JPS633813Y2 - - Google Patents

Info

Publication number
JPS633813Y2
JPS633813Y2 JP11746580U JP11746580U JPS633813Y2 JP S633813 Y2 JPS633813 Y2 JP S633813Y2 JP 11746580 U JP11746580 U JP 11746580U JP 11746580 U JP11746580 U JP 11746580U JP S633813 Y2 JPS633813 Y2 JP S633813Y2
Authority
JP
Japan
Prior art keywords
layer
composition ratio
dimensional change
composite film
eva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11746580U
Other languages
Japanese (ja)
Other versions
JPS5713240U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11746580U priority Critical patent/JPS633813Y2/ja
Publication of JPS5713240U publication Critical patent/JPS5713240U/ja
Application granted granted Critical
Publication of JPS633813Y2 publication Critical patent/JPS633813Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、深絞り真空包装用の底材用として用
いられ、内容物の保存性と内容物への密着性に優
れかつふた材とのシール部のカールが小さい包装
体を得るのに適した複合フイルムに関する。なお
深絞り真空包装とは真空あるいは圧空成形機によ
り底材用フイルムを内容物に近い形状に成形後、
内容物を充填し真空下でふた材とシールして包装
体を得る包装方法を言う。現在深絞り真空包装用
の底材フイルムとして多く使われている複合フイ
ルムの構成としてはエチレン酢酸ビニル共重合体
けん化物(以下EVAけん化物という)層/ポリ
アミド樹脂(以下Nyという)層/ポリエチレン、
エチレン酢酸ビニル共重合体又はアイオノマー等
のポリエチレン系樹脂(以下PE系樹脂)からな
るシール層があり、この構成の底材をふた材例え
ばopp/kコートセロフアン/PE系樹脂からな
るシール層とシールして包装体とした場合内容物
の保存性と内容物への密着性は特に問題なかつた
が、この包装体をシヨーケースに保存した場合シ
ール部分がカールして見ばえが良くなかつた。包
装体のシール部分がカールする原因としては底材
用複合フイルムの構成中のNy層とEVA層けん化
物層の引張弾性率が高くかつ吸湿による寸法変化
が大きいため、これらの層の寸法変化をシール層
のPE系樹脂層が抑制できないため寸法変化の少
ないふた材とのバランスがくずれることによつて
生じることがわかつたが、EVAけん化物層はバ
リア性に優れているため内容物の保存性の点で、
不可欠であるがNy層は第2図,第3図に見られ
るように水分に対して寸法変化が大きいため耐ピ
ンホール性を最重要視する場合はともかくそうで
ない軽包装の場合、Ny層が包装体にカールを生
じさせる主要因のためNy層を含まないようにし
た構成が良いことがわかつたため、本考案者らは
EVAけん化物層を複合フイルムの構成中に含み
ながら保存中にふた材とのシール部分がカールし
ない構成はないか検討した結果、表面層のEVA
けん化物層1の層厚みをできるだけ薄くして吸湿
による影響を少なくすると共に引張り弾性率が大
きくかつEVAけん化物層の吸湿による寸法変化
を抑制して底材用フイルムとしての寸法変化を少
なくする効果のある剛性のある層2を中間層に
し、シール層3はふた材とのシールが可能なPE
系樹脂層とする構成にすることによりふた材との
バランスがとれて保存中にシール部がカールしな
い包装体を得られることがわかつた。これは
EVAけん化物層が吸湿により伸びようとするも
のを引張り弾性率が大きくてEVAけん化物層に
よる伸びを抑制する力のある剛性層で抑制という
もので、これを力のバランスに置き換えて式にす
ると次のようになる。 βEtE(LE−LT)=σStSLT +σAtALT ……(1) より LT=βEtELE/σStS+σAtA+βEtE ……(2) ここで tE:EVAけん化物層の厚み構成比 tS:PE系樹脂層の厚み構成比 tA:剛性のある樹脂層の厚みの構成比 βE:EVAけん化物層の圧縮弾性率 σS:PE系樹脂層の引張り弾性率 σA:剛性のある樹脂層の引張り弾性率 LE:他の層の影響を受けないと仮定した時の
EVAけん化物層の吸湿による寸法変化率 LT:深絞り包装用の底材複合フイルムの寸法
変化率を示している。 前述のふた材(OPP/Kコートセロフアン/
PE系樹脂)の場合、90%相対湿度(RH)での寸
法変化率は0.2%で、この寸法変化率と底材フイ
ルムの寸法変化率との差が小さいほどふた材と底
材とのシール部が吸湿によるカールがほとんど生
じない。つまり底材用のLTが90%RH下で0.2%に
近いほどカールのない包装体が得られることがわ
かつた。 前記の(2)式からわかるように底材用のLTを小
さくするにはEVAけん化物層をできるだけ薄く
すると共にPE系樹脂層と剛性のある樹脂層の引
張弾性率を大きくし、かつ厚み構成比を高くする
ことがあげられるが、EVAけん化物層を薄くす
るとガスバリア性を低下させ保存性を低下させ、
PE系樹脂の引張り弾性率を高くすると内容物へ
の密着性とふた材とのシール性を低下させ、剛性
のある樹脂層の引張弾性率を高くすると内容物と
の密着性に問題がでてくるため本考案者らが種々
実験検討した結果底材用の複合フイルムの各厚み
の構成比を限定し更に剛性のある樹脂層の位置を
限定することにより底材用複合フイルムの寸法変
化率(LT)を小さくすることができることがわ
かつた。なお本考案の底材用複合フイルムが主に
用いられるスライスハム包装の場合の保存条件は
相対湿度(RH)70〜90%のふん囲気中で保存さ
れる場合が多いが、EVAけん化物は各相対湿度
に対して第2図のように平衡水分率の変化を示し
更に各平衡水分率に対応する寸法変化率は第3図
で示されるように変化し、90%RHではEVAけん
化物の寸法変化率LEは0.96%である。深絞り包装
用の底材の厚みとしては現在75〜200μ位のもの
が主に使われているが、本考案の底材用複合フイ
ルムの場合EVAけん化物層1の厚み構成比は4
〜30%、が望ましいことが実験結果よりわかつ
た。EVAけん化物層の厚み構成比が前述のよう
に4%より小さい場合バリア性が悪くなる点で更
に30%より大きい場合吸湿による寸法変化率が大
きくなる点で問題となつた。EVAけん化物層の
吸湿による寸法変化率を小さくするには前述のよ
うに剛性のある樹脂層2の引張り弾性率が高くか
つ厚み構成比が大きい程効果があることがわかつ
たが必要以上に大きいと内容物への密着性を悪く
するためふた材との寸法変化率の差を包装体がカ
ールしない0.2%に近づけるためには剛性のある
樹脂層の引張り弾性率が120〜400Kg/mm2の範囲内
でその厚み構成比はEVAけん化物層の厚み構成
比の0.75〜2.5倍でかつその構成比は全厚みの40
%以下であれば効果的であることが本考案者らの
実験結果より判明した。更にこの樹脂層の吸湿率
が0.4以下であればEVAけん化物層の寸法変化率
に比し非常に小さく無視できる程度の寸法変化率
であると言える。なお吸湿率とは吸湿前後におけ
る重量変化を吸湿前の重量で除した値である。更
に剛性のある樹脂層の位置は外層では内容物への
密着性が悪くなるため中間層とした方が良好であ
る。引張弾性率が120〜400Kg/mm2位で吸湿率が
0.4%以下の剛性のある樹脂としては硬質PVC,
GP・PS,HI・PS,BS,AS,ABS,MMA樹
脂等がある。シール層4は他の層が比較的腰の強
い樹脂のため層構成のバランスの点からもできる
だけ腰のない層としなければ内容物への密着性が
悪くなるため引張り弾性率は50Kg/mm2以下の樹脂
が望しく樹脂としてはLDPE,EVA,アイオノ
マー樹脂があげられる。 次に従来の底材用複合フイルムと本考案の底材
用複合フイルムの代表構成例の寸法変化率(LT
について計算すると次のようになる。 従来の複合フイルム
The present invention is used as a bottom material for deep-drawn vacuum packaging, and is suitable for obtaining a package that has excellent content preservation and adhesion to the content, and has minimal curl at the sealing part with the lid material. Regarding composite film. Deep drawing vacuum packaging is a process in which the bottom film is formed into a shape similar to the contents using a vacuum or pressure forming machine.
