JPS6338328B2 - - Google Patents

Info

Publication number
JPS6338328B2
JPS6338328B2 JP58110741A JP11074183A JPS6338328B2 JP S6338328 B2 JPS6338328 B2 JP S6338328B2 JP 58110741 A JP58110741 A JP 58110741A JP 11074183 A JP11074183 A JP 11074183A JP S6338328 B2 JPS6338328 B2 JP S6338328B2
Authority
JP
Japan
Prior art keywords
molecular weight
less
amino acid
amino acids
free amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110741A
Other languages
Japanese (ja)
Other versions
JPS5976022A (en
Inventor
Kenichi Yamazaki
Soji Takao
Hiroshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP58110741A priority Critical patent/JPS5976022A/en
Publication of JPS5976022A publication Critical patent/JPS5976022A/en
Publication of JPS6338328B2 publication Critical patent/JPS6338328B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は血中コレステロール値低下作用を有す
る食品素材に関するものである。 従来、タンパク質を酵素で加水分解し、ペプチ
ドおよびアミノ酸を製造することは食品分野を中
心として行われてきた。しかしながら、そこでの
目的はタンパク質を酵素で分解することによつて
可溶化するとか、食品素材として適したものにす
るために低分子化(分子量が数千以上)するとか
のものばかりであり、分解生成物の分子量そのも
のを問題としたものは全くなかつた。 本発明者等はタンパク質の酵素的分解生成物と
消化吸収との関係を研究した結果、 (1)平均分子量を700以下、好ましくは500以下に
下げること、(2)分子量が700以上のペプチドの含
量が20重量%以下にすること、(3)遊離アミノ酸の
含量を20重量%以下にすること、すなわち、デイ
ペプチドおよびトリペプチドを主構成分とする低
分子ペプチド組成物が血中コレステロール値を低
下させることを確認した。さらに、この組成物
は、 (1) 同一アミノ酸組成のタンパク質あるいはアミ
ノ酸混合物とは腸管吸収能が異なり、全窒素吸
収速度は上昇し、アミノ酸相互の吸収拮抗が小
さい。 (2) 窒素収支が改善され、効率の高い窒素源とな
る。 (3) 体重増加率が顕著に大きくなる。 以上のような食品素材としての多くの利点も確
認された。それは以下に詳細に証明する試験にも
とずくものである 次表に示す同一アミノ酸組成のダイエツトを
調整した。
The present invention relates to a food material having a blood cholesterol level lowering effect. Conventionally, the production of peptides and amino acids by hydrolyzing proteins with enzymes has been carried out mainly in the food field. However, the purpose of these methods is to solubilize proteins by decomposing them with enzymes, or to reduce the molecular weight (molecular weight is several thousand or more) to make them suitable as food materials. There was no problem with the molecular weight of the product itself. As a result of researching the relationship between enzymatic degradation products of proteins and digestion and absorption, the present inventors found that (1) the average molecular weight should be lowered to 700 or less, preferably 500 or less, (2) peptides with a molecular weight of 700 or more should be (3) The content of free amino acids should be below 20% by weight. In other words, the low-molecular-weight peptide composition containing deipeptides and tripeptides as main components should reduce blood cholesterol levels. It was confirmed that it decreased. Furthermore, this composition: (1) has a different intestinal absorption capacity from proteins or amino acid mixtures with the same amino acid composition, has an increased total nitrogen absorption rate, and has low absorption antagonism between amino acids; (2) Improved nitrogen balance and becomes a highly efficient nitrogen source. (3) The rate of weight gain increases significantly. Many advantages as a food material, such as those mentioned above, were also confirmed. This is based on the tests that will be demonstrated in detail below.A diet with the same amino acid composition shown in the following table was prepared.

【表】【table】

【表】 上表における窒素源は次の組成のものである。 A…… 卵白タンパク質 B…… 平均分子量420、遊離アミノ酸8重量
%のペプチド組成物 C…… 遊離アミノ酸混合物 D…… 平均分子量1400、遊離アミノ酸2重量
%のペプチド組成物 これらのダイエツトをそれぞれ10匹のウイスタ
ー系ラツトに2週間自由摂取させた結果は表の
通りであつた。
[Table] The nitrogen sources in the above table have the following composition. A...Egg white protein B...Peptide composition with an average molecular weight of 420 and 8% by weight of free amino acids C...Free amino acid mixture D...Peptide composition with an average molecular weight of 1400 and 2% by weight of free amino acids 10 animals each of these diets The results of 2 weeks of ad libitum ingestion of this product in Wistar rats were as shown in the table.

