JPS6338153A - Electrolytic cell for flow coulometry - Google Patents

Electrolytic cell for flow coulometry

Info

Publication number
JPS6338153A
JPS6338153A JP61182991A JP18299186A JPS6338153A JP S6338153 A JPS6338153 A JP S6338153A JP 61182991 A JP61182991 A JP 61182991A JP 18299186 A JP18299186 A JP 18299186A JP S6338153 A JPS6338153 A JP S6338153A
Authority
JP
Japan
Prior art keywords
working electrode
electrolytic
electrode
current collector
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61182991A
Other languages
Japanese (ja)
Other versions
JPH0560548B2 (en
Inventor
Tsugiyoshi Hara
原 世悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61182991A priority Critical patent/JPS6338153A/en
Publication of JPS6338153A publication Critical patent/JPS6338153A/en
Publication of JPH0560548B2 publication Critical patent/JPH0560548B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To exactly measure the concn. of the high-concn. ions to be measured by increasing the contact pressure between a working electrode and current collector and lowering the packing rate of the working electrode. CONSTITUTION:A flexible fiber material is used as the working electrode 9 and is so packed into a working electrode housing container 7 that the ends of the electrode two-folded in a central part 30 come to the part of the current collector 2. The contact pressure between the fibers and the current collector 2 is, therefore, increased by the recovering force generated when the fibers are two-folded. The electrical connection between the electrode 9 and the current collector 2 is thus assured. The pressure difference between the electrode 9 side and the counter electrolyte 8 side is decreased by lowering the packing rate of the electrode 9 and since the pore size, porosity or thickness of an electrolytic diaphragm 1 can be decreased, the conductivity of the diaphragm 1 is increased. The electrolytic current to flow between the electrode 9 and the counter electrode 4 therefore increases, and the concn. of the ions to be measured even in a high-concn. liquid to be inspected is exactly and quickly measured.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は電気化学的測定器、詳細には、溶液中のn濃
度の溶解物質、例えば、核燃料再処理施設のウランやプ
ルトニウムの原子価および濃度を電気化学的な方法によ
って測定する検出器に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to an electrochemical measuring instrument, and more particularly, to an electrochemical measuring instrument for measuring n-concentration dissolved substances in a solution, such as uranium or the like in a nuclear fuel reprocessing facility. This invention relates to a detector that measures the valence and concentration of plutonium by electrochemical methods.

(従来の技術) 核燃料再処理の主工程は、溶媒抽出法により、使用済核
燃料に含まれるウランおよびプル;・ニウムを、核分裂
生成物から分離し、さらにウランおよびブルトニウムを
精製するものである。この工程を連続的かつ経済的に運
転するために、温度、圧力、流Mなどの伯に、溶液中の
ウランおよびプルトニウムの濃度およびこれらの原子価
などの化学状態を検知する必要がある。
(Prior Art) The main process of nuclear fuel reprocessing is to separate uranium and plutonium contained in spent nuclear fuel from fission products by a solvent extraction method, and further refine uranium and brutonium. In order to operate this process continuously and economically, it is necessary to sense the temperature, pressure, flow M, etc., as well as the chemical state, such as the concentration of uranium and plutonium in the solution and their valences.

