and to produce a control signal to enrich the air-fuel ratio when the fuel is lean. The output voltages of the integrator 19 and the proportional device 20 are added and applied to the minus input terminal of the comparator 22, and compared with the triangular wave voltage of a constant frequency from the triangular wave oscillator 21, and converted into a rectangular waveform pulse signal. , the duty ratio of this pulse signal is determined by the level of the signal applied to the negative input terminal of the comparator 22. When the output voltage of the O 2 sensor 5 is judged by the air-fuel ratio judgment circuit 18 and it is judged that the air-fuel ratio has become rich, a step voltage is generated by the proportional regulator 20, and the corresponding duty voltage is generated by the comparison circuit 22. The signal is converted into a rectangular wave of the ratio, passes through the AND gate 13 and the power circuit 14, increases the average opening degree of the air bleed actuator 3, and changes the air-fuel ratio by a proportional amount in the direction of making it leaner. However, the output voltage of the O 2 sensor does not change immediately and remains in a rich state. At this time, due to the operation of the integrator 19, the signal level at the negative input terminal of the comparator 22 gradually changes in the direction of reducing the air-fuel ratio, and the air bleed actuator 3 is driven to open and close at a duty ratio corresponding to the signal level. The average opening gradually increases, and the air-fuel ratio becomes leaner. As a result, when the output voltage of the O 2 sensor suddenly changes, the air-fuel ratio determination circuit 18 determines that the air-fuel ratio has become leaner than the stoichiometric air-fuel ratio. Therefore, a step voltage in the opposite direction to that in the above case is generated in the proportional device 20, and then the integrator 19 is activated so that the signal level at the negative input terminal of the comparator 22 changes in the direction of gradually enriching the air-fuel ratio. do. Then, the average opening degree of the air bleed actuator 3 gradually becomes smaller and becomes denser. In this way, the first O 2
The air bleed actuator 3 is operated so that the air-fuel ratio detected by the sensor 5 approaches the stoichiometric air-fuel ratio.

更に、空燃比判定回路23、積分器24、比例
器25、三角波発信器26及び比較器27からな
る電気回路が、第2のO2センサ6の出力電圧に
応じたデユーテイ比の矩形波電圧を発生し、OR
ゲート16、パワー回路17を介して空気ポンプ
7を操作し、前記第1のO2センサによる空燃比
制御と同様の制御を行なう。その結果、第2の
O2センサ6が検出する総合空燃比は理論空燃比
に近いものが得られる。
Further, an electric circuit including an air-fuel ratio determination circuit 23, an integrator 24, a proportional device 25, a triangular wave oscillator 26, and a comparator 27 generates a rectangular wave voltage with a duty ratio corresponding to the output voltage of the second O 2 sensor 6. occurs, OR
The air pump 7 is operated via the gate 16 and the power circuit 17 to perform the same control as the air-fuel ratio control by the first O 2 sensor. As a result, the second
The overall air-fuel ratio detected by the O 2 sensor 6 is close to the stoichiometric air-fuel ratio.

ト 考案の効果 以上のようにこの考案によると、冷間時におけ
る始動・暖機時は三元触媒の酸化反応を活用し、
高温時は酸化・還元反応を活用するので触媒効率
が高く、排出ガスのの浄化即ち有害ガスの排出の
減少が実現し、燃料消費量を低減する。
G. Effects of the invention As described above, according to this invention, the oxidation reaction of the three-way catalyst is utilized during startup and warm-up in cold conditions.
At high temperatures, the catalyst utilizes oxidation and reduction reactions, resulting in high catalytic efficiency, which purifies exhaust gases, ie reduces harmful gas emissions, and reduces fuel consumption.

