JPS6338175A - Measuring instrument for light emission characteristic of semiconductor light emitting element - Google Patents

Measuring instrument for light emission characteristic of semiconductor light emitting element

Info

Publication number
JPS6338175A
JPS6338175A JP61182886A JP18288686A JPS6338175A JP S6338175 A JPS6338175 A JP S6338175A JP 61182886 A JP61182886 A JP 61182886A JP 18288686 A JP18288686 A JP 18288686A JP S6338175 A JPS6338175 A JP S6338175A
Authority
JP
Japan
Prior art keywords
light emitting
video camera
light
semiconductor light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61182886A
Other languages
Japanese (ja)
Other versions
JPH0360376B2 (en
Inventor
Iesato Sato
佐藤 家郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP61182886A priority Critical patent/JPS6338175A/en
Publication of JPS6338175A publication Critical patent/JPS6338175A/en
Publication of JPH0360376B2 publication Critical patent/JPH0360376B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To measure a light emitting element in a chip state or at a stage close to its state by processing a photodetected image remaining in a video camera owing to after image characteristics of a solid-state image pickup element and computing light emission characteristics. CONSTITUTION:When a measurement start command is inputted to a processor 11, a driving pulse generator 9 applies driving pulses to the light emitting element 1 through a probe 14 and the element 1 emits light instantaneously. Its emitted light is diffracted spectrally; and light (a) is projected on a screen 3 and picked up by a video camera 5 and light (b) is picked up by a video camera 6 respectively. At this time, images remains in the video cameras 5 and 6 awhile because of the characteristics of the solid-state image pickup elements and image signals are sent out to the processor 11. The processor 11 computes light emission characteristics and sends out the result to a display/recording device 12, which outputs the air field pattern and field pattern of the element 1. Then electric power for light emission is applied for an about 100sec short time and the element 1 never has such as temperature rise that thermal stress remains even before being cased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザーダイオード、発光ダイオード寿、半
導体発光素子の特性測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring characteristics of laser diodes, light emitting diodes, and semiconductor light emitting devices.

〔従来技術〕[Prior art]

特に計測媒体となる光の発生源に使用する半導体発光素
子(以下、発光素子という。)には、良好な発光特性が
要求されるため、当該発光特注を測定することは重要で
ある0 周知のように発光素子の発光特性は、当該発光素子の発
光を発光点から離隔した位置で観察するファーフィール
ドパターン特性と、当該発光素子の発光点に於ける発光
状態を観察するニアフィールドパターン特性とがある。
In particular, semiconductor light-emitting devices (hereinafter referred to as light-emitting devices) used as light generation sources serving as measurement media are required to have good light-emitting characteristics, so it is important to measure the light-emitting custom-made products. The light emitting characteristics of a light emitting element are divided into far field pattern characteristics, in which the light emission of the light emitting element is observed at a position distant from the light emitting point, and near field pattern characteristics, in which the light emitting state at the light emitting point of the light emitting element is observed. be.

従来のファーフィールドパターン特注の測定装置はフォ
トダイオードアレー上に被測定発光素子からの光を投影
し、上記フォトダイオードアレーの各セルをデマルチプ
レクサ−で切換えて各セル毎の受光レベルを検出して処
理装置(CPU)で処理して特注を得るようにしている
Conventional far-field pattern custom-made measurement equipment projects the light from the light-emitting element to be measured onto a photodiode array, switches each cell of the photodiode array using a demultiplexer, and detects the light reception level of each cell. We process it using a processing unit (CPU) to obtain custom orders.

また、従来のニアフィールドパターン特注の測定装置は
被測定発光素子の発光端面の像を光学系により拡大して
フォトダイオードアレー上に結像させ、上記と同様に当
該フォトダイオードアレーの各セルの受光レベルを検出
して処理装置で処理するよう圧している。
In addition, conventional near-field pattern custom-made measurement equipment uses an optical system to magnify the image of the light-emitting end face of the light-emitting element to be measured and forms the image on the photodiode array, and in the same way as above, each cell of the photodiode array receives light. The level is detected and pressure is applied to the processing equipment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の測定装置によると、被測定発光素子の発光駆
動は、フォトダイオードアレーのセル数だけ繰り返す必
要がおり、従って被測定発光素子に熱的ストレスが加わ
ることとなるので、発光素子チップに充分な放熱手段を
講じた状態、すなわち、発光素子チップをケース内に封
止して製品としての形態が整った段階で特性測定を行う
必要があり、不良品の数だけのケース及び当該ケース内
への発光素子チップの封止工数が無駄となるので、発光
素子の製造工程に於ける特注測定の手段としては、従来
の測定装置は適していない。
According to the conventional measuring device described above, the light emitting drive of the light emitting element to be measured needs to be repeated as many times as the number of cells in the photodiode array, and therefore thermal stress is applied to the light emitting element to be measured. It is necessary to measure the characteristics after appropriate heat dissipation measures have been taken, that is, when the light emitting element chip is sealed inside the case and the product is ready. Conventional measuring devices are not suitable as means for custom-made measurements in the manufacturing process of light emitting devices because the number of steps required to seal the light emitting device chips is wasted.