この溶液中の濃度および原子価を測定する装置には、従
来、定電位電解法によるフロークーロメトリ川1を解ヒ
ルがある(参照、特開昭58年第34335号、おにび
同59年第68662号公報)。この従来のフ[1−ク
ーロメトリ用電解セルの例を第2回に示す。この電解セ
ル例では、筒状のアルミナ多孔質体などの電解隔膜11
中に使用電位範囲が広くとれる炭素繊維やグラシーカー
ボン繊維の東などが作用電極12として充填され、前記
ifE解隔股11の表面に液絡部がくるように参照電V
M13が、また、隔膜11の周囲に内金属製の対極14
が、それぞれ配設されている。この対櫓に1よ、被検液
と同種の溶液bt、<は塩化カリウム溶液などの対+4
ii115が満され、さらに、被検液の上流側に1を気
絶縁付収納容器16の入口ノズル17が設けられ、作用
電極12のみを通流した被検液の出口ノズル18が下流
側に設けられている。この測定は、入口ノズル17より
被検液を導入し、作用電極部に挿入されたグラジーカー
ボン製などの集電体19を介して、作用電極に電位を印
加して、また電解電流を取り出して行なう。ここで、簡
単にこのヒルで定量分析する場合について説明する。被
測定イオンを定量分析するためには、被検液が作用電極
部を通過する間に被測定イオンを全部電解(M化または
還元)する心安がある。このときの酸化または還元反応
は、作用電極の表面反応であることから、電解隔股内に
は反応の進行を速めるために、直径数+ll以下の朝い
炭素繊維などの束を用い、被検液流路新面に対する東の
充填率を88%前後にして作用電極の表面積を広くづる
。このために、作用電極部の流動抵抗が非常に大きくな
り、被検液の導入に大きな圧力を必要とする。このよう
な条件下で、電解隔膜の孔径、気孔率、厚さなどは、電
解隔膜を通して作用電極側から対極側へ漏洩する被検液
の邑が被検液の全流通に比べて無視できる範囲内におさ
まるように選択される。このようなフロークーロメトリ
用電解セルでは、作用電極に参照電極の電位を基準とし
た被測定イオンの電解電位をポテンショスタットより印
加し、被測定イオンを含む被検液を一定2I!量で流し
たときに、作用電極一対極間に次式に示す大きざの電解
電流が流れる。
As a device for measuring the concentration and valence in this solution, there is conventional flow coulometry using a constant potential electrolysis method (see Japanese Patent Application Laid-open No. 34335 of 1980, Onibi No. 34335 of 1982, Publication No. 68662). An example of this conventional electrolytic cell for f[1-coulometry is shown in the second article. In this electrolytic cell example, an electrolytic diaphragm 11 such as a cylindrical porous alumina material is used.
The working electrode 12 is filled with carbon fiber, glassy carbon fiber, etc., which can be used in a wide potential range, and the reference voltage V
M13 also has an inner metal counter electrode 14 around the diaphragm 11.
are arranged respectively. In this pair, 1, a solution bt of the same type as the test solution, < is a pair of potassium chloride solution, etc. +4
ii 115 is filled, furthermore, the inlet nozzle 17 of the storage container 16 with gas insulation 1 is provided on the upstream side of the test liquid, and the outlet nozzle 18 of the test liquid through which only the working electrode 12 flows is provided on the downstream side. It is being In this measurement, a test liquid is introduced through the inlet nozzle 17, a potential is applied to the working electrode via a current collector 19 made of glazed carbon, etc. inserted into the working electrode, and an electrolytic current is taken out. Let's do it. Here, we will briefly explain the case of quantitative analysis using this hill. In order to quantitatively analyze the ions to be measured, it is safe to electrolyze (convert to M or reduce) all the ions to be measured while the test liquid passes through the working electrode section. Since the oxidation or reduction reaction at this time is a surface reaction of the working electrode, in order to speed up the progress of the reaction, a bundle of carbon fibers or the like with a diameter of several liters or less is used to speed up the reaction. The filling ratio on the east side of the new surface of the liquid flow path is set to around 88% to increase the surface area of the working electrode. For this reason, the flow resistance of the working electrode becomes very large, and a large pressure is required to introduce the test liquid. Under these conditions, the pore size, porosity, thickness, etc. of the electrolytic diaphragm are such that the leakage of the test liquid from the working electrode side to the counter electrode side through the electrolytic diaphragm can be ignored compared to the total flow of the test liquid. selected so that it fits within In such an electrolytic cell for flow coulometry, the electrolytic potential of the ion to be measured based on the potential of the reference electrode is applied to the working electrode from a potentiostat, and the sample liquid containing the ion to be measured is maintained at a constant rate of 2I! When the amount of electrolytic current is given by the following equation, an electrolytic current flows between the working electrode and the pair of electrodes.

i=n・1:・c−f (式中、1は電解電流<A)、nは被測定イオンの電解
に関与する数、1:はファラデ一定数(クローン/+1
101)、Cは分析物質の濃度(a+ol/ρ)、rは
被検液流通(J)/5ec)を示す)nと「は既知であ
るため、作用電極一対極間を流れる1し解電流を測定す
ることにより、被謂定イオンの濃度を求めることができ
る。
i=n・1:・c−f (in the formula, 1 is electrolytic current <A), n is the number involved in the electrolysis of the ion to be measured, 1: is the Faraday constant number (clone/+1
101), where C is the concentration of the analyte (a+ol/ρ) and r is the flow rate of the sample liquid (J)/5ec)). By measuring , the concentration of the so-called target ion can be determined.

上述のように、核燃料再処理工程にお1ノる硝酸2+ 
   4+ 溶液に含まれるウランイオン(UO,tJ)314+ およびプルトニウムイオンPu  SPu  )の定量
分析が10−3mol / 1程度の濁度まで行なうこ
とがでさ゛る。
As mentioned above, nitric acid 2+ is used in the nuclear fuel reprocessing process.
Quantitative analysis of uranium ions (UO, tJ) 314+ and plutonium ions (Pu SPu) contained in a 4+ solution cannot be performed up to a turbidity of about 10-3 mol/1.

