JPS63173951A - Electrolytic cell for flow coulometry - Google Patents
Electrolytic cell for flow coulometryInfo
- Publication number
- JPS63173951A JPS63173951A JP657187A JP657187A JPS63173951A JP S63173951 A JPS63173951 A JP S63173951A JP 657187 A JP657187 A JP 657187A JP 657187 A JP657187 A JP 657187A JP S63173951 A JPS63173951 A JP S63173951A
- Authority
- JP
- Japan
- Prior art keywords
- working electrode
- electrolytic
- current
- electrolytic cell
- diaphragm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003869 coulometry Methods 0.000 title claims description 15
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 239000007772 electrode material Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 11
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 6
- 239000004917 carbon fiber Substances 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000011144 upstream manufacturing Methods 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 229910052778 Plutonium Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052770 Uranium Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 4
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 239000003758 nuclear fuel Substances 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 238000012958 reprocessing Methods 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 plutonium ions Chemical class 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は電気化学的測定器、詳細には、溶液中の高濃度
の溶解物質、例えば、核燃料再処理施設のウランやプル
トニウムの原子価および濃度を電気化学的な方法によっ
て測定する検出器に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the invention] (Industrial field of application) The present invention is an electrochemical measuring instrument, in particular a measuring instrument for measuring highly concentrated dissolved substances in a solution, such as uranium or the like in a nuclear fuel reprocessing facility. This invention relates to a detector that measures the valence and concentration of plutonium by electrochemical methods.
(従来の技術)
核燃料再処理の主工程は、溶媒抽出法により、使用済核
燃料に含まれるウランおよびプルトニウムを、核分裂生
成物から分離し、さらにウランおよびプルトニウムを精
製するものである。この工程を連続的かつ経済的に運転
するために、温度、圧ツバ流量などの他に、溶液中のウ
ランおよびプルトニウムの濃度およびこれらの原子価な
どの化学状態を検知する必要がある。(Prior Art) The main process of nuclear fuel reprocessing is to separate uranium and plutonium contained in spent nuclear fuel from fission products by a solvent extraction method, and further refine the uranium and plutonium. In order to operate this process continuously and economically, it is necessary to detect the chemical state, such as the concentration of uranium and plutonium in the solution and their valences, in addition to the temperature, pressure flow rate, etc.
この溶液中の濃度および原子価を測定する装置として、
定電位電解法によるフロークーロメトリ用電解セルが開
発されており、第3図にその一例を示す。この電解セル
は円筒状のアルミナ多孔質体からなる電解隔膜1と、そ
の一端に接着された同一径の黒鉛製の集電体2との組合
せからなる作用電極収納体と、この作用電極収納体の電
解隔膜1の外側表面に液絡部が位置するように配置され
た参照電極3と、電解隔膜1の外周囲に配置した筒状の
白金鋼製の対極4と、被検液人口ノズル5と出口ノズル
6とを有する電気絶縁性の収納容器7と、収納容器7内
に満された被検液と同種の溶液もしくは塩化カリウム溶
液などの対極液8と、作用電極収納体内に、中央部14
で2つ折りにし、折り曲げた先端部が集電体2内側に位
置するように充填されたグラジ−カーボンなどの炭素繊
維の束からなる作用電極9とから構成されている。As a device to measure the concentration and valence in this solution,
An electrolytic cell for flow coulometry using constant potential electrolysis has been developed, and an example thereof is shown in FIG. This electrolytic cell includes a working electrode housing body consisting of a combination of an electrolytic diaphragm 1 made of a cylindrical alumina porous material and a graphite current collector 2 of the same diameter adhered to one end of the electrolytic diaphragm 1, and this working electrode housing body. a reference electrode 3 arranged so that the liquid junction is located on the outer surface of the electrolytic diaphragm 1; a cylindrical counter electrode 4 made of platinum steel arranged around the outer periphery of the electrolytic diaphragm 1; and a test liquid artificial nozzle 5. An electrically insulating storage container 7 having an outlet nozzle 6 and a counter electrode liquid 8 such as a solution of the same kind as the test liquid filled in the storage container 7 or a potassium chloride solution, and a central part inside the working electrode housing. 14
The working electrode 9 is made of a bundle of carbon fibers such as grady carbon, which is folded in two and filled so that the bent tip is located inside the current collector 2.