また、ファーフィールドパターン特性とニアフィールド
パターン特注とは同一の発光条件で測定されるのが望ま
しいが、従来の測定装置ではファーフィールドパターン
特性とニアフィールドパターン特性とが別個の装置で測
定されるので、測定の条件を同一とすることがむづかし
いという問題点がある。
Additionally, it is desirable that far-field pattern characteristics and near-field pattern customization be measured under the same light emission conditions, but with conventional measurement equipment, far-field pattern characteristics and near-field pattern characteristics are measured using separate devices. However, there is a problem in that it is difficult to make the measurement conditions the same.

本発明は以上の問題点を解決すべく提案するもので、発
光素子をチップ状態又はそれに近い状ぷ(例えばケース
内でのヒートン/りにチップを搭載した状岬)の段階で
判定が可能な装置を得ることを目的とし、更にファーフ
ィールドパターン特性及びニアフィールドパターン特性
を同時に上記段階で測定できる装置を得ることを目的と
する。
The present invention is proposed to solve the above problems, and it is possible to determine the state of a light emitting element when it is in a chip state or a state close to it (for example, in a heaton in a case/in a state with a chip mounted on a case). The object of the present invention is to obtain an apparatus, and further to obtain an apparatus capable of simultaneously measuring far-field pattern characteristics and near-field pattern characteristics at the above-mentioned stage.

〔問題点を解決するための手段〕[Means for solving problems]

以上の目的のため、本発明は被測定発光素子の発光駆動
時間を当該発光素子のチップに熱的ストレスが残らない
程度の極めて短い時間(例えば100nSec程度)と
し、この時間での当該発光素子の瞬間的発光を固体撮像
素子を使用したビデオカメラ(CCD型又はMOS型ビ
デオカメラ)で撮像し、上記瞬間的発光が終った後にも
固体撮像素子の特性によって上記ビデオカメラに残って
いる受光画像を処理して発光素子の発光特性を得るよう
にしたものであシ、また上記発光素子の瞬間的発光を分
光手段(例えば)・−フミラー)によって2方路に分光
し、−万の方路の光はスクリーンて投影し、これを上記
ビデオカメラで撮像してファーフィールドパターン特性
を得、他方の方路の光は直接上記ビデオカメラで撮像し
てニアフィールドパターン特性を得るようKしたもので
ある。
For the above purpose, the present invention sets the light emitting drive time of the light emitting element to be measured to an extremely short time (for example, about 100 nSec) to the extent that no thermal stress remains on the chip of the light emitting element, and The instantaneous light emission is imaged with a video camera (CCD type or MOS type video camera) using a solid-state image sensor, and even after the instantaneous light emission ends, the received light image that remains on the video camera due to the characteristics of the solid-state image sensor is captured. The instantaneous light emitted from the light emitting element is split into two directions by a spectroscopic means (for example, -fmirror), and the light emitting characteristics of the light emitting element are obtained by processing the light emitting element. The light is projected onto a screen and imaged by the video camera to obtain far-field pattern characteristics, and the light from the other direction is directly imaged by the video camera to obtain near-field pattern characteristics. .

〔実施例の構成〕[Configuration of Example]

第1図は本発明の実施例に係る装置の光学系の配置関係
と処理系の各部を示したブロック図である。
FIG. 1 is a block diagram showing the arrangement of the optical system and each part of the processing system of an apparatus according to an embodiment of the present invention.

第1図に示すように、光学系は、被測定発光素子10発
光光の進路(イ)の前方に反射面を当該発光素子1側に
向けて設けた例えばハーフミラ−の様な分光手段(以下
、ハーフミラ−を例とする)2、該ハーフミラ−2で2
方路の分光された第1の光の進路(以下、方路という。
As shown in FIG. 1, the optical system includes a spectroscopic means (hereinafter referred to as a spectroscopic means) such as a half mirror, which is provided in front of the path (a) of the light emitted from the light emitting element 10 to be measured with its reflective surface facing the light emitting element 1 side. , taking a half mirror as an example) 2, the half mirror 2 is 2
The path (hereinafter referred to as the direction) of the first light that has been split into two directions.