(発明が解決しようとする問題点) 従来のフロークーロメトリ用電解セルでは、作用電極側
から対極側への被検液の漏洩量を少なくづ″るために電
解隔膜の孔径、気孔率を小さくし、あるいは厚さを大き
くするので、電解隔膜のS電率が小さい。従って、作用
電極一対極間に流することのできる電解電流が少なく、
測定可能な最大濃度は約10−3mol /ρ以下の低
温度に限定される。
(Problems to be Solved by the Invention) In conventional electrolytic cells for flow coulometry, the pore diameter and porosity of the electrolytic diaphragm are made small in order to reduce the amount of leakage of the test liquid from the working electrode side to the counter electrode side. Or, because the thickness is increased, the S current rate of the electrolytic diaphragm is small.Therefore, the electrolytic current that can be passed between one pair of working electrodes is small.
The maximum measurable concentration is limited to low temperatures below about 10-3 mol/ρ.

これに対して、高濃度のイオンを測定するために、電解
隔膜の孔径、気孔率を大きくし、あるい【よ、厚さを薄
クシて47ti率を大きくしても、多聞の被検液が対極
側に漏洩して正確な測定を田難にづる。また被検液の流
通を11服して高濃度のイオンを測定しようとしてbそ
の流通を極端に少なくする必要がある。
On the other hand, in order to measure high-concentration ions, even if the pore size and porosity of the electrolytic diaphragm are increased, or even if the thickness is made thinner and the 47ti ratio is increased, the amount of sample liquid leaks to the other side and sends accurate measurements to Tanan. Furthermore, in order to measure high-concentration ions by distributing the sample liquid for 11 times, it is necessary to extremely reduce the flow rate.

この発明は上述の事情を背景としてなされたちのて・あ
り、その目的とするところは、ウランやプルトニウムの
濃度が0.1mol /Jを超える再処理工程溶液のよ
うな高濃度の被検液であっても、被測定イオンの′m度
を正確かつ迅速に測定することのできるフロークーロメ
トリ用電解セルを提供することである。
This invention was made against the background of the above-mentioned circumstances, and its purpose is to use high-concentration test solutions such as reprocessing process solutions in which the concentration of uranium or plutonium exceeds 0.1 mol/J. An object of the present invention is to provide an electrolytic cell for flow coulometry that can accurately and quickly measure the degree of ions of ions to be measured.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段ン 孔径、気孔率を大きくしあるいは厚さを薄クシて導電率
の大きい電解隔膜を用いた場合でも、対極側に漏洩する
被検液の半を微量にするには、作用電極部の流動抵抗を
小さくして被検液に加わる圧力を小さくすることが考え
られる。本発明者は、作用電極の充填率を種々に変えて
実験していたところ、作用電極と集電体との電気的接続
が確実に行なわれており、かつ作用電極の表面積が十分
に大きければ、流路断面積に対する作用電極の充填率が
約20〜約80%の低い範囲であっても、被測定イオン
が全部電解されることとの知見を得た。
(Means to solve the problem: Even if an electrolytic diaphragm with high conductivity is used by increasing the pore diameter and porosity or reducing the thickness, half of the sample liquid leaking to the counter electrode side will be minimized.) A possible solution is to reduce the flow resistance of the working electrode to reduce the pressure applied to the test liquid.The present inventor was experimenting with various filling ratios of the working electrode, and found that the working electrode If the electrical connection between the current collector and the current collector is established and the surface area of the working electrode is sufficiently large, the filling ratio of the working electrode to the cross-sectional area of the flow channel will be in a low range of about 20 to about 80%. However, we found that all of the ions to be measured were electrolyzed.

この知見に基づき、作用電極と集電体との接触圧を大き
くし、かつ作用電極の充填率を低くずれば、この発明の
目的達成に有効であることを見出し、この発明を完成す
るに到った。
Based on this knowledge, it was discovered that increasing the contact pressure between the working electrode and the current collector and lowering the filling rate of the working electrode would be effective in achieving the object of the present invention, and it was not until now that the present invention was completed. It was.