ここで、このフロークーロメトリ用電解セルを用いて定
量分析する方法について簡単に説明する。Here, a method for quantitative analysis using this electrolytic cell for flow coulometry will be briefly described.
被測定イオンを定量分析するためには、被検液が作用電
極9部分を通過する間に被測定イオンを全部電解(酸化
または還元)する必要がある。このときの酸化または還
元反応は、作用電極9の表面反応であることから、電解
隔膜1内には、反応の進行を速めるために、直径数十μ
以下の細い炭素繊維などの束を用い、被検液流路断面に
対する束の充填率を88%前後にして表面積が広くされ
た作用電極9が配置されている。このために、作用電極
9部分の流動抵抗が非常に大きくなり、被検液の導入に
大きな圧力を必要とする。このような条件下で、電解隔
膜1の孔径、気孔率、厚さなどは、電解隔膜1を通して
作用電極9側から対極4側へ漏洩する被検液の瓜が被検
液の全流量に比べて無視できる範囲内におさまるように
選択される。このようなフロークーロメトリ用電解セル
では、作用電極9に参照電極3の電位を基準とした被測
定イオンの電解電位をポテンショスタットより印加し、
被測定イオンを含む被検液を一定流量で流したときに、
作用電極9一対極4間に次式に示す大きさの電解電流が
流れる。In order to quantitatively analyze the ions to be measured, it is necessary to electrolyze (oxidize or reduce) all the ions to be measured while the test liquid passes through the working electrode 9 portion. Since the oxidation or reduction reaction at this time is a surface reaction of the working electrode 9, the electrolytic diaphragm 1 has a diameter of several tens of μm in order to accelerate the progress of the reaction.
A working electrode 9 is disposed using a bundle of thin carbon fibers, etc. as described below, with a filling ratio of the bundle to the cross section of the test liquid flow path of about 88% to increase the surface area. For this reason, the flow resistance of the working electrode 9 portion becomes extremely large, and a large pressure is required to introduce the test liquid. Under these conditions, the pore size, porosity, thickness, etc. of the electrolytic diaphragm 1 are such that the amount of test liquid leaking from the working electrode 9 side to the counter electrode 4 side through the electrolytic diaphragm 1 is compared to the total flow rate of the test liquid. is selected so that it is within a negligible range. In such an electrolytic cell for flow coulometry, an electrolytic potential of the ion to be measured based on the potential of the reference electrode 3 is applied to the working electrode 9 from a potentiostat,
When the test liquid containing the ions to be measured is flowed at a constant flow rate,
An electrolytic current having a magnitude shown in the following equation flows between the working electrode 9 and the counter electrode 4.
i=n*Fecef
(式中、iは電解電流(A) 、nは被測定イオンの電
解に関与する数、Fはファラデ一定数(クローン/mo
l ) 、cは分析物質の濃度(a+ol /fl )
、fは被検液流f:k (j! /sec )を示す)
nとFは既知であるため、作用電極9一対極4間を流れ
る電解電流を測定することにより、被測定イオンの濃度
を求めることができる。i=n*Fecef (where i is the electrolytic current (A), n is the number involved in the electrolysis of the ion to be measured, F is the Faraday constant number (clone/mo
l), c is the concentration of the analyte (a+ol/fl)
, f indicates the test liquid flow f:k (j!/sec))
Since n and F are known, the concentration of the ion to be measured can be determined by measuring the electrolytic current flowing between the working electrode 9 and the electrode 4.
上述のように、核燃料再処理工程における硝酸およびプ
ルトニウムイオン(Pu”、P u ”)の定量分析が
10−3aol /j!程度の濃度まで行なうことがで
きる。As mentioned above, the quantitative analysis of nitric acid and plutonium ions (Pu", P u ") in the nuclear fuel reprocessing process is 10-3 aol/j! It can be carried out up to a certain concentration.