)(ロ)及び第2の方路(ハ)(ハーフミラ−2の透過
光の進路を第1の方路(ロ)とし、反射光の進路を第2
の方路(ハ)とする。)Kそれぞれ設けられたスクリー
ン3及び拡大し/ズ4、第1の方路(ロ)及び第2の方
路e今にそれぞれ撮像方向(レンズの向き)が設定され
た2台のビデオカメラ5及び6で構成されている。
) (B) and the second direction (C) (The path of the transmitted light of the half mirror 2 is the first direction (B), and the path of the reflected light is the second direction.
Let the direction be (c). )K respectively provided with a screen 3 and a magnifying lens 4, a first direction (b) and a second direction e two video cameras 5 whose imaging directions (lens orientations) are respectively set. and 6.

ビデオカメラ5及び6は、その撮像手段として例えばC
CD撮像素子、MOS撮像素子等の固体撮像素子を有す
る。この固体撮像素子は受光画像を受光がなくなった後
も暫時保持する残像特性を持っている。
The video cameras 5 and 6 are, for example, C.
It has a solid-state image sensor such as a CD image sensor or a MOS image sensor. This solid-state image sensor has an afterimage characteristic that retains a light-receiving image for a while even after light is no longer being received.

また、ビデオカメラ5,6にはそれぞれ入射光量を制御
する電動絞り機構51,61が設けられている。この電
動絞り機構51.61は例えば被測定発光素子1がレー
ザーダイオードのように発光強度が強いものであるとき
にはビデオカメラ5,6の固体撮像素子が飽和しないよ
うに入射光量を少なくするものであシ、発光素子1が発
光強度の弱い素子の場合には必要のないものである。尚
、当該twJ絞シ機構51,61はビデオカメラ5,6
のレンズに組み込まれたものが使用できるものであシ、
レンズ組込みの絞り機構で抑制しきれない入射光量のと
きには絞り能力のより大きな絞シ機構を別途設けるよう
にする。
Further, the video cameras 5 and 6 are respectively provided with electric aperture mechanisms 51 and 61 that control the amount of incident light. For example, when the light-emitting element 1 to be measured has a strong emission intensity, such as a laser diode, the electric aperture mechanism 51, 61 reduces the amount of incident light so that the solid-state image pickup devices of the video cameras 5 and 6 do not become saturated. B. This is not necessary if the light emitting element 1 is an element with low emission intensity. Note that the twJ aperture mechanism 51, 61 is the video camera 5, 6.
The one built into the lens can be used.
When the amount of incident light cannot be suppressed by the aperture mechanism built into the lens, a separate aperture mechanism with a larger aperture ability is provided.

また、スクリーン3は発光索子1の発光光を投影するも
のでこのスクリーン3上の投影像を第1のビデオカメラ
5(2台のビデオカメラを区別していうときには記号#
5″のものを”第1のビデオカメラ″、記号#6#のも
のを第2のビデオカメラという。)で撮像してファーフ
ィールドパターン特性を得る。すなわち、当該第1のビ
デオカメラ5の焦点はスクリーン3上の投影像に合わせ
られている。
The screen 3 projects the light emitted from the light-emitting cable 1, and the projected image on the screen 3 is transmitted to the first video camera 5 (symbol # to distinguish between the two video cameras).
5" is called the "first video camera", and the one with symbol #6# is called the second video camera) to obtain the far field pattern characteristics. In other words, the focus of the first video camera 5 is aligned with the projected image on the screen 3.

また、拡大レンズ4は発光素子1の発光点を拡大するも
ので、この拡大レンズ4で拡大された発光素子1の発光
点を第2のビデオかメラ6で撮像してニアフィールドパ
ターン特性を得る。
Further, the magnifying lens 4 magnifies the light emitting point of the light emitting element 1, and the light emitting point of the light emitting element 1 magnified by the magnifying lens 4 is imaged by a second video camera or camera 6 to obtain near field pattern characteristics. .

すなわち、当該第2のビデオカメラ6の焦点は発光素子
1の発光点の拡大レンズ4による結像位1it(当該発
光点と婦価な位!#、)に合わせられている。
That is, the focus of the second video camera 6 is set at the imaging position 1it of the light-emitting point of the light-emitting element 1 by the magnifying lens 4 (at a distance from the light-emitting point!#).

尚、上記光学系の構成に於いて、第1の方路(ロ)に拡
大レンズ4を設け、第2の方路(ハ)にスクリーン3を
設けて第1のビデオカメラ5でニアフィールドパターン
特注を、第2のビデオカメラ6でファーフィールドパタ
ーン特性を得るようにしてもよい。
In the configuration of the optical system described above, a magnifying lens 4 is provided in the first path (b), a screen 3 is provided in the second path (c), and the near field pattern is captured by the first video camera 5. Customization may be made to obtain the far field pattern characteristics with the second video camera 6.