号なわら、 この発明のフロークーロメトリ用電解セル
は、電解隔膜および集電体を備えかつ内部を被検液が流
れる筒状の作用電極収納体と、この作用電極収納体内に
充填された作用電極と、作用電極収納体の外側に設けら
れた対極およびこれを満す対極液ならびに参照電極から
成る電解部と、この電解部を外側から収納する収納容器
とからなるフロークーロメトリ用電解セルであって、集
電体と作用電極とが確実に電気的接続されていることを
特徴とするものである。
The electrolytic cell for flow coulometry of the present invention includes a cylindrical working electrode housing that is equipped with an electrolytic diaphragm and a current collector, through which a test liquid flows, and a working electrode housing that is filled in the working electrode housing. An electrolytic cell for flow coulometry consisting of an electrode, an electrolytic section consisting of a counter electrode provided outside a working electrode housing, a counter electrode filling the counter electrode, and a reference electrode, and a storage container that houses this electrolytic section from the outside. It is characterized in that the current collector and the working electrode are reliably electrically connected.

この発明の好ましい態様として、作用電極収納体の内部
の流路断面に対する作用電極の充填率を約20〜約75
%、好ましくは20〜70%、より好ましくは20〜6
5%とすることができる。
In a preferred embodiment of the present invention, the filling ratio of the working electrode to the cross section of the internal flow path of the working electrode housing is about 20 to about 75.
%, preferably 20-70%, more preferably 20-6
It can be set to 5%.

この発明の別の好ましい態様として、筒状の電解隔膜の
片方の端に同形の筒状の集電体を接続することにより作
用電極収納体を形成し、この作用電極収納体内に、これ
のおよそ2倍の長さの可撓性繊維状の作用雷Fj!材料
を必要本数まとめて、中央部で2つ折りにし、折曲げた
先が、作用電極収納体の集電体側に来るように充填させ
ることができる。
In another preferred embodiment of the present invention, a working electrode housing is formed by connecting a tubular current collector of the same shape to one end of a tubular electrolytic diaphragm, and approximately Flexible fibrous action lightning Fj with double length! It is possible to collect the required number of materials, fold them in half at the center, and fill the working electrode housing so that the folded ends are on the current collector side.

また、別の態様として、集電体が、被検液の流れる方向
に対して下流側に来るように、作用電極収納体を設ける
ことができる。
Moreover, as another aspect, the working electrode housing can be provided so that the current collector is located on the downstream side with respect to the flow direction of the test liquid.

ざらに、他の態様として、作用N極材料が、直径数十μ
以下の炭素繊維および/またはグラシーカーボンI[か
ら成るものとすることができる。
In other embodiments, the working N pole material has a diameter of several tens of μm.
It can be made of the following carbon fibers and/or glassy carbon I.

以下、この発明をより詳細に説明する。This invention will be explained in more detail below.

この発明におけるフロークーロメトリ用電解セルの特徴
の一つは、集電体と作用電極とが確実に電気的に接続さ
れていることである。この発明において、この接続の方
式は、この70−クーロメトり用電解セルの目的に反し
ない限り任意である。
One of the characteristics of the electrolytic cell for flow coulometry in this invention is that the current collector and the working electrode are reliably electrically connected. In this invention, this connection method is arbitrary as long as it does not contradict the purpose of this 70-coulometry electrolytic cell.

例えば、作用電極材料として可撓性のものを用い、この
材料を折り曲げ、その復元力を利用して作用電極と集電
体との接触圧を高め、これらの電気的接触を確実に行な
うことができる。また、その他の機械的方法で作用電極
と!!電体との接触を行うこともできる。
For example, it is possible to use a flexible material as the working electrode material, bend this material, and use its restoring force to increase the contact pressure between the working electrode and the current collector to ensure electrical contact between them. can. Also, other mechanical methods with working electrode! ! Contact with electrical objects can also be made.

この発明において、好ましくは、作用電極収納体内部の
流路断面に対する作用電極の充填率を低くする。これは
、被検液の送液圧力を低くすることができるからである
。この充填率tよ、作用電極の表面積を広くすることと
被検液の送液圧力を低(することとの両観点から適宜決
定することが望ましい。例えば、その充填率を約20〜
約75%、好ましくは、20〜70%、より好ましくは
、20〜65%とすることができる。
In this invention, preferably, the filling ratio of the working electrode to the cross section of the flow path inside the working electrode housing is made low. This is because the pressure for feeding the test liquid can be lowered. It is desirable to appropriately determine this filling rate t from the viewpoints of widening the surface area of the working electrode and lowering the liquid feeding pressure of the test liquid.
It can be about 75%, preferably 20-70%, more preferably 20-65%.