(発明が解決しようとする問題点)
このように、フロークーロメトリ用電解セルを用いて定
量分析する場合には、被検液は収納容器7の入口ノズル
5から導入され、作用電極9により電解され、出口ノズ
ル6から排出される。この被検液の電解作用は、作用電
極9の表面を被検液が通過してゆく際に行われるが、そ
の電解作用は、そのほとんどが上流側の作用電極部分で
行われることが判明した。(Problems to be Solved by the Invention) As described above, when performing quantitative analysis using an electrolytic cell for flow coulometry, the test liquid is introduced from the inlet nozzle 5 of the storage container 7 and electrolyzed by the working electrode 9. and is discharged from the outlet nozzle 6. This electrolytic action of the test liquid occurs when the test liquid passes over the surface of the working electrode 9, but it has been found that most of the electrolytic action takes place at the upstream working electrode part. .
集電体2が被検液の下流側に1本のみ設けられている従
来のフロークーロメトリ用電解セルでは、被検液の電解
により発生した電流が下流側に設置されている集電体に
集め°られ、この電流が検出されていた。しかしながら
、集電体2から離れた位置における作用電極9での発生
電流は、作用電極9の抵抗のための電位降下により実際
の値よりも低く検出され、集電効率を低下させていた。In a conventional flow coulometry electrolytic cell in which only one current collector 2 is provided downstream of the test liquid, the current generated by electrolysis of the test liquid is transferred to the current collector installed downstream. was collected and this current was detected. However, the current generated at the working electrode 9 at a position away from the current collector 2 is detected to be lower than the actual value due to a potential drop due to the resistance of the working electrode 9, reducing current collection efficiency.
また、作用電極9は電解効率を上げるためにその表面積
を大きくすることが要求されるが、表面積を上げること
によりさらに大きな電位降下を引き起こす可能性があり
、作用電極の形状には制限があった。In addition, the working electrode 9 is required to have a large surface area in order to increase electrolysis efficiency, but increasing the surface area may cause an even larger potential drop, so there are restrictions on the shape of the working electrode. .
さらに作用電極9が片方のみで固定されているため、被
検液の流入により入口ノズル5付近の作用電極9が変動
し、被検液の乱流等の原因になり、また作用電極9と集
電体2との接触不良をおこすという不具合があった。ま
た、装置を組み立て後においては作用電極9と集電体2
との接触状態の確認が困難であり、接触不良を起こした
場合には装置を組み立てなおす必要があるなど、信頼性
、保守性において問題があった。Furthermore, since the working electrode 9 is fixed at only one end, the working electrode 9 near the inlet nozzle 5 will fluctuate due to the inflow of the test liquid, causing turbulent flow of the test liquid, and the working electrode 9 and convergence. There was a problem in that it caused poor contact with the electric body 2. In addition, after assembling the device, the working electrode 9 and the current collector 2 are
It is difficult to check the contact status with the device, and if a contact failure occurs, the device must be reassembled, which poses problems in terms of reliability and maintainability.
本発明はこのような点を考慮してなされたものであり、
集電効率を向上させ、測定精度および検出感度の向上を
図ることのできるフロークーロメトリ用電解セルを提供
することを目的とする。The present invention has been made in consideration of these points,
An object of the present invention is to provide an electrolytic cell for flow coulometry that can improve current collection efficiency and improve measurement accuracy and detection sensitivity.