また、ファーフィールドパターン特性又はニアフィール
ドパターン特性のいずれか一方の測定のみを必要とする
場合にはハーフミラ−2による分光を必要とせず、発光
素子10発光光の進路(イ)にスクリーン3又は拡大レ
ンズ4を設ければよく、ビデオカメラも1台でよい。
In addition, when it is necessary to measure only either the far-field pattern characteristics or the near-field pattern characteristics, there is no need for spectroscopy using the half mirror 2, and the path of the emitted light from the light-emitting element 10 (a) is replaced by the screen 3 or magnification. It is only necessary to provide a lens 4, and only one video camera is required.

また、発光素子1の発光面積が大きかったシ、あるいは
ニアフィールドパターン撮像用のビデオカメラ6自体く
映像拡大機能を有するときなど、拡大レンズ4を必要と
しない場合もある。
Furthermore, the magnifying lens 4 may not be necessary in some cases, such as when the light emitting element 1 has a large light emitting area, or when the video camera 6 for near-field pattern imaging has an image magnifying function.

次に処理系は、第1図に示すように、ビデオカメラ5.
6からの画像信号をそれぞれA/D変換する2つのA/
D変換器7,8、被測定発光素子IK極めて短い時間巾
の駆動パルスを供給する駆動パルス発生器9、上記ビデ
オカメラ5.6とA/D変換器7,8に同期信号を送出
し、かつ上記駆動パルス発生器9に駆動パルスの送出タ
イミング信号を送出する同期信号発生器10、ビデオカ
メラ5,6の電動絞り機構51.61の絞り値の設定等
、システムの制御を一括して行うとともK、上記A/D
変換器7゜8を経てビデオカメラ5及び6から送られる
画像1ま号を処理して発光特注(ファーフィールドパタ
ーン特注及びニアフィールドパターン特注)を得る処理
装置(所謂、CPU)11、該処理装置11で得た発光
#j注を表示し又は/及び記録する表示/記録装置12
で構成される。
Next, as shown in FIG. 1, the processing system processes the video camera 5.
Two A/D converters each convert image signals from 6 to A/D.
D converters 7 and 8, a drive pulse generator 9 that supplies a drive pulse with an extremely short duration to the light emitting element to be measured IK, and a synchronization signal sent to the video camera 5.6 and A/D converters 7 and 8; The system is also controlled all at once, including a synchronizing signal generator 10 that sends a drive pulse sending timing signal to the drive pulse generator 9, and setting of aperture values of the electric aperture mechanisms 51 and 61 of the video cameras 5 and 6. Tomo K, above A/D
A processing device (so-called CPU) 11 for processing images 1 and 1 sent from the video cameras 5 and 6 via the converter 7.8 to obtain custom-made light emission (custom-made far-field pattern and custom-made near-field pattern); Display/recording device 12 for displaying and/or recording the luminescence #j obtained in step 11
Consists of.

駆動パルス発生器9から発光素子1への発光成力の供給
機構は当該発光素子1の種類及び測定段階での加工式に
よって適宜な構造とすればよいが、例えば発光素子1が
レーザーダイオードであって、そのチップの段階で発光
特性の測定全行う場合には、当該チップは両面がtiで
あって端面に発光点が存在するので、第1図に示すよう
に、発光素子1のRf台13を導を注部材で形成して駆
動パルス発生器9の出力の一方の極を当該載置苗13に
接続し、駆動パルス発生器9の出力の池方の極に接続し
たプローブ14を上記載置台13上の発光素子1の上面
の@極に接触させるようにした構造とすればよい。
The mechanism for supplying light emitting power from the driving pulse generator 9 to the light emitting element 1 may have an appropriate structure depending on the type of the light emitting element 1 and the processing method used in the measurement stage. For example, if the light emitting element 1 is a laser diode, If all the measurement of the light emitting characteristics is carried out at the stage of the chip, since both sides of the chip are Ti and there are light emitting points on the end faces, the Rf stand 13 of the light emitting element 1 is The probe 14 is connected to the Ikekata pole of the output of the drive pulse generator 9, with one pole of the output of the drive pulse generator 9 connected to the placed seedling 13, and the probe 14 connected to the Ikekata pole of the output of the drive pulse generator 9. The structure may be such that it is brought into contact with the @ pole on the upper surface of the light emitting element 1 on the mounting table 13.

〔実施例の作用〕[Effect of the embodiment]

第2図は実施例の作用を説明するタイムチャートであり
、第1図に示すA点〜F点に送出される信号を示してい
る。この第2図を参照して第1図に示す実施例の動作を
説明する。尚、以下の動作は被測定発光素子1が発光強
度の高いレーザーダイオードである場合の動作である。
FIG. 2 is a time chart for explaining the operation of the embodiment, and shows signals sent to points A to F shown in FIG. 1. The operation of the embodiment shown in FIG. 1 will be explained with reference to FIG. Note that the following operation is an operation when the light emitting element 1 to be measured is a laser diode with high emission intensity.