又、空気ポンプを駆動するパワーを必要最小限
に抑えることができ、この面でも燃料消費量の低
減ができる。さらに又、三元触媒の温度に応じ
て、空気ブリードアクチユエータ3と空気ポンプ
7への制御信号を切り換えるのにANDゲート1
3とORゲート16とを設けたので空気ポンプの
かり下流に切換弁を設ける必要もない。
Further, the power for driving the air pump can be suppressed to the necessary minimum, and fuel consumption can also be reduced in this respect. Furthermore, AND gate 1 is used to switch control signals to air bleed actuator 3 and air pump 7 according to the temperature of the three-way catalyst.
3 and the OR gate 16, there is no need to provide a switching valve downstream of the air pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の1実施例の概念図、第2図
は電子的制御装置の回路図である。 1……内燃機関、2……気化器、3……空気ブ
リードアクチユエータ、4……三元触媒、5……
第1のO2センサ、6……第2のO2センサ、7…
…空気ポンプ、8……温度センサ、9……電子的
制御装置、10……排気通路。
FIG. 1 is a conceptual diagram of one embodiment of this invention, and FIG. 2 is a circuit diagram of an electronic control device. 1... Internal combustion engine, 2... Carburizer, 3... Air bleed actuator, 4... Three-way catalyst, 5...
First O 2 sensor, 6... Second O 2 sensor, 7...
...Air pump, 8...Temperature sensor, 9...Electronic control device, 10...Exhaust passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関において、吸気通路に気化器を設ける
とともに駆動電圧に応じて気化器の空気ブリード
量を制御する空気ブリードアクチユエータ3を設
け、排気通路の流れに接するように流れ方向に沿
つて順次に、第1のO2センサ5、第2のO2セン
サ6及び排出ガス浄化用の三元触媒4を配置し、
更に駆動電圧に応じて空気量制御可能の空気ポン
プ7を設けて、その排出空気を排気通路の第1の
O2センサと第2のO2センサとの間の部分に合流
させ、三元触媒の温度を検出する温度センサ8
と、この温度センサ8の検出温度を、電圧変換器
10で変換した電圧が、比較回路11より低いか
高いかを判定して低いときに低電圧の信号を出力
し、高いときに高電圧の信号を出力する比較回路
12と、前記第1のO2センサ5が検出する空燃
比に応じてそのデユーテイ比が変化する矩形波信
号を一方の入力とし前記比較回路12の出力を他
方の入力としその出力を前記空気ブリードアクチ
ユエータ3を駆動するパワー回路14の制御信号
とするANDゲート13と、前記第2のO2センサ
6が検出する空燃比に応じてそのデユーテイ比が
変化する矩形波信号を一方の入力とし前記比較回
路12の出力をインバータ15で反転させた信号
を他方の入力としその出力を前記空気ポンプ7を
駆動するパワー回路17の制御信号とするORゲ
ート16とを設け、前記温度センサ8の検出温度
が低い間は前記両O2センサ5と6が検出する空
燃比に関係なく空気ブリード量を減少させるとと
もに排気通路への空気量を増加させ、温度センサ
8の検出温度が高くなると第1のO2センサ5が
検出する空燃比が理論空燃比に接近するように空
気ブリードアクチユエータ3に駆動電圧を与える
とともに第2のO2センサ6が検出する総合空燃
比が理論空燃比に接近するように空気ポンプ7に
駆動電圧を与えるようにしたことを特徴とする内
燃機関の排出ガス浄化装置。
In an internal combustion engine, a carburetor is provided in the intake passage, and an air bleed actuator 3 is provided to control the amount of air bleed from the carburetor according to the drive voltage. , a first O 2 sensor 5, a second O 2 sensor 6, and a three-way catalyst 4 for exhaust gas purification are arranged,
Furthermore, an air pump 7 whose air volume can be controlled according to the drive voltage is provided, and the discharged air is sent to the first exhaust passage.
A temperature sensor 8 is connected to the part between the O 2 sensor and the second O 2 sensor and detects the temperature of the three-way catalyst.
Then, it is determined whether the voltage detected by the temperature sensor 8 is converted by the voltage converter 10 is lower or higher than that of the comparator circuit 11, and when it is low, a low voltage signal is output, and when it is high, a high voltage signal is output. A comparator circuit 12 that outputs a signal and a rectangular wave signal whose duty ratio changes according to the air-fuel ratio detected by the first O 2 sensor 5 are input as one input, and the output of the comparator circuit 12 as the other input. An AND gate 13 whose output is used as a control signal for the power circuit 14 that drives the air bleed actuator 3, and a rectangular wave whose duty ratio changes according to the air-fuel ratio detected by the second O 2 sensor 6. an OR gate 16 whose one input is a signal, whose other input is a signal obtained by inverting the output of the comparator circuit 12 by an inverter 15, and whose output is a control signal for the power circuit 17 that drives the air pump 7; While the temperature detected by the temperature sensor 8 is low, the amount of air bleed is reduced and the amount of air flowing into the exhaust passage is increased, regardless of the air-fuel ratio detected by both the O 2 sensors 5 and 6, and the temperature detected by the temperature sensor 8 is reduced. When the air-fuel ratio increases, a driving voltage is applied to the air bleed actuator 3 so that the air-fuel ratio detected by the first O 2 sensor 5 approaches the stoichiometric air-fuel ratio, and the total air-fuel ratio detected by the second O 2 sensor 6 increases. An exhaust gas purification device for an internal combustion engine, characterized in that a driving voltage is applied to an air pump 7 so as to approach a stoichiometric air-fuel ratio.
JP6483084U 1984-05-02 1984-05-02 Internal combustion engine exhaust gas purification device Granted JPS59177757U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6483084U JPS59177757U (en) 1984-05-02 1984-05-02 Internal combustion engine exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6483084U JPS59177757U (en) 1984-05-02 1984-05-02 Internal combustion engine exhaust gas purification device