A packaging method in which a package is obtained by filling the contents and sealing it with a lid under vacuum. The composition of composite films that are currently widely used as bottom films for deep-drawn vacuum packaging is saponified ethylene-vinyl acetate copolymer (hereinafter referred to as saponified EVA) layer/polyamide resin (hereinafter referred to as Ny) layer/polyethylene.
There is a sealing layer made of polyethylene resin (hereinafter referred to as PE resin) such as ethylene vinyl acetate copolymer or ionomer, and the bottom material with this structure is combined with a sealing layer made of a lid material such as OPP/K coated cellophane/PE resin. When sealed and used as a package, there were no particular problems with the storage stability and adhesion of the contents to the contents, but when this package was stored in a show case, the sealed portion curled and did not look good. The reason why the seal part of the package curls is that the Ny layer and saponified EVA layer in the composite film for the bottom material have a high tensile modulus of elasticity, and the dimensional changes due to moisture absorption are large. It was found that this occurs due to the loss of balance with the lid material, which has little dimensional change because the PE resin layer of the sealing layer cannot be suppressed, but the EVA saponified layer has excellent barrier properties, so the preservation of the contents is improved. In terms of
Although it is essential, the Ny layer has a large dimensional change due to moisture as shown in Figures 2 and 3, so it may not be necessary in cases where pinhole resistance is of paramount importance, but in light packaging where this is not the case. The inventors of the present invention found that it is better to have a structure that does not include the Ny layer because it is the main factor that causes curling in the package.
As a result of investigating whether there is a structure that includes an EVA saponified layer in the composition of the composite film and prevents the sealing part with the lid material from curling during storage, we found that the EVA in the surface layer
The saponified layer 1 is made as thin as possible to reduce the effect of moisture absorption, has a high tensile modulus, and suppresses dimensional changes in the EVA saponified layer due to moisture absorption, thereby reducing dimensional changes as a bottom material film. The middle layer is layer 2, which has a certain rigidity, and the sealing layer 3 is made of PE that can be sealed with the lid material.
It has been found that by using a structure with a resin layer, a package can be obtained in which the balance with the lid material is maintained and the seal portion does not curl during storage. this is
The tendency of the EVA saponified layer to expand due to moisture absorption is suppressed by a rigid layer that has a large tensile modulus and has the power to suppress the expansion by the EVA saponified layer.If this is replaced with a force balance, it can be expressed as an equation. It will look like this: β E t E (L E −L T )=σ S t S L TA t A L T ……(1), L T = β E t E L ES t SA t AE t E ……(2) where t E : Thickness composition ratio of EVA saponified layer t S : Thickness composition ratio of PE resin layer t A : Thickness composition ratio of rigid resin layer β E : EVA saponification Compressive modulus of the layer σ S : Tensile modulus of the PE resin layer σ A : Tensile modulus of the rigid resin layer L E : Assuming no influence from other layers
Dimensional change rate due to moisture absorption of the EVA saponified layer L T : Indicates the dimensional change rate of the composite film bottom material for deep-drawn packaging. The aforementioned lid material (OPP/K-coated cellophane/