【表】 上表において、 Food efficiencyとは、それぞれのWeight
Gain/Food intakeの値をベースとした比を表
示するものである。この表から次のことが理解で
きる。本発明の食品素材()は窒素保有量(収
支)が他のものに比べて大幅に大きく、その結果
Food efficiencyが顕著に高くなり、体重増加が
みられるにもかかわらず血中コレステロール値を
低下させることが判明した。 更に窒素源というマクロな考察ではなく各アミ
ノ酸に対する吸収についての考察を行うために24
時間絶食させたウイスター系ラツトの胃にチユー
ブで強制的に前述したダイエツトに使用した窒素
源試料()、()、()および()を注入し
て一定時間毎に門脈から採血してアミノ酸濃度を
測定して時間あたりの吸収量を測定した。その結
果を表および表に示す。なお、結果はそれぞ
れ5匹づつのラツトの平均値である。表は吸収
量がピーク値に達するまでの各アミノ酸の平均吸
収速度であり、表はほぼ理想アミノ酸組成の試
料()と上記試料()〜()とのアミノ酸
吸収パターンの比較表である。
[Table] In the table above, Food efficiency refers to each weight.
It displays the ratio based on the value of Gain/Food intake. The following can be understood from this table. The food material () of the present invention has a significantly larger nitrogen retention amount (balance) than other materials, and as a result,
It was found that food efficiency was significantly increased and blood cholesterol levels were lowered despite weight gain. Furthermore, in order to consider the absorption of each amino acid, rather than the macroscopic consideration of nitrogen sources, 24
Nitrogen source samples (), (), (), and () used in the diet described above were forcefully injected into the stomachs of Wistar rats that had been fasted for a period of time using a tube, and blood was collected from the portal vein at regular intervals to obtain amino acids. The concentration was measured to determine the amount absorbed per hour. The results are shown in Table and Table. Note that the results are the average values of five rats each. The table shows the average absorption rate of each amino acid until the absorption amount reaches its peak value, and the table is a comparison table of the amino acid absorption patterns of the sample () with almost ideal amino acid composition and the above samples () to ().

【表】 この表から明かなように、本発明の食品素材
()は卵白タンパク質()のように吸収が不
完全ではなく、アミノ酸混合物()と比較して
アミノ酸相互の吸収拮抗の程度が大きくなく、従
来のタンパク質分解物()に比較してもその初
期収速度は約3割も大きい。
[Table] As is clear from this table, the food material of the present invention () is not absorbed incompletely like egg white protein (), and the degree of mutual absorption antagonism between amino acids is greater than that of the amino acid mixture (). The initial yield rate is approximately 30% higher than that of conventional protein decomposition products.