(問題点を解決するための手段)
本発明は、電解隔膜と集電体とを備え内部を被検液が流
れる筒状の作用電極収納体と、この作用電極収納体内に
充填された作用電極と、作用電極収納体の外側に設けら
れた対極、参照電極および対極液からなる電解部と、作
用電極収納体と電解部とが収納配置されている収納容器
とからなるフロークーロメトリ用電解セルであって、集
電体が電解隔膜の被検液流入側および流出側の2箇所位
置に設けられていることを特徴としている。(Means for Solving the Problems) The present invention provides a cylindrical working electrode storage body that includes an electrolytic diaphragm and a current collector, through which a test liquid flows, and a working electrode that is filled in the working electrode storage body. An electrolytic cell for flow coulometry, comprising: an electrolytic section consisting of a counter electrode, a reference electrode, and a counter electrode provided outside the working electrode housing; and a storage container in which the working electrode housing and the electrolytic section are housed. The present invention is characterized in that current collectors are provided at two positions, one on the inflow side of the test liquid and the other on the outflow side of the electrolytic diaphragm.
(作 用)
本発明によれば、作用電極収納体内に導入された被検液
は、作用電極の部分を通過する間に電解され、この電解
により発生した電流が流入側および流出側の2till
所位置に設けられた集電体に集められ、この電流を検知
することにより被検液のイオン濃度が求められる。(Function) According to the present invention, the test liquid introduced into the working electrode housing is electrolyzed while passing through the working electrode part, and the current generated by this electrolysis is transmitted to the two tills on the inflow side and the outflow side.
The ion concentration of the test liquid is determined by detecting the current collected by a current collector provided at a certain location.
(実施例) 以下図面を参照して本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明によるフロークーロメトリ用電解セルの
一実施例を示す縦断面図であり、図面中箱3図に示した
電解セルと同一の部分については同一の符号を付しであ
る。図において符号7は、被検液の入口ノズル5と出口
ノズル6とを有する電気絶縁性の収納容器であり、この
収納容器7内に中空円筒状のアルミナ多孔質体からなる
電解部IMlklが、軸線を入口ノズル5と出口ノズル
6との軸心を結ぶ線にほぼ一致させて配設されている。FIG. 1 is a longitudinal sectional view showing an embodiment of an electrolytic cell for flow coulometry according to the present invention, and the same parts as those of the electrolytic cell shown in box 3 in the drawing are given the same reference numerals. In the figure, reference numeral 7 denotes an electrically insulating storage container having an inlet nozzle 5 and an outlet nozzle 6 for the test liquid, and inside this storage container 7, an electrolytic part IMlkl made of a hollow cylindrical alumina porous body is installed. It is disposed so that its axis substantially coincides with a line connecting the axes of the inlet nozzle 5 and the outlet nozzle 6.
この電解隔膜1には、その両端に同一径の2つの黒鉛製
の集電体12a、12bが接着され、この2つの集電体
12a、12bが、それぞれ収納容器7の内壁と電解隔
膜1の端部との間に介在されて配置されている。電解隔
膜1と集電体12a。Two graphite current collectors 12a and 12b having the same diameter are adhered to both ends of the electrolytic diaphragm 1, and these two current collectors 12a and 12b are connected to the inner wall of the storage container 7 and the electrolytic diaphragm 1, respectively. The end portion is interposed between the end portion and the end portion. Electrolytic diaphragm 1 and current collector 12a.
12bとにより作用電極を収納する収納体が構成され、
炭素繊維の束からなる作用電極16が収納体内に収納配
置されている。この作用電極16は作用電極収納体の長
さの略3倍の長さを有する可撓性炭素繊維またはグラジ
−カーボン繊維の束を3つ折りにして、2つの折り曲げ
られた先端部分15a、15bがそれぞれの集電体12
a。12b constitutes a storage body that stores the working electrode,
A working electrode 16 made of a bundle of carbon fibers is housed within the housing. This working electrode 16 is made by folding a bundle of flexible carbon fiber or grady carbon fiber into three, which has a length approximately three times the length of the working electrode housing, and has two bent tip portions 15a and 15b. Each current collector 12
a.
12b内に接触して位置するように充填配置されている
。12b so as to be in contact with each other.