In the case of PE resin), the dimensional change rate at 90% relative humidity (RH) is 0.2%, and the smaller the difference between this dimensional change rate and the dimensional change rate of the bottom material film, the better the seal between the lid material and the bottom material. Almost no curling occurs due to moisture absorption. In other words, it has been found that the closer L T for the bottom material is to 0.2% at 90% RH, the more curl-free packaging can be obtained. As can be seen from equation (2) above, in order to reduce L One way is to increase the composition ratio, but making the EVA saponified layer thinner will reduce gas barrier properties and storage stability.
If the tensile modulus of PE resin is increased, the adhesion to the contents and the sealing performance with the lid material will be reduced, and if the tensile modulus of the rigid resin layer is increased, problems will arise in the adhesion to the contents. As a result of various experiments conducted by the present inventors to achieve this goal, the dimensional change rate of the composite film for the bottom material ( We found that it is possible to reduce L T ). Note that the storage conditions for sliced ham packaging, in which the composite film for bottom material of the present invention is mainly used, are often stored in an atmosphere with a relative humidity (RH) of 70 to 90%; The equilibrium moisture content changes with respect to relative humidity as shown in Figure 2, and the dimensional change rate corresponding to each equilibrium moisture content changes as shown in Figure 3. At 90%RH, the size of EVA saponified material changes. The rate of change L E is 0.96%. Currently, the thickness of the bottom material for deep-drawn packaging is mainly 75 to 200μ, but in the case of the composite film for the bottom material of the present invention, the thickness composition ratio of the EVA saponified layer 1 is 4.
The experimental results showed that ~30% is desirable. As mentioned above, when the thickness composition ratio of the EVA saponified layer is less than 4%, the barrier properties deteriorate, and when it is more than 30%, the rate of dimensional change due to moisture absorption increases. In order to reduce the dimensional change rate due to moisture absorption of the EVA saponified layer, it was found that the higher the tensile elastic modulus and the larger the thickness composition ratio of the rigid resin layer 2, as mentioned above, the more effective it is, but it is more effective than necessary. In order to reduce the difference in the dimensional change rate between the lid material and the lid material to 0.2%, which prevents the packaging from curling, the tensile modulus of the rigid resin layer must be between 120 and 400 Kg/ mm2. Within this range, its thickness composition ratio is 0.75 to 2.5 times the thickness composition ratio of the EVA saponified layer, and its composition ratio is 40 times the total thickness.
The experimental results of the present inventors revealed that it is effective if the amount is less than %. Furthermore, if the moisture absorption rate of this resin layer is 0.4 or less, it can be said that the dimensional change rate is very small and negligible compared to the dimensional change rate of the EVA saponified layer. The moisture absorption rate is the value obtained by dividing the weight change before and after moisture absorption by the weight before moisture absorption. Furthermore, it is better to place the rigid resin layer in the middle layer since the outer layer has poor adhesion to the contents. Tensile modulus is 120-400Kg/mm, moisture absorption rate is 2nd place
Rigid PVC is used as a rigid resin of 0.4% or less.
There are GP/PS, HI/PS, BS, AS, ABS, MMA resin, etc. Seal layer 4 has a tensile modulus of elasticity of 50 Kg/mm 2 since the other layers are made of relatively stiff resins, so from the viewpoint of the balance of the layer structure, the layer must be as stiff as possible or its adhesion to the contents will be poor. The following resins are desirable, and the resins include LDPE, EVA, and ionomer resins. Next, the dimensional change rate ( L
The calculation is as follows. Conventional composite film