(作 用) 従来の電解セルでは、作用電極の表面積を大きくするた
めにと考えて作用電極の充填率を80%前後まで高めて
いた。しかしながら、本発明者は、上述のにうに、高い
充填率を必要としたのは、作用電園の表面積を大きくづ
−るだけでなく、作用電極と集電体との接触圧を大きく
して両者の電気的接続をより確実に行なうためひあった
との知見を得ている。この発明において、作用電極と集
電体の電気的接続が確保されているので、特に充填率を
高める必要がなく、従って作用電極部の流動抵抗を小さ
くして、被検液の送液圧力を低くすることができる。
(Function) In conventional electrolytic cells, the filling rate of the working electrode was increased to around 80% in order to increase the surface area of the working electrode. However, as mentioned above, the inventor of the present invention found that a high filling rate was required not only by increasing the surface area of the working electrode but also by increasing the contact pressure between the working electrode and the current collector. It has been learned that this was done to ensure a more reliable electrical connection between the two. In this invention, since the electrical connection between the working electrode and the current collector is ensured, there is no need to particularly increase the filling rate, and therefore, the flow resistance of the working electrode portion is reduced to reduce the liquid feeding pressure of the test liquid. It can be lowered.

このように作用電極部の流動抵抗が小さくなれば、被検
液の加わる圧力が小さくなり、作用電極側と対極液側と
の圧力差も小さくなる。このような圧力差の小さい条件
下では、電解隔膜の孔径、気孔率を大きくしあるいは厚
さを薄クシて電解隔膜の導電率を大ぎくし、さらに電解
隔膜を透過して作用電極側から対極側へ漏洩する被検液
の吊が少なくなる。
If the flow resistance of the working electrode section is reduced in this way, the pressure applied by the test liquid is reduced, and the pressure difference between the working electrode side and the counter electrode side is also reduced. Under such conditions where the pressure difference is small, the conductivity of the electrolytic diaphragm is greatly increased by increasing the pore size and porosity of the electrolytic diaphragm or by reducing its thickness. The amount of test liquid leaking to the side is reduced.

(実施例) この発明を、以下の実施例によって具体的に説明づ−る
(Examples) This invention will be specifically explained by the following examples.

この発明のフロークーロメトリ用電解セルの一例を、第
1図の縦所面図に示す。このフロークーロメトリ用電解
セルは、円筒状のアルミナ多孔質体の電解隔膜1とその
一端に接着された同一径の黒鉛製の集電体2から成る作
用電極収納体と、この作用電極収納体の電解隔膜1の外
側表面に液絡部が位置するように配置された参照電極3
と、前記電解隔膜部の周囲に配置した筒状の白金網製の
対極4と、被検液入口ノズル5と出l」ノズル6とを有
する電気絶縁性の収納容器7と、前記収納容器内に満さ
れた対極液8と、作用Ti極収納体内に中央部30で2
つ折りにし折り曲げた先が前記集電体側に位置するよう
に充填された炭素繊維の束からなる作用電極9とから構
成されている。
An example of an electrolytic cell for flow coulometry according to the present invention is shown in the vertical plan view of FIG. This electrolytic cell for flow coulometry consists of a working electrode housing consisting of an electrolytic diaphragm 1 made of a cylindrical porous alumina material and a graphite current collector 2 of the same diameter adhered to one end of the electrolytic diaphragm 1, and this working electrode housing. A reference electrode 3 is arranged such that a liquid junction is located on the outer surface of the electrolytic diaphragm 1.
, an electrically insulating storage container 7 having a counter electrode 4 made of a cylindrical platinum mesh placed around the electrolytic diaphragm, a test liquid inlet nozzle 5 and an outlet nozzle 6; A counter electrode liquid 8 filled with
It consists of a working electrode 9 made of a bundle of carbon fibers filled in such a way that the folded end is located on the current collector side.

この電解セル例では、電解隔膜1は平均孔径0.58μ
雇φ、気孔率42%のアルミナ焼結体からなり、その寸
法は、内径6mφ、外径14slφで長さ40111あ
る。また、集電体2の寸法は電解隔膜と同一の内外径で
長さ10mである。この集電体の外側表面には作用電極
リード線10として金線が接続されており、集電体の外
側表面と作用ミルリード線には、対極液との接触を防ぐ
ために電気絶縁物をコーテングしていある。前記作用電
極tよ平均直径8.6μmφ、長さ100mの炭素繊l
ft140.000本の無撚の束で、中央部30で2つ
折りにし折り曲げた先が集電体内にくるように作用電極
収納体内に充填されている。この状態における作用電極
の作用電極収納体内の被検液流路断面に対する充填率は
58%である。被検液は前記入口ノズルより流入し、作
用Ti極収納体内の作用電極部を通流後、前記出口ノズ
ルより流出する。
In this example electrolytic cell, the electrolytic diaphragm 1 has an average pore diameter of 0.58μ
It is made of an alumina sintered body with a porosity of 42% and an inner diameter of 6 mφ, an outer diameter of 14 slφ, and a length of 40111 mm. Further, the current collector 2 has the same inner and outer diameters as the electrolytic diaphragm and a length of 10 m. A gold wire is connected to the outer surface of the current collector as a working electrode lead wire 10, and the outer surface of the current collector and the working mill lead wire are coated with an electrical insulator to prevent contact with the counter electrode. There is. Carbon fiber l with an average diameter of 8.6 μmφ and a length of 100 m is connected to the working electrode t.
A non-twisted bundle of 140,000 ft. was folded in half at the center 30 and filled in the working electrode housing so that the bent end was inside the current collector. In this state, the filling ratio of the working electrode to the cross section of the test liquid flow path in the working electrode housing is 58%. The test liquid flows in through the inlet nozzle, passes through the working electrode section in the working Ti electrode housing, and then flows out through the outlet nozzle.