【表】 アミノ酸の吸収は理想アミノ酸パターン()
に近いのが望ましい。然るに、表は卵白タンパ
ク質()およびアミノ酸混合物()において
は特にPhe TyrおよびHisの理想吸収パターン
()からの埀離率が大きいことを明瞭に示して
いる。本発明の食品素材()は理想吸収パター
ンに近く、バランスのとれた吸収を実現すること
が確認された。以上の事実は吸収されたアミノ酸
自身あるいは他のアミノ酸の代謝に大きな影響を
与えるものと推定される。その証拠の一つがコレ
ステロール値の低下であろうと思われる。 以上の試験結果から分るような明かに血中コレ
ステロール値低下作用を有する低分子ペプチドは
従来着眼されていなかつた。従つて、本発明の目
的は血中コレステロール値低下作用を有する食品
素材を提供することにある。 本願発明は、遊離アミノ酸含量および分子量
700以上のペプチド含量を20%以下としたデイペ
プチドおよびトリペプチドを主構成分とする平均
分子量700以下の低分子ペプチド組成物を主成分
とする血中コレステロール値低下作用を有する食
品素材である。 さらに、好ましくは、遊離アミノ酸含量および
分子量700以上のペプチド含量が10%以下である
食品素材である。 さらに、好ましくは、平均分子量が500以下で
ある食品素材である。 上記表〜に記載する試験結果から結論づけ
られる前述したような多くの利点を有するデイペ
プチドおよびトリペプチドを主成分とする低分子
ペプチドについて従来は全く問題とされていなか
つた。本発明者等はかかる低分子ペプチドを任意
の起原のタンパク原料より生成することを試みた
結果、次のようなことが明らかになつた(表参
照)。 (1) タンパク質加水分解酵素の中ではペプシンが
最も可溶力が強いが、ペプシンでの分解はある
程度の分子量にまで小さくなるとそれからは容
易に進行せず、平均分子量を1000以下にするの
は極めて困難である。 (2) 中性プロテアーゼの分解力は酸性プロテアー
ゼのそれと比較して弱く、生成物の平均分子量
を1000以下にまでする酵素はプロナーゼを除い
てはない。しかし、複合酵素であることもあつ
て遊離アミノ酸の生成が著しく大きく、平均分
子量が500近くになる段階では50%以上が遊離
アミノ酸となつている。 (3) 分解力の点では酸性プロテアーゼが優れてお
り、モルシン(藤沢薬品 起源Aspergillus
saitoi)、サンプローゼF(阪急共栄物産 起源
Rhizopus chinensis)などが遊離アミノ酸の生
成も少なく有用である。 (4) 現在知られているいずれの酵素も単独では分
子量を希望する程十分に小さくすることはでき
ず、種々の組合せの酵素分解反応を検討した結
果、ペプシン−モルシン、ペプシン−サンプロ
ーゼ、モルシン−サンプローダFの酵素の組合
せが希望する程十分に分子量を小さく、かつ遊
離アミノ酸の含量を少なくするのに有効である
ことが確認された。 以下に本発明の食品素材の主成分を構成する低
分子ペプチド組成物の製造方法を製造例をあげて
説明する。 製造例 乾燥卵白(タンパク含量82wt%)50gを1
の水に溶解させ、塩酸でPHを3に調節し、モルシ
ン1gおよびサンプローゼFを1g添加してPHを
3に維持しつつ40℃で24時間反応させた。反応後
液を100℃で10分間加熱して酵素を失活さもた後、
3000r.p.m(1500G)で10分間遠心分離し不溶分を
除去して上澄液を凍結乾燥した。この生成物の収
率は原料タンパク質に対して93.2%であり、平均
分子量は340であつた。この生成物のゲル濾過結
果からその88wt%以上は分子量700以下である血
中コレステロール値低下剤が製造できた。なお、
700以下の識別をゲル濾過で行うことはできない。
生成物中の遊離アミノ酸含量は8.5%であつた。 製造例 使用酵素以外は製造例と同様の条件で、最初
にモルシン1gを次いで8時間後、サンプローゼ
Fを1g添加して更に10時間反応させた後、製造
例と同様の処理をした。得られた生成物の収率
は93.9%、平均分子量は350、遊離アミノ酸含量
は8.1%で、ゲル濾過結果から90%以上が分子量
700以下であつた。 製造例 使用酵素以外は製造例と同様の条件で、ペプ
シン1gおよびモルシン1gを同時に添加して製
造例と同様の処理をした。得られた生成物の収
率は96.1%、平均分子量は510、遊離アミノ酸含
量は7.8%で、ゲル濾過結果から86%以上が分子
量700以下であつた。 製造例 使用酵素以外は製造例と同様の条件で、最初
にペプシン1gを次いで6時間後、モルシンを1
g添加して更に10時間反応させた後、製造例と
同様の処理をした。得られた生成物の収率は98.3
%、平均分子量は550、遊離アミノ酸含量は7.3%
で、ゲル濾過結果から83%以上が分子量700以下
であつた。 製造例 使用酵素以外は製造例と同様の条件で、ペプ
シン1gおよびサンプローゼF1gを同時に添加
して実施例と同様の処理をした。得られた生成
物の収率は94%、平均分子量は430、遊離アミノ
酸含量は8.7%で、ゲル濾過結果から90%以上が
分子量700以下であつた。 製造例 使用酵素以外は製造例と同様の条件で、最初
にペプシン1gを次いで6時間後、サンプローゼ
F 1gを添加して更に10時間反応させた後、製
造例1と同様の処理をした。得られた生成物の収
率は96%、平均分子量は410、遊離アミノ酸含量
は9.2%で、ゲル濾過結果から91%以上が分子量
700以下であつた。 製造例 使用酵素以外は実施例1と同様の条件で、最初
にペプシン0.25gを3時間後モルシン1gを、さ
らに3時間後サンプローゼFを1g添加して更に
10時間反応させた後、実施例と同様の処理をし
た。得られた生成物の収率は95%、平均分子量は
370、遊離アミノ酸含量は11.3%で、ゲル濾過結
果から93%以上が分子量700以下であつた。 上記実施例における生成物の評価方法は次のと
うりである。 (1) 生成物の収率 生成物中の窒素量/原料中の窒素量×100 窒素の分析はケルダール分析法によつた。 (2) 生成物の平均分子量 〔原料タンパク中のアミノ酸の平均分子量〕×〔生成物
1g中のアミノ基モル数〕/〔生成物1gの完全加水分
解物中のアミノ基モル数〕 アミノ基の定量はTNBS(Tri−Nitro−
Benzen−Sul phonic acid)法により、生成物
の完全加水分解は6N Hcl中で110℃、24時間
加水分解によつた。 (3) 遊離アミノ酸定量 生成物溶液を塩基性炭酸銅で処理し、アミノ
酸およびペプチドを銅錯体とし、これを陰イオ
ン交換樹脂に吸着させ、0.05Mホウ酸緩衝液で
溶出させた遊離アミノ酸を自動アミノ酸分析機
で定量した。ただし、酸性アミノ酸については
ホウ酸緩衝液で遊離してこないので生成物をそ
のままアミノ酸分析機にかけて定量した。アミ
ノ酸分析機での酸性アミノ酸の分離位置ではペ
プチドの影響がないので正確な定量が可能であ
る。 (4) ゲル濾過 分画分子量が最小のSephadex G−10を用い
て分子量700以下のペプチドの比率を求める。 製造例においては、原料タンパク質は卵白を用
いているが、これに限られずカセイン、大豆、小
麦グルテン、魚粉、クロレラ、酵母タンパク等の
みならずプラステイン反応により特定のアミノ酸
を強化したタンパク質用物質をも使用できる。原
料のタンパク質の基質濃度は5〜20w/v%程度
にするのが好適である。これは、5%以下では実
用的でなく、20%以上では粘稠になりすぎるから
である。添加する酵素量は目的に適する分解度と
なるよう基質に対して1wt%以上、好ましくは2
〜5wt%がよい。反応時間は基質濃度、酵素量、
反応温度等の関数となり、アミノ酸にまで分解し
ない程度のペプチド組成物が得られる時間にとめ
る。反応温度は使用する酵素の至適温度に応じて
決める。使用する酸は強酸でも弱酸でも良い。本
発明の製造例におけるように二種以上のプロテア
ーゼの組合せでタンパク質を分解した場合と単一
のプロテアーゼで分解した場合を比較のために下
表に示す。
[Table] Ideal amino acid pattern for amino acid absorption ()
It is desirable that it be close to . However, the table clearly shows that in egg white protein () and amino acid mixture (), the rate of separation from the ideal absorption pattern () is particularly large for Phe Tyr and His. It was confirmed that the food material (2) of the present invention has a pattern close to the ideal absorption pattern and achieves well-balanced absorption. The above facts are presumed to have a great influence on the metabolism of the absorbed amino acid itself or other amino acids. One of the evidences for this seems to be a decrease in cholesterol levels. As can be seen from the above test results, attention has not been focused on low-molecular-weight peptides that clearly have the effect of lowering blood cholesterol levels. Therefore, an object of the present invention is to provide a food material having a blood cholesterol level lowering effect. The present invention focuses on free amino acid content and molecular weight.