それぞれの集電体12a、12bの外側表面には、それ
ぞれ作用電極リード線13a、13b(通常金線)が接
続され、作用電極16に電流を供給し得るようにされて
いるとともに、集電体12a、12b外側表面と作用電
極リード線13a、13bとには収納容器7内に満され
た対極液8との接触を防ぐため、電気絶縁物がコーティ
ングしである。Working electrode lead wires 13a, 13b (usually gold wires) are connected to the outer surface of each current collector 12a, 12b, respectively, so that current can be supplied to the working electrode 16, and the current collector The outer surfaces of the working electrodes 12a and 12b and the working electrode lead wires 13a and 13b are coated with an electrical insulator to prevent contact with the counter electrode 8 filled in the storage container 7.
電解隔膜1の外周囲には筒状の白金鋼製の対極4が配設
され、この対極4の一部を貫通して、参照電極3が、電
解隔膜1の外側表面に液絡部が位置するように配置され
ている。対極4には収納容器7外から対極電線リード線
11が接続されている。A cylindrical counter electrode 4 made of platinum steel is disposed around the outer periphery of the electrolytic diaphragm 1. A reference electrode 3 is inserted through a part of the counter electrode 4, and a liquid junction is located on the outer surface of the electrolytic diaphragm 1. It is arranged so that A counter electrode wire lead wire 11 is connected to the counter electrode 4 from outside the storage container 7 .
このような構成からなる本実施例によれば、入口ノズル
5から作用電極収納体内に導入された被検液は、作用電
極16の部分を通過する間に電解され、この電解により
発生した電流が上流側と下流側のそれぞれに設置されて
いる集電体12a。According to this embodiment having such a configuration, the test liquid introduced into the working electrode housing from the inlet nozzle 5 is electrolyzed while passing through the working electrode 16, and the current generated by this electrolysis is Current collectors 12a are installed on the upstream side and the downstream side.
12bに集められ、この電流を検知することにより被検
液のイオン濃度が求められる。12b, and by detecting this current, the ion concentration of the test liquid can be determined.
本実施例によれば、集電体12a、12bが上流側と下
流側のそれぞれ2箇所に設けられているので、作用電極
16による電圧降下の影響が従来の半分になる。このた
め、集電体12a、12bによる集電効率が高く、測定
精度の向上、検出感度の向上を図ることができる。第2
図は本実施例を用いた場合のイオン電解電流のプラトー
特性を従来例と比較して示した線図である。この図から
も明らかなように、本実施例によれば、従来例と比ベプ
ラトー領域が拡大し、集電効率を大幅に向上させること
ができた。また、電解電流のプラトー領域への立ち上が
りが急勾配となり、電流検出感度が向上した。したがっ
て設定電圧が変動した場合でも、安定したイオン濃度測
定が可能である。According to this embodiment, since the current collectors 12a and 12b are provided at two locations, one on the upstream side and one on the downstream side, the influence of the voltage drop due to the working electrode 16 is reduced to half that of the conventional one. Therefore, the current collection efficiency by the current collectors 12a and 12b is high, and it is possible to improve measurement accuracy and detection sensitivity. Second
The figure is a diagram showing the plateau characteristics of the ion electrolytic current when using this embodiment in comparison with the conventional example. As is clear from this figure, according to this example, the plateau region was expanded compared to the conventional example, and the current collection efficiency was able to be significantly improved. In addition, the rise of the electrolytic current to the plateau region became steeper, improving current detection sensitivity. Therefore, even if the set voltage fluctuates, stable ion concentration measurement is possible.
また、作用電極16の両端部分15a、15bが、それ
ぞれ集電体12a、12b内に接触配置されているので
、作用電極16の保持が確実であり、集電体12a、1
2bと作用電極16との接触状態を常に良好に保つこと
ができる。したがって、例えば低濃度測定のため被検液
の流量を増大しても、流動変動による作用電極16の接
触不良を生ずることはない。Further, since both end portions 15a and 15b of the working electrode 16 are placed in contact with the current collectors 12a and 12b, the working electrode 16 can be held securely, and the current collectors 12a and 1
Good contact between the working electrode 2b and the working electrode 16 can be maintained at all times. Therefore, even if the flow rate of the test liquid is increased to measure a low concentration, for example, contact failure of the working electrode 16 due to flow fluctuations will not occur.