このように構成されたフロークーロメトリ用電解セルを
用いて、0.1101/1のFe3+イオンを含む0.
211101 /J)の硝酸溶液を被検液として検出効
率(電解電流の実測値と理論値の比)と被検液流酒の関
係を測定した。その結果を第3図の実線に示す。尚、こ
こで対極液はimol/Jの硝酸とした。これより、被
検液の流VがId/winまでは99%以上の効率でF
e3+イオンが検出されていることがわかる。一方、従
来のように作用電極の充Ia率が80%になるように平
均直(¥8.6umφ、長さ501+ll11の炭素繊
維を390.000本充填して同様に測定した結果を第
3図に破線で示す。この場合、被検液流量が1n+ol
 /sinのとき検出効率は84%程度である。
Using the electrolytic cell for flow coulometry configured in this manner, 0.0.
The relationship between the detection efficiency (ratio between the measured value and the theoretical value of the electrolytic current) and the flow rate of the test solution was measured using a nitric acid solution of 211101/J) as the test solution. The results are shown by the solid line in FIG. In this case, the counter electrode liquid was imol/J nitric acid. From this, it can be seen that until the flow rate V of the test liquid reaches Id/win, F
It can be seen that e3+ ions are detected. On the other hand, Figure 3 shows the results of a similar measurement performed by filling 390,000 carbon fibers with an average diameter of 8.6 umφ and a length of 501+111 so that the filling Ia rate of the working electrode was 80% as in the conventional method. is indicated by a broken line.In this case, the flow rate of the test liquid is 1n+ol
/sin, the detection efficiency is about 84%.

この例からも明らかなように、被検液の流量を特別小さ
くすることなく高温度イオンの濃度測定を精度よく測定
できる。
As is clear from this example, the concentration of high-temperature ions can be measured with high accuracy without particularly reducing the flow rate of the test liquid.

なお、本発明は上述した実施例に限定されるものではな
い。すなわち、実施例では電解隔膜および集電体を、円
筒状としたが、種々の形状が可能である。さらに、電解
隔膜の材質、孔(¥、気孔率、内径、厚さ、長さおよび
集電体の材質、長さも実施例に限定されるものではない
。またセルを?Q数直列に接続した各段階フロークーロ
メトリ用電解セルであってもよい。
Note that the present invention is not limited to the embodiments described above. That is, in the examples, the electrolytic diaphragm and the current collector are cylindrical, but various shapes are possible. Furthermore, the material, porosity, inner diameter, thickness, and length of the electrolytic diaphragm and the material and length of the current collector are not limited to the examples. It may be an electrolytic cell for each stage flow coulometry.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炭素繊維またはグラシーカーボン1!
雑などの可撓性繊維材料を作用電極として使用し、中央
部で2つ折りにし、折曲げた先が集°1七体部分にくる
ように作用電極収納体に充填してあるため、これら繊維
を2つ折りにした場合に生じる復元力によりこれら繊維
と集電体の接触圧が大きく低充填率においても作用電極
と集電体との電気的接続を確実に行うことができる。こ
の結果、作用電極の充填率を20%程度まで小さくでき
作用電極部における流動抵抗は従来の充填率80%m後
の場合に比べて1/20程度になる。このため、被検液
に加わる圧力も1720程度になり、作用電極側と対極
液側の圧力差も小さくなる。これより電解隔膜の孔径、
気孔率を大きくあるいは厚さを薄くできるため電解隔膜
の導電率を大きくできる。
According to the invention, carbon fiber or glassy carbon 1!
A flexible fiber material, such as a cloth, is used as the working electrode, folded in half at the center, and packed in the working electrode housing so that the folded end is in the central part. Due to the restoring force generated when the fibers are folded in half, the contact pressure between these fibers and the current collector is large, and even at a low filling rate, the electrical connection between the working electrode and the current collector can be established reliably. As a result, the filling rate of the working electrode can be reduced to about 20%, and the flow resistance at the working electrode portion is about 1/20 of that of the conventional case after the filling rate is 80%. Therefore, the pressure applied to the test liquid is also about 1720, and the pressure difference between the working electrode side and the counter electrode side is also small. From this, the pore size of the electrolytic diaphragm,
Since the porosity can be increased or the thickness can be decreased, the electrical conductivity of the electrolytic diaphragm can be increased.