This is a food material that has a blood cholesterol level lowering effect and is mainly composed of a low molecular weight peptide composition with an average molecular weight of 700 or less, which is composed mainly of dipeptides and tripeptides with a peptide content of 700 or more and 20% or less. Furthermore, the food material preferably has a free amino acid content and a peptide content with a molecular weight of 700 or more at 10% or less. Furthermore, preferably, the food material has an average molecular weight of 500 or less. Conventionally, there has been no problem with low-molecular-weight peptides mainly composed of dipeptides and tripeptides, which have many advantages as described above, as concluded from the test results shown in the above tables. The present inventors attempted to produce such low-molecular-weight peptides from protein raw materials of arbitrary origin, and as a result, the following findings became clear (see table). (1) Among protein hydrolases, pepsin is the most soluble, but degradation with pepsin does not proceed easily once the molecular weight reaches a certain level, and it is extremely difficult to reduce the average molecular weight to less than 1000. Have difficulty. (2) The degrading power of neutral protease is weaker than that of acidic protease, and there is no enzyme other than pronase that can reduce the average molecular weight of the product to less than 1000. However, because it is a complex enzyme, the production of free amino acids is extremely large, and at the stage when the average molecular weight approaches 500, more than 50% is free amino acids. (3) Acidic protease has superior decomposition power, and morsin (Aspergillus originating from Fujisawa Pharmaceutical Co., Ltd.)
saitoi), Sanprose F (Hankyu Kyoei Bussan Origin)
Rhizopus chinensis) etc. are useful as they produce less free amino acids. (4) None of the currently known enzymes can be used alone to reduce the molecular weight to the desired level, and as a result of investigating various combinations of enzymatic decomposition reactions, we found that pepsin-morsin, pepsin-sanprose, morsin-morsin It has been confirmed that the enzyme combination of Samproda F is effective in reducing the molecular weight and free amino acid content sufficiently as desired. The method for producing the low-molecular-weight peptide composition constituting the main component of the food material of the present invention will be described below with reference to production examples. Production example: 50g of dried egg white (protein content 82wt%)
The mixture was dissolved in water, the pH was adjusted to 3 with hydrochloric acid, 1 g of Morsin and 1 g of Sunprose F were added, and the mixture was reacted at 40° C. for 24 hours while maintaining the pH at 3. After heating the post-reaction solution at 100℃ for 10 minutes to deactivate the enzyme,
The mixture was centrifuged at 3000 rpm (1500 G) for 10 minutes to remove insoluble matter, and the supernatant was freeze-dried. The yield of this product was 93.2% based on the starting protein, and the average molecular weight was 340. From the results of gel filtration of this product, it was possible to produce a blood cholesterol level lowering agent in which 88 wt% or more of the product had a molecular weight of 700 or less. In addition,
Discrimination below 700 cannot be performed by gel filtration.
The free amino acid content in the product was 8.5%. Production Example Under the same conditions as in Production Example except for the enzymes used, 1 g of Morsin was first added, and then 8 hours later, 1 g of Sunprose F was added and reacted for a further 10 hours, followed by the same treatment as in Production Example. The yield of the obtained product was 93.9%, the average molecular weight was 350, the free amino acid content was 8.1%, and from the gel filtration results, more than 90% of the molecular weight was
It was below 700. Production Example The same treatment as in Production Example was carried out under the same conditions as in Production Example except for the enzymes used, and 1 g of pepsin and 1 g of morsin were added at the same time. The yield of the obtained product was 96.1%, the average molecular weight was 510, the free amino acid content was 7.8%, and the gel filtration results showed that more than 86% had a molecular weight of 700 or less. Production example Under the same conditions as in the production example except for the enzyme used, first 1 g of pepsin was added, then after 6 hours, 1 g of morsin was added.