さらに、作用電極リード線13a、13bが、それぞれ
両端の集電体12a、12bに接続されているため、こ
の作用電極リード線13a。Furthermore, since the working electrode lead wires 13a and 13b are connected to the current collectors 12a and 12b at both ends, respectively, this working electrode lead wire 13a.
13b間の抵抗測定等を行うことにより、装置組立後に
おいて集電体と作用電極の接触状態および作用電極の劣
化状態などを容易に確認することができる。By measuring the resistance between 13b and the like, it is possible to easily check the contact state between the current collector and the working electrode, the deterioration state of the working electrode, etc. after the device is assembled.
また、作用電極16の保持が確実に成されていることか
ら、人口ノズル5および出口ノズル6のいずれからも洗
浄用のための被検液を逆流させることができ、作用電極
収納体内を常に良好な状態に保持することが可能である
。In addition, since the working electrode 16 is securely held, the test liquid for cleaning can be flowed back from both the artificial nozzle 5 and the outlet nozzle 6, so that the inside of the working electrode housing is always kept clean. It is possible to maintain this condition.
(発明の効果〕
以上説明したように本発明によれば、作用電極に接触す
る集電体を、被検液の流れの上流側と下流側の2論所に
設けたことにより、集電効率が向上し、電解セルの検出
感度の向上、測定精度の向上を図ることができる。(Effects of the Invention) As explained above, according to the present invention, current collection efficiency is improved by providing the current collectors in contact with the working electrode at two locations, one on the upstream side and one on the downstream side of the flow of the test liquid. It is possible to improve the detection sensitivity and measurement accuracy of the electrolytic cell.
また、測定中における作用電極と集電体の接触の確認を
容易に行うことができるとともに、両者の接触を確実に
保持することができる。これによりM1定装置としての
信頼性が向上するとともに、プラントのインライン測定
装置として使用することができる。Further, it is possible to easily confirm the contact between the working electrode and the current collector during measurement, and to maintain the contact between the two reliably. This improves reliability as an M1 constant device and allows it to be used as an in-line measuring device in a plant.
第1図は本発明に係るフロークーロメトリ用電解セルの
一実施例を示す縦断面図、第2図は実施例および従来例
による電解電流のプラトー特性図を示す線図、第3図は
従来のフロークーロメトリ用電解セルの一例を示す縦断
面図である。
1・・・電解隔膜、3・・・参照電極、4・・・対極、
5・・・入口ノズル、6・・・出口ノズル、7・・・収
納容器、8・・・対極液、12a、12b−・・集電体
、13a。
13b・・・作用電極リード線、16・・・作用電極。
出願人代理人 佐 藤 −雄
81 図
耗2 図FIG. 1 is a longitudinal cross-sectional view showing an embodiment of an electrolytic cell for flow coulometry according to the present invention, FIG. 2 is a diagram showing plateau characteristics of electrolytic current according to the embodiment and a conventional example, and FIG. 3 is a diagram showing a conventional electrolytic cell. FIG. 2 is a longitudinal sectional view showing an example of an electrolytic cell for flow coulometry. 1... Electrolytic diaphragm, 3... Reference electrode, 4... Counter electrode,
5... Inlet nozzle, 6... Outlet nozzle, 7... Storage container, 8... Counter electrode, 12a, 12b-... Current collector, 13a. 13b... Working electrode lead wire, 16... Working electrode. Applicant's agent Sato-Yu 81 Illustration 2
Claims (1)
状の作用電極収納体と、この作用電極収納体内に充填さ
れた作用電極と、前記作用電極収納体の外側に設けられ
た対極、参照電極および対極液からなる電解部と、前記
作用電極収納体と電解部とが収納配置されている収納容
器とからなるフロークーロメトリ用電解セルにおいて、
前記集電体は前記電解隔膜の被検液流入側および流出側
の2箇所位置に設けられていることを特徴とするフロー
クーロメトリ用電解セル。 2、集電体は前記電解隔膜と同形の筒状をなし、前記電
解隔膜の両端部に接着されていることを特徴とする特許
請求の範囲第1項記載のフロークーロメトリ用電解セル
。 3、作用電極は、前記作用電極収納体の略3倍長の可撓
性繊維状作用電極材料の束を3つ折りにして形成され、
各先端部をそれぞれの集電体内に密接配置させて作用電
極収納体内に充填されていることを特徴とする特許請求