【表】 ふた材(OPP/Kコートセロフアン/PE系樹
脂)の寸法変化率は0.2%であるのでその差は
1.07−0.2=0.87%とシール部にカールを生じない
限度の0.6%より大きくシール部にカールが発生
した。 本考案の複合フイルム
[Table] The dimensional change rate of the lid material (OPP/K-coated cellophane/PE resin) is 0.2%, so the difference is
Curl occurred in the seal portion at 1.07−0.2=0.87%, which was greater than the limit of 0.6% that would not cause curl in the seal portion. Composite film of this invention

【表】 でふた材との寸法変化率の差は0.37−0.2=0.17%
で非常に小さくシール部におけるカールの発生は
見られなかつた。 次に本考案の複合フイルムの実施例を第2表に
示した。 又剛性を有する樹脂の構成比が高すぎる場合密
着性に問題があつた。
[Table] The difference in dimensional change rate with the lid material is 0.37−0.2=0.17%
The curling was very small and no curling was observed at the sealing part. Next, Table 2 shows examples of the composite film of the present invention. Furthermore, if the composition ratio of the rigid resin was too high, there was a problem in adhesion.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案の複合フイルムの構成を示す
図。第2図は相対湿度VS平衡水分率。第3図は
平衡水分率VS寸法変化率。
FIG. 1 is a diagram showing the structure of the composite film of the present invention. Figure 2 shows relative humidity vs. equilibrium moisture content. Figure 3 shows equilibrium moisture content vs. dimensional change rate.