したがって、作用電極一対極間に流れる電解電流が大き
くなり、高濃度の被測定イオンの濃度測定が可能になる
Therefore, the electrolytic current flowing between the working electrode and the pair of electrodes becomes large, making it possible to measure the concentration of high-concentration ions to be measured.

集電体が被検液の流れる方向に対して上流側にくるよう
に作用電極収納体を配置した場合に、高濃度のイオンを
測定しようとすると、異常な電流が作用電極一対極間に
流れ濃度の測定ができなくなってしまう。これは集電体
内の作用電極と対極間にイオン導電性が確保されないこ
とによる。そこで、この発明の好ましい態様として、電
解反応が殆んで起らない下流側に集電体がくるように作
用電極収納体を配置し、?3漠度のイオンの測定を可能
にする。
If the working electrode housing is arranged so that the current collector is on the upstream side with respect to the flow direction of the test liquid, when trying to measure high concentration ions, an abnormal current will flow between the working electrode and the electrode. It becomes impossible to measure the concentration. This is because ionic conductivity is not ensured between the working electrode and the counter electrode in the current collector. Therefore, as a preferred embodiment of the present invention, the working electrode housing is arranged so that the current collector is on the downstream side where almost no electrolytic reaction occurs. 3 Enables measurement of vague ions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係るフロークーロメ1−
り用電解セルの縦断面図、第2図は従来のフ[1−クー
ロメトリ用電解セルの縦断面図、第3図は実施例および
従来例による検出効率−被検液温間特性図を示す線図で
ある。 1・・・電解隔膜、2・・・集電体、3・・・参照電極
、4・・・対極、5・・・入口ノズル、6・・・出口ノ
ズル、7・・・収納容器、8・・・対極液、9・・・作
用電極、10・・・作用電極リード線、11・・・電解
隔膜、12・・・作用電極、13・・・参照電極、14
・・・対極、15・・・対極液、16・・・収納容器、
17・・・入口ノズル、18・・・出口ノズル、19・
・・集電体、30・・・中央部。 出願人代理人  佐  藤  −雄 h 1 図 尾 2 図 伍伎雇グ尻量 (ml/m1n) 53 図
FIG. 1 shows a flow coulome 1-1 according to an embodiment of the present invention.
FIG. 2 is a vertical cross-sectional view of a conventional electrolytic cell for coulometry, and FIG. 3 is a diagram of detection efficiency vs. sample liquid warm characteristics according to an embodiment and a conventional example. It is a line diagram. DESCRIPTION OF SYMBOLS 1... Electrolytic diaphragm, 2... Current collector, 3... Reference electrode, 4... Counter electrode, 5... Inlet nozzle, 6... Outlet nozzle, 7... Storage container, 8 ...Counter electrode, 9... Working electrode, 10... Working electrode lead wire, 11... Electrolytic diaphragm, 12... Working electrode, 13... Reference electrode, 14
... counter electrode, 15 ... counter electrode, 16 ... storage container,
17... Inlet nozzle, 18... Outlet nozzle, 19.
...Current collector, 30...Central part. Applicant's agent Sato-yu 1 Zuo 2 Zugoki Amount (ml/m1n) 53 Figure

Claims (1)