の範囲第1項記載のフロークーロメトリ用電解セル。[Scope of Claims] 1. A cylindrical working electrode housing including an electrolytic diaphragm and a current collector, through which a test liquid flows, a working electrode filled in the working electrode housing, and the working electrode housing. In an electrolytic cell for flow coulometry, the electrolytic cell includes an electrolytic section including a counter electrode, a reference electrode, and a counter electrode provided outside the body, and a storage container in which the working electrode storage body and the electrolytic section are housed,
An electrolytic cell for flow coulometry, characterized in that the current collector is provided at two positions on the inflow side and outflow side of the test liquid of the electrolytic diaphragm. 2. The electrolytic cell for flow coulometry according to claim 1, wherein the current collector has the same cylindrical shape as the electrolytic diaphragm and is bonded to both ends of the electrolytic diaphragm. 3. The working electrode is formed by folding into three a bundle of flexible fibrous working electrode material that is approximately three times as long as the working electrode housing;
2. The electrolytic cell for flow coulometry according to claim 1, wherein the working electrode housing is filled with each tip portion closely disposed within the respective current collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP657187A JPS63173951A (en) | 1987-01-14 | 1987-01-14 | Electrolytic cell for flow coulometry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP657187A JPS63173951A (en) | 1987-01-14 | 1987-01-14 | Electrolytic cell for flow coulometry |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63173951A true JPS63173951A (en) | 1988-07-18 |
Family
ID=11642022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP657187A Pending JPS63173951A (en) | 1987-01-14 | 1987-01-14 | Electrolytic cell for flow coulometry |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63173951A (en) |
-
1987
- 1987-01-14 JP JP657187A patent/JPS63173951A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3098813A (en) | Electrode | |
Hersch | Trace monitoring in gases using galvanic systems | |
EP0027005A1 (en) | A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide | |
US3322662A (en) | Electrolytic oxygen sensor | |
JPS638423B2 (en) | ||
US4985130A (en) | Amperometric method and apparatus | |
US3022241A (en) | Method and apparatus for measurement of dissolved oxygen | |
WO1993001490A1 (en) | High speed oxygen sensor | |
US3258411A (en) | Method and apparatus for measuring the carbon monoxide content of a gas stream | |
EP0096417B1 (en) | Apparatus for measuring dissolved hydrogen concentration | |
JPS63173951A (en) | Electrolytic cell for flow coulometry | |
US5200044A (en) | Method for measuring oxygen content | |
JPH0560548B2 (en) | ||
US3523872A (en) | Gas analysis | |
JPS63173947A (en) | Electrolytic cell | |
JP6100643B2 (en) | Noble metal coverage monitoring method, noble metal coverage monitoring device and nuclear power plant operating method | |
JPS63188753A (en) | Multi-stage flow coulometry detector | |
KR100829928B1 (en) | Device for Measuring Hematocrit of Blood and Method using the same | |
JP7356704B2 (en) | Electrochemical measuring device | |
US4211615A (en) | Process and a measuring cell for the coulometric determination of the content of a component dissolved in water | |
JPH1038838A (en) | Flow type electrolytic analysis cell | |
KR820000085B1 (en) | High temperature reference electrode | |
JPS60171448A (en) | Apparatus for measuring concentration of dissolved substance | |
JPS63173946A (en) | Insertion of working electrode for electrolytic cell | |
JPS62220857A (en) | Multi-stage flow coulometric detector |