Publications (2)

Publication Number Publication Date
JPS59177757U JPS59177757U (en) 1984-11-28
JPS6338340Y2 true JPS6338340Y2 (en) 1988-10-11

Family

ID=30195021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6483084U Granted JPS59177757U (en) 1984-05-02 1984-05-02 Internal combustion engine exhaust gas purification device

Country Status (1)

Country Link
JP (1) JPS59177757U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123428A (en) * 1975-04-21 1976-10-28 Nissan Motor Co Ltd Exhaust gas purifier
JPS51124739A (en) * 1975-04-24 1976-10-30 Nissan Motor Co Ltd An air fuel ratio control apparatus
JPS52129833A (en) * 1976-04-23 1977-10-31 Nissan Motor Co Ltd Air fuel ratio controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123428A (en) * 1975-04-21 1976-10-28 Nissan Motor Co Ltd Exhaust gas purifier
JPS51124739A (en) * 1975-04-24 1976-10-30 Nissan Motor Co Ltd An air fuel ratio control apparatus
JPS52129833A (en) * 1976-04-23 1977-10-31 Nissan Motor Co Ltd Air fuel ratio controller

Also Published As

Publication number Publication date
JPS59177757U (en) 1984-11-28

Similar Documents

Publication Publication Date Title
KR960002349B1 (en) Air introduction control apparatus in exhaust pipe of internal combustion engine
KR100320283B1 (en) Exhaust gas purifing Apparatus
JPH10274031A (en) Exhaust emission control device for cylinder injection type internal combustion engine
GB2344772A (en) Method to desulphurise a NOx trap
JPH05240031A (en) Secondary air control device of internal combustion engine
JPS6338340Y2 (en)
JPS5924247B2 (en) Internal combustion engine exhaust gas purification device
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JPH07113336B2 (en) Air-fuel ratio controller for internal combustion engine
JPH0123664B2 (en)
JPS61234241A (en) Air-fuel ratio control device of internal-combustion engine
JPS62345B2 (en)
JPH05272329A (en) Degradation detecting method and device for engine exhaust gas purifying catalyst
KR19980065555A (en) Catalyst activation determination device and engine control device of the engine
JPS6032357Y2 (en) Exhaust purification device
JPS6341553Y2 (en)
JPS6397846A (en) Air-fuel ratio control device for internal combustion engine
JPS5877153A (en) Air-fuel ratio controller in internal-combustion engine
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JPH01113552A (en) Air-fuel ratio control device for internal combustion engine
JPS63215810A (en) Air-fuel ratio controlling device for internal combustion engine
JPS6088813A (en) Exhaust purifying device for engine
JPS5913318Y2 (en) Air fuel ratio control device
JP3470405B2 (en) Air-fuel ratio controller for lean-burn engines
JPS61268838A (en) Control device for air-fuel ratio in internal-combustion engine