処理装置11にはデータ投入装置(図示せず)から発光
素子1の発光強度の予想最大値データが投入されておシ
、当該処理装置11は上記予想最大値データからビデオ
カメラ5,6への入射光レベルがその固体撮像素子を飽
和させない(最大撮像レベルに達しない)ような最適絞
り値を演算してそれぞれの電動絞り機構51.61を上
記最適絞り値に設定する。
The processing device 11 is inputted with predicted maximum value data of the light emission intensity of the light emitting element 1 from a data input device (not shown), and the processing device 11 inputs the predicted maximum value data to the video cameras 5 and 6 from the predicted maximum value data. An optimum aperture value is calculated so that the level of incident light does not saturate the solid-state image pickup device (does not reach the maximum image pickup level), and each electric aperture mechanism 51, 61 is set to the optimum aperture value.

同期信号発生器10は第2図Aに示すようにビデオカメ
ラ5,6及びA/D変換器7.8にカメラ同期信号を設
定周期t、で送出しており、これによってビデオカメラ
5,6は撮像動作を繰り返し、A/D変換器7.8はビ
デオカメラ5.6の撮像動作と同期してディジタル信号
に変換した面像信号を処理装置11に送出している。但
し、この段階では発光素子1は発光していないので測定
に係る信号は未だ送出されない。
As shown in FIG. 2A, the synchronization signal generator 10 sends a camera synchronization signal to the video cameras 5, 6 and the A/D converter 7.8 at a set period t. repeats the imaging operation, and the A/D converter 7.8 sends the surface image signal converted into a digital signal to the processing device 11 in synchronization with the imaging operation of the video camera 5.6. However, at this stage, the light emitting element 1 is not emitting light, so a signal related to measurement is not yet sent out.

載置台13に発光素子1を来せプローブ14を当該発光
5靴子1にセットしたのち処理装置11に測定開始指令
を投入すると、当該処理装置11は第2図Bに示すよう
洗同期信号発生器10に/ヨツト1S号を送出する。同
期信号発生器10は上記8点に送出された/ヨツト信号
が人力されたのち最初に送出するカメラ同期信号と同時
に駆動パルス発生器9に第2図CK示す駆動パルス送出
タイミング1M号を送出する。これKより当該用動パル
ス発生器9は第2図りに示すようにパルス巾11の駆動
パルスをプローブ14に出力する1、この駆動パルスの
パルス巾ttlti1o。
After placing the light emitting element 1 on the mounting table 13 and setting the probe 14 on the light emitting element 1, when a measurement start command is input to the processing device 11, the processing device 11 generates a washing synchronization signal generator as shown in FIG. 2B. 10/Send out yacht 1S. The synchronization signal generator 10 sends the drive pulse sending timing 1M shown in FIG. 2 CK to the drive pulse generator 9 at the same time as the first camera synchronization signal sent after the yacht signal sent to the above eight points is manually input. . From this K, the operating pulse generator 9 outputs a drive pulse with a pulse width of 11 to the probe 14 as shown in the second diagram.1, the pulse width of this drive pulse is ttlti1o.

n5ec 程度の極めて短い時間;て設定されており、
この駆、功パルスがプローブ14全通して発光素子1:
て印・JDされ、当該発光素子1が揃間的:C見光する
。尚、上記駆動パルスのパルス巾1.は同期信号発生器
10に於いて規定しても、あるいは駆動パルス発生器9
に於いて規定してもよい。
It is set for an extremely short time of about n5ec,
These pulses pass through the entire probe 14 to the light emitting element 1:
The light emitting element 1 is marked as JD, and the light emitting element 1 is illuminated at the same time. Note that the pulse width of the above drive pulse is 1. Even if it is specified in the synchronization signal generator 10 or the drive pulse generator 9
It may also be specified.

以上のようにして発光素子1が発光すると、第2図EK
示すように光の進路(イ)方向に発光光が放射され、当
該発光光はハーフミラ−2(てよって第1の方路(ロ)
と第2の方路(ハ)に分光されて進む。
When the light emitting element 1 emits light as described above, FIG.
As shown, the emitted light is emitted in the direction of the light path (a), and the emitted light is emitted from the half mirror 2 (therefore, the first direction (b)
The light is split into a second direction (c) and proceeds.