g was added and the reaction was continued for further 10 hours, followed by the same treatment as in the production example. The yield of the product obtained is 98.3
%, average molecular weight is 550, free amino acid content is 7.3%
According to the gel filtration results, more than 83% had a molecular weight of 700 or less. Production Example The same treatment as in the Example was carried out under the same conditions as in the Production Example except for the enzymes used, with the addition of 1 g of pepsin and 1 g of Sunprose F at the same time. The yield of the obtained product was 94%, the average molecular weight was 430, the free amino acid content was 8.7%, and the gel filtration results showed that more than 90% had a molecular weight of 700 or less. Production Example The same conditions as in Production Example were used except for the enzyme used. First, 1 g of pepsin was added, and after 6 hours, 1 g of Sunprose F was added and the reaction was continued for a further 10 hours, followed by the same treatment as in Production Example 1. The yield of the obtained product was 96%, the average molecular weight was 410, the free amino acid content was 9.2%, and the gel filtration results showed that more than 91% of the products had molecular weight.
It was below 700. Production example Under the same conditions as in Example 1 except for the enzyme used, first 0.25 g of pepsin was added, 3 hours later 1 g of morsin was added, and after 3 hours, 1 g of Sunprose F was added.
After reacting for 10 hours, the same treatment as in Example was performed. The yield of the product obtained was 95%, and the average molecular weight was
370, the free amino acid content was 11.3%, and gel filtration results showed that more than 93% had a molecular weight of 700 or less. The evaluation method of the products in the above examples is as follows. (1) Yield of product Nitrogen amount in product/nitrogen amount in raw materials x 100 Nitrogen analysis was based on the Kjeldahl analysis method. (2) Average molecular weight of product [average molecular weight of amino acids in raw protein] x [number of moles of amino groups in 1 g of product] / [number of moles of amino groups in complete hydrolyzate of 1 g of product] Quantification was performed using TNBS (Tri-Nitro-
Complete hydrolysis of the product was achieved by hydrolysis in 6N HCl at 110°C for 24 hours using the Benzen-Sulphonic acid method. (3) Quantification of free amino acids The product solution is treated with basic copper carbonate to form amino acids and peptides into copper complexes, which are adsorbed onto an anion exchange resin, and the free amino acids eluted with 0.05M boric acid buffer are automatically analyzed. It was quantified using an amino acid analyzer. However, since acidic amino acids were not liberated by the boric acid buffer, the product was directly subjected to an amino acid analyzer for quantification. Accurate quantification is possible because there is no influence of peptides at the separation position of acidic amino acids in an amino acid analyzer. (4) Gel filtration Use Sephadex G-10, which has the lowest molecular weight cutoff, to determine the ratio of peptides with a molecular weight of 700 or less. In the manufacturing example, the raw protein used is egg white, but is not limited to casein, soybean, wheat gluten, fish meal, chlorella, yeast protein, etc., as well as protein substances enriched with specific amino acids through plastein reaction. can also be used. The substrate concentration of the raw protein protein is preferably about 5 to 20 w/v%. This is because if it is less than 5%, it is not practical, and if it is more than 20%, it becomes too viscous. The amount of enzyme added should be at least 1wt%, preferably 2wt%, based on the substrate to achieve a degree of decomposition suitable for the purpose.
~5wt% is good. The reaction time depends on the substrate concentration, enzyme amount,
The reaction time is a function of the reaction temperature, etc., and is set at a time that allows a peptide composition that is not decomposed into amino acids to be obtained. The reaction temperature is determined depending on the optimum temperature of the enzyme used. The acid used may be a strong acid or a weak acid. For comparison, the table below shows a case where a protein is degraded by a combination of two or more proteases as in the production example of the present invention and a case where a single protease is used.