【特許請求の範囲】 1、電解隔膜および集電体を備えかつ内部を被検液が流
れる筒状の作用電極収納体と、この作用電極収納体内に
充填された作用電極と、作用電極収納体の外側に設けら
れた対極およびこれを満す対極液ならびに参照電極から
なる電解部と、この電解部を外側から収納する収納容器
とからなるフロークーロメトリ用電解セルであつて、集
電体と作用電極とが確実に電気的接続されていることを
特徴とする電解セル。 2、作用電極収納体の内部の流路断面に対する作用電極
の充填率が20〜75%である、特許請求の範囲第1項
記載の電解セル。 3、筒状の電解隔膜の片方の端に同形の筒状の集電体を
接続することにより作用電極が形成され、この作用電極
収納体内に、これの略2倍長の可撓性繊維状作用電極材
料を必要本数まとめて、この材料の中央部で2つ折りに
し、折り曲げられた先を作用電極収納体の集電体側に配
置させて作用電極が充填されている、特許請求の範囲第
1項記載の電解セル。 4、集電体が、被検液の下流側に設けられている特許請
求の範囲第3項記載の電解セル。 5、作用電極材料が、炭素繊維および/またはグラシー
カーボン繊維である特許請求の範囲第3項または第4項
記載の電解セル。
[Scope of Claims] 1. A cylindrical working electrode housing that includes an electrolytic diaphragm and a current collector and in which a test liquid flows, a working electrode filled in the working electrode housing, and a working electrode housing. An electrolytic cell for flow coulometry consists of an electrolytic part consisting of a counter electrode provided on the outside, a counter electrode filling the counter electrode, and a reference electrode, and a storage container that houses this electrolytic part from the outside. An electrolytic cell characterized by having a reliable electrical connection with a working electrode. 2. The electrolytic cell according to claim 1, wherein the working electrode has a filling rate of 20 to 75% with respect to the cross section of the channel inside the working electrode housing. 3. A working electrode is formed by connecting a cylindrical current collector of the same shape to one end of the cylindrical electrolytic diaphragm, and a flexible fibrous material approximately twice the length of the cylindrical electrolytic diaphragm is placed inside the working electrode housing. Claim 1: A necessary number of working electrode materials are gathered together, folded in two at the center of the material, and the bent end is placed on the current collector side of the working electrode storage body to fill the working electrode. Electrolytic cell as described in section. 4. The electrolytic cell according to claim 3, wherein the current collector is provided on the downstream side of the test liquid. 5. The electrolytic cell according to claim 3 or 4, wherein the working electrode material is carbon fiber and/or glassy carbon fiber.
JP61182991A 1986-08-04 1986-08-04 Electrolytic cell for flow coulometry Granted JPS6338153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182991A JPS6338153A (en) 1986-08-04 1986-08-04 Electrolytic cell for flow coulometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182991A JPS6338153A (en) 1986-08-04 1986-08-04 Electrolytic cell for flow coulometry

Publications (2)

Publication Number Publication Date
JPS6338153A true JPS6338153A (en) 1988-02-18
JPH0560548B2 JPH0560548B2 (en) 1993-09-02

Family

ID=16127841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182991A Granted JPS6338153A (en) 1986-08-04 1986-08-04 Electrolytic cell for flow coulometry

Country Status (1)

Country Link
JP (1) JPS6338153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201679A (en) * 1989-12-28 1991-09-03 Ricoh Co Ltd Method for automatically preparing decoding table for variable length code
JPH03220870A (en) * 1990-01-26 1991-09-30 Ricoh Co Ltd Automatic generating method for decoding table of variable length code
US7195673B2 (en) 2002-12-18 2007-03-27 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201679A (en) * 1989-12-28 1991-09-03 Ricoh Co Ltd Method for automatically preparing decoding table for variable length code
JPH03220870A (en) * 1990-01-26 1991-09-30 Ricoh Co Ltd Automatic generating method for decoding table of variable length code
US7195673B2 (en) 2002-12-18 2007-03-27 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same
US7565880B2 (en) 2002-12-18 2009-07-28 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same

Also Published As

Publication number Publication date
JPH0560548B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
Randles The real hydration energies of ions
Farrell et al. Precise compensating potential difference measurements with a voltaic cell: The surface potential of water
US3098813A (en) Electrode
EP3372998B1 (en) Sensor and method for measuring content of hydrogen in metal melt
Hersch Trace monitoring in gases using galvanic systems
EP0027005B1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
US3322662A (en) Electrolytic oxygen sensor
US3378478A (en) Apparatus for continuous oxygen monitoring of liquid metals
JPH0473095B2 (en)
JPS638423B2 (en)
US3022241A (en) Method and apparatus for measurement of dissolved oxygen
WO1993001490A1 (en) High speed oxygen sensor
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
JPS6338153A (en) Electrolytic cell for flow coulometry
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
US3649473A (en) Determination of hydrogen in a high temperature fluid and apparatus therefor
JPH0417387B2 (en)
US4235689A (en) Apparatus for detecting traces of a gas
CN100417938C (en) Testing apparatus for water anionics and producing method thereof
CN100383517C (en) Process for making puncture composite sensor for measuring pH and sensor therefor
Large et al. Polarographic Behavior of Dysprosium (III) in Aqueous Solutions.
JPS63173951A (en) Electrolytic cell for flow coulometry
EP0096117B1 (en) Analyzer for chemical oxidizing or reducing agents
JPS62220856A (en) Flow coulometric detector
JPS63173947A (en) Electrolytic cell