第1の方路仲)に進んだ発光光はスクリーン3上に投影
像を描き、この投影像は焦点が上記スクリーン3に合わ
された第1のビデオカメラ5で撮像される。また第2の
方路(ハ)に進んだ発光光は、焦点が拡大レンズ4によ
る発光七子10発光点の結像位置(拡大レンズ4がない
ときには発光素子1の発光点)に合わせられた第2のビ
デオカメラ6で撮像される。
The emitted light that has proceeded in the first direction draws a projected image on the screen 3, and this projected image is captured by the first video camera 5, which is focused on the screen 3. Further, the emitted light that has proceeded to the second direction (c) is focused on the imaging position of the light emitting point of the light emitting element 10 by the magnifying lens 4 (or the light emitting point of the light emitting element 1 when the magnifying lens 4 is not present). The image is captured by the second video camera 6.

以上の動作に於いて、2台のビデオカメラ5゜6の撮像
時間は発光素子1の発光1侍間であろ100nsec桿
度であるが、当該ビデオカメラ5,6に使用されている
固体撮像素子の特注によシ、撮像された画像は当該それ
ぞれのビデオカメラ5.6に暫時残留し、第2図FK示
すように処理袋filに残留画像による画像信号が送出
される。そして同期信号発生器10から送出されている
カメラ同期信号によって、ビデオカメラ5.6から出力
されている画像信号が当該ビデオカメラ5,6の撮像動
作と同期してA/D変換器7,8でそれぞれディジタル
信号に変換され処理装置11に入力される。尚、ビデオ
カメラ5,6の撮像画面の走査はカメラ同期信号の1周
期で終了するものとする。
In the above operation, the imaging time of the two video cameras 5 and 6 is 100 nsec per light emitting interval of the light emitting element 1, but the solid-state image sensor used in the video cameras 5 and 6 is According to the custom order, the captured images remain in the respective video cameras 5 and 6 for a while, and as shown in FIG. 2FK, image signals based on the remaining images are sent to the processing bag fil. Then, according to the camera synchronization signal sent from the synchronization signal generator 10, the image signal output from the video camera 5.6 is synchronized with the imaging operation of the video camera 5, 6, and the image signal is sent to the A/D converter 7, 8. The signals are each converted into digital signals and input to the processing device 11. It is assumed that the scanning of the imaging screens of the video cameras 5 and 6 is completed in one cycle of the camera synchronization signal.

ところで、ビデオカメラ5,6に残留している画像の保
持レベルは時間の経過とともにゆっくりと減衰していく
ので上記画像信号のレベルは第2図FK示すように徐々
に低下していく。
Incidentally, since the retention level of the images remaining in the video cameras 5 and 6 slowly attenuates with the passage of time, the level of the image signal described above gradually decreases as shown in FIG. 2FK.

しかしながら発光素子1の発光タイミングをカメラ同期
1B号と同期させていることから、当該発光素子10発
光時とビデオカメラ5.6からの画像読出し間浦が一定
に保たれるので、当該画像信号の最大レベルt、と最少
レベル1tの比率(1,/1. )は一定であるのでこ
の画像信号の低下は処理装置11に於ける処理によって
補正できる。
However, since the light emission timing of the light emitting element 1 is synchronized with the camera synchronization number 1B, the time between the light emission of the light emitting element 10 and the image readout from the video camera 5.6 is kept constant, so that the image signal of the image signal is Since the ratio (1,/1.) between the maximum level t and the minimum level 1t is constant, this reduction in the image signal can be corrected by processing in the processing device 11.

処理装置11では、以上のようKしてビデオカメラ5,
6から送られた画像信号を予め投入されている電動絞り
機構の絞り値データ及び上記画像信号レベルの減衰の補
正値を加味して発光%性を演算して表示/記録装[12
に送出し、当該表示/記録装置12は発光素子1のファ
ーフィールドパターン及びニアフィールドパターンを出
力する。
In the processing device 11, the video camera 5,
The display/recording device [12
The display/recording device 12 outputs a far field pattern and a near field pattern of the light emitting element 1.

以上の動作に於いて、発光素子1への発光電力の印加時
間は1o o n5ec、i度で極めて短い時間であり
、発光素子1はケーシング以前の状態であっても熱的ス
トレスが残るような温度上昇を受けることはない。
In the above operation, the time for applying light emitting power to the light emitting element 1 is 1 o on 5 ec, i degrees, which is an extremely short time, and the light emitting element 1 is exposed to thermal stress even before the casing. It is not subject to temperature rise.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなようK、本発明によれば被測定発
光素子への発光電力の印加時間は100 n5ec程度
と極めて短い時間であるので、被測定発光素子がケーシ
ング以前の状態であっても当該発光素子は熱的ストレス
が残るような温度上昇を受けることがない。従ってチッ
プ又はそれに近い加工段階に於いて発光特性が測定でき
るので、不良品に対するケーシング作業の無駄を省くこ
とができる。
As is clear from the above explanation, according to the present invention, the time for applying light emitting power to the light emitting element to be measured is extremely short, about 100 n5ec, so even if the light emitting element to be measured is in a state before the casing, The light emitting element is not subjected to a temperature rise that would cause residual thermal stress. Therefore, since the light emitting characteristics can be measured at the chip or at a processing stage close to the chip, wasteful casing work for defective products can be avoided.