【表】 製造例および上表の比較から、上述の製造例
によれば種々のタンパク源から高収率で目的とす
るデイペプチドおよびトリペプチドを主構成分と
する分子量が500以下に分解され、しかも遊離ア
ミノ酸の含量が10wt%以下と低くなつていてア
ミノ酸の吸収拮抗が少なく、分子量が700以上の
比較的高分子のペプチド含量が20%以下と少ない
特徴を有する本発明の食品素材の主成分となる低
分子ペプチド組成物が確実に製造されることが容
易に理解できる。
[Table] From the comparison between the production example and the table above, it is clear that according to the production example described above, various protein sources can be degraded in high yield to molecules with a molecular weight of 500 or less that mainly consist of the target dipeptide and tripeptide. Moreover, the main component of the food material of the present invention has a low free amino acid content of 10 wt% or less, which has little amino acid absorption antagonism, and a relatively high peptide content with a molecular weight of 700 or more, which is low at 20% or less. It can be easily understood that the low molecular weight peptide composition can be reliably produced.

Claims (1)

【特許請求の範囲】 1 遊離アミノ酸含量および分子量700以上のペ
プチド含量を20%以下としたデイペプチドおよび
トリペプチドを主構成分とする平均分子量700以
下の低分子ペプチド組成物を主成分とする血中コ
レステロール値低下作用を有する食品素材。 2 遊離アミノ酸含量および分子量700以上のペ
プチド含量を10%以下である特許請求の範囲第1
項に記載の食品素材。 3 平均分子量が500以下である特許請求の範囲
第1項または第2項に記載の食品素材。
[Scope of Claims] 1. Blood whose main component is a low-molecular-weight peptide composition with an average molecular weight of 700 or less, the main components of which are dipeptides and tripeptides in which the content of free amino acids and the content of peptides with a molecular weight of 700 or more are 20% or less. A food material that has the effect of lowering intermediate cholesterol levels. 2 Claim 1 in which the content of free amino acids and the content of peptides with a molecular weight of 700 or more are 10% or less
Food ingredients listed in section. 3. The food material according to claim 1 or 2, which has an average molecular weight of 500 or less.
JP58110741A 1983-06-20 1983-06-20 Agent for reducing cholesterol value in blood Granted JPS5976022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110741A JPS5976022A (en) 1983-06-20 1983-06-20 Agent for reducing cholesterol value in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110741A JPS5976022A (en) 1983-06-20 1983-06-20 Agent for reducing cholesterol value in blood

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9416880A Division JPS5718995A (en) 1980-07-10 1980-07-10 Production of low-molecular-weight peptide composition

Publications (2)

Publication Number Publication Date
JPS5976022A JPS5976022A (en) 1984-04-28
JPS6338328B2 true JPS6338328B2 (en) 1988-07-29

Family

ID=14543348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110741A Granted JPS5976022A (en) 1983-06-20 1983-06-20 Agent for reducing cholesterol value in blood

Country Status (1)

Country Link
JP (1) JPS5976022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384050A (en) * 1986-09-26 1988-04-14 Nec Corp Integrated circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023084A (en) * 1986-12-29 1991-06-11 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US5723443A (en) * 1988-02-02 1998-03-03 Hankyu-Kyoei Bussan Co. Ltd. Lipid metabolism promoting agent and its use
JP3312944B2 (en) * 1993-03-24 2002-08-12 伊藤ハム株式会社 Adipocyte differentiation inhibitory peptide and adipocyte differentiation inhibitor comprising the peptide as active ingredient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384050A (en) * 1986-09-26 1988-04-14 Nec Corp Integrated circuit

Also Published As

Publication number Publication date
JPS5976022A (en) 1984-04-28

Similar Documents

Publication Publication Date Title
EP0044032B1 (en) Process for producing a low-molecular weight peptide composition and nutrient agent containing the same
EP0088398B1 (en) Low-molecular weight peptide mixture and method of producing same
EP0528822B1 (en) A co-hydrolytic process for the production of novel extracts from yeast and non-yeast proteins
JPS6338328B2 (en)
CN1062909C (en) Process for production of hydrolyzed vegestable proteins and product therefrom
JPS6153040B2 (en)
JP2653719B2 (en) How to make soy protein
JPS5911195A (en) Preparation of low-molecular peptide composition
JPH04126039A (en) Functional peptide
JPS5911194A (en) Preparation of low-molecular peptide composition
JPS5911193A (en) Preparation of low-molecular peptide composition
JPH07115912A (en) Enzymatic decomposition product of whey protein
JPH0630615B2 (en) Low molecular peptide composition and method for producing the same
JPS6330890B2 (en)
YASUMOTO et al. Aspartyl-and glutamyl-lysine crosslinks formation and their nutritional availability
JPH05252979A (en) Production of low-molecular peptide
KR100242940B1 (en) Process for preparation of protein hydrolysate for seasoning
JPS60164496A (en) Preparation of low-molecular peptide
JPH08252075A (en) Enzymatic decomposition type seasoning
JPH02234642A (en) Low-molecular peptide composition and production thereof
KR19980061479A (en) Manufacturing method of yeast extract for microbial culture
CN114921517B (en) Preparation method of millet antioxidant active peptide
JPS6258713B2 (en)
JPS62224245A (en) Production of easily soluble hydrolyzed milk protein free from unagreeable taste
KR100475833B1 (en) High yield peptide preparation method