また、被測定発光素子の発光光を分光してファーフィー
ルドパターン特性とニアフィールドパターン特注とを同
時に測定するので、2つの特注は同一環境条件下で測定
で′き、極めて信頼性の高い測定データが得られる。
In addition, since the light emitted by the light-emitting element to be measured is spectrally analyzed and the far-field pattern characteristics and near-field pattern custom-made are measured at the same time, the two custom-made can be measured under the same environmental conditions, resulting in extremely reliable measurement data. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は動
作を示すタイムチャートである。 (主な記号) 1・・・被測定発光素子 2・・・ノ・−フミラー3・
・・スクリーン   4・・・拡大レンズ5.6・・・
ビデオカメラ 9・・・駆動パルス発生器11・・・処
理装置。 第1図
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a time chart showing the operation. (Main symbols) 1... Light-emitting element to be measured 2... Nof mirror 3.
...Screen 4...Magnifying lens 5.6...
Video camera 9... Drive pulse generator 11... Processing device. Figure 1

Claims (1)

【特許請求の範囲】 1 被測定半導体発光素子に極めて短い時間発光電力を
供給する駆動パルス発生器と、該駆動パルス発生器から
発光電力が供給されたときの上記半導体発光素子の瞬間
的発光を撮像する固体撮像素子を使用したビデオカメラ
と、上記固体撮像素子の残像特注によつて上記ビデオカ
メラに残留している受光画像を処理して発光特注を演算
する処理装置でなる半導体発光素子の発光特性測定装置
。 2 ビデオカメラがCCD型ビデオカメラである特許請
求の範囲第1項に記載の半導体発光素子の発光特性測定
装置。 3 ビデオカメラがMOS型ビデオカメラである特許請
求の範囲第1項に記載の半導体発光素子の発光特性測定
装置。 4 被測定半導体発光素子に極めて短い時間発光電力を
供給する駆動パルス発生器と、該駆動パルス発生器から
発光電力が供給されたときの上記半導体発光素子の瞬間
的発光による光の進路を2つの方路に分割する分光手段
と、一方の方路に送光した光を投影するスクリーンと、
固体撮像素子が使用され、かつ撮像方向が上記一方の方
路に設定されていて上記スクリーンに焦点が合わされた
ビデオカメラと、固体撮像素子が使用され、かつ撮像方
向が上記方路とは他方の方路に設定されていて上記半導
体発光素子の発光点もしくは当該発光点と等価な位置に
焦点が合わされた上記とは別個のビデオカメラと、上記
固体撮像素子の残像特性によつて上記2つのビデオカメ
ラに残留している受光画像を処理してそれぞれ上記半導
体発光素子のファーフィールドパターン特性及びニアフ
ィールドパターン特性を演算する処理装置でなる半導体
発光素子の発光特性測定装置。 5 分光手段がハーフミラーである特許請求の範囲第4
項に記載の半導体発光素子の発光特性測定装置。 6 ビデオカメラがCCD型ビデオカメラである特許請
求の範囲第4項に記載の半導体発光素子の発光特性測定
装置。 7 ビデオカメラがMOS型ビデオカメラである特許請
求の範囲第4項に記載の半導体発光素子の発光特性測定
装置。
[Scope of Claims] 1. A drive pulse generator that supplies light emitting power to a semiconductor light emitting device under test for an extremely short period of time, and instantaneous light emission of the semiconductor light emitting device when the light emitting power is supplied from the drive pulse generator. Light emission of a semiconductor light emitting element, which is made up of a video camera using a solid-state image sensor to take an image, and a processing device that processes the received light image remaining in the video camera due to the afterimage custom order of the solid-state image sensor and calculates the light emission custom order. Characteristic measuring device. 2. The device for measuring light emitting characteristics of a semiconductor light emitting device according to claim 1, wherein the video camera is a CCD type video camera. 3. The device for measuring light emitting characteristics of a semiconductor light emitting device according to claim 1, wherein the video camera is a MOS type video camera. 4. A drive pulse generator that supplies light emitting power for an extremely short period of time to the semiconductor light emitting device under test, and two paths of light caused by the instantaneous light emission of the semiconductor light emitting device when the light emitting power is supplied from the drive pulse generator. A spectroscopic means that divides the light into directions, a screen that projects the transmitted light into one direction,
A video camera in which a solid-state image sensor is used and whose imaging direction is set in one of the above directions and is focused on the screen, and a video camera in which a solid-state image sensor is used and whose imaging direction is set in the other direction The above two videos are captured by a video camera separate from the above which is set in the same direction and focused on the light emitting point of the semiconductor light emitting device or a position equivalent to the light emitting point, and the afterimage characteristics of the solid state image sensor. A light emitting characteristic measuring device for a semiconductor light emitting device, comprising a processing device that processes a received light image remaining in a camera and calculates far field pattern characteristics and near field pattern characteristics of the semiconductor light emitting device. 5 Claim 4 in which the spectroscopic means is a half mirror
An apparatus for measuring light emitting characteristics of a semiconductor light emitting device according to 2. 6. The device for measuring light emitting characteristics of a semiconductor light emitting device according to claim 4, wherein the video camera is a CCD type video camera. 7. The device for measuring light emitting characteristics of a semiconductor light emitting device according to claim 4, wherein the video camera is a MOS type video camera.
JP61182886A 1986-08-04 1986-08-04 Measuring instrument for light emission characteristic of semiconductor light emitting element Granted JPS6338175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182886A JPS6338175A (en) 1986-08-04 1986-08-04 Measuring instrument for light emission characteristic of semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182886A JPS6338175A (en) 1986-08-04 1986-08-04 Measuring instrument for light emission characteristic of semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS6338175A true JPS6338175A (en) 1988-02-18
JPH0360376B2 JPH0360376B2 (en) 1991-09-13

Family

ID=16126125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182886A Granted JPS6338175A (en) 1986-08-04 1986-08-04 Measuring instrument for light emission characteristic of semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS6338175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446691A (en) * 1990-06-14 1992-02-17 Mitsubishi Heavy Ind Ltd Method for measuring divergent angle of yag laser beam
JP2008180661A (en) * 2007-01-26 2008-08-07 Shin Etsu Handotai Co Ltd Apparatus and method for inspecting electronic device
JP2015210134A (en) * 2014-04-24 2015-11-24 豊田合成株式会社 Optical measuring device and wavelength measurement method of light-emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108423A (en) * 1981-12-21 1983-06-28 Mitsubishi Electric Corp Measuring apparatus for luminance distribution of light-emitting element
JPS6189536A (en) * 1984-10-09 1986-05-07 Meisei Electric Co Ltd Apparatus for measuring transmitting and receiving characteristic patterns of signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108423A (en) * 1981-12-21 1983-06-28 Mitsubishi Electric Corp Measuring apparatus for luminance distribution of light-emitting element
JPS6189536A (en) * 1984-10-09 1986-05-07 Meisei Electric Co Ltd Apparatus for measuring transmitting and receiving characteristic patterns of signal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446691A (en) * 1990-06-14 1992-02-17 Mitsubishi Heavy Ind Ltd Method for measuring divergent angle of yag laser beam
JP2008180661A (en) * 2007-01-26 2008-08-07 Shin Etsu Handotai Co Ltd Apparatus and method for inspecting electronic device
JP2015210134A (en) * 2014-04-24 2015-11-24 豊田合成株式会社 Optical measuring device and wavelength measurement method of light-emitting element

Also Published As

Publication number Publication date
JPH0360376B2 (en) 1991-09-13

Similar Documents

Publication Publication Date Title
US6002792A (en) Semiconductor device inspection system
CN101292359B (en) Apparatus for and method of measuring image
JPH0117523B2 (en)
EP0653626B1 (en) Semiconductor device inspection system
JP3306858B2 (en) 3D shape measuring device
JP2003344696A (en) Method, device and system for aligning end of optical fiver with light guide
JPS6338175A (en) Measuring instrument for light emission characteristic of semiconductor light emitting element
JPH0321913A (en) Scan type microscope device
US8279326B2 (en) Light quantity detecting apparatus and imaging apparatus
JP2975194B2 (en) Semiconductor device inspection system
JPH0575921A (en) Exposure control device
JP3029004B2 (en) Stereo vision camera
JPS6291833A (en) Measuring instrument for two-dimensional light distribution of light source
TW201514479A (en) Defect viewing device and defect viewing method
JPS6218179A (en) Image pickup device
JP4266286B2 (en) Distance information acquisition device and distance information acquisition method
JPS63304179A (en) Inspecting device for semiconductor device by light induced current
JP4364348B2 (en) Imaging circuit and spatial compensation method
JP2005338136A (en) Laser confocal microscope
SU1504504A1 (en) Optronic device for checking flaws on outer surfaces of parts
JP2005069810A (en) Bump dimension measuring method and measuring device
KR100323388B1 (en) device for measuring a distance and brightness of an object in digital still camera
JPH07270239A (en) Soldering monitor device and soldering monitor system using it
JPS62203048A (en) Apparatus for inspecting shape
JPH0755432A (en) Length and height measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term