Claims (1)

【実用新案登録請求の範囲】 シール層が引張り弾性率50Kg/mm2以下のポリエ
チレン系樹脂層、中間層が引張り弾性率120〜400
Kg/mm2及び吸湿率が0.4%以下の剛性ある樹脂層、
及び表面層がエチレン酢酸ビニル共重合体けん化
物層よりなる複合フイルムにおいて、各厚み構成
比が、 tE(0.75〜2.5)=tA,tA≦40/100T, tE≦4〜30/100T (tE:エチレン酢酸ビニル共重合体けん化物層の
厚み構成比 tA:剛性のある樹脂層の厚み構成比 T:複合フイルムの厚み) よりなることを特徴とする深絞り包装用複合フイ
ルム。
[Scope of claim for utility model registration] The seal layer is a polyethylene resin layer with a tensile modulus of 50 kg/mm 2 or less, and the intermediate layer has a tensile modulus of 120 to 400.
Rigid resin layer with kg/mm 2 and moisture absorption rate of 0.4% or less,
and a composite film whose surface layer is a saponified ethylene-vinyl acetate copolymer layer, each thickness composition ratio is t E (0.75 to 2.5) = t A , t A ≦40/100T, t E ≦4 to 30/ 100T (t E : thickness composition ratio of saponified ethylene vinyl acetate copolymer layer t A : thickness composition ratio of rigid resin layer T: thickness of composite film) .
JP11746580U 1980-08-21 1980-08-21 Expired JPS633813Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11746580U JPS633813Y2 (en) 1980-08-21 1980-08-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11746580U JPS633813Y2 (en) 1980-08-21 1980-08-21

Publications (2)

Publication Number Publication Date
JPS5713240U JPS5713240U (en) 1982-01-23
JPS633813Y2 true JPS633813Y2 (en) 1988-01-29

Family

ID=29478233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11746580U Expired JPS633813Y2 (en) 1980-08-21 1980-08-21

Country Status (1)

Country Link
JP (1) JPS633813Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593909U (en) * 1982-07-01 1984-01-11 アイカ工業株式会社 Structure of wood panel
JPS5919833U (en) * 1982-07-28 1984-02-07 朝日特殊合板株式会社 Colored decorative wood planks
JPS5975039U (en) * 1982-11-11 1984-05-22 株式会社住建産業 Synthetic resin injection cosmetic material
JPS6391634U (en) * 1986-12-01 1988-06-14

Also Published As

Publication number Publication date
JPS5713240U (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US4590106A (en) Heat resistant heat shrinkable films
JP3012943B2 (en) High oxygen barrier burst resistance film
JPS633813Y2 (en)
WO2016148076A1 (en) Laminate for heat sealing
US4501779A (en) Heat resistant heat shrinkable film
US3784434A (en) Method of laminating packaging film
WO2012135353A1 (en) Laminate structure to stabilize a dimensionally unstable layer
JPS6121242Y2 (en)
US4541983A (en) Preparing heat resistant heat shrinkable films
CN207724969U (en) Aluminum plastic film with the corrosion-resistant function in surface layer
JP3085626B2 (en) Flexible multilayer film
JPS6027000Y2 (en) Composite film for deep drawing
JPS6226312B2 (en)
JPS6026999Y2 (en) Composite film for deep drawing
JPS6350120Y2 (en)
JPS6114943A (en) Laminated cover material for thermal sealing
JPS6026998Y2 (en) Composite film for deep drawing
JPS6217243Y2 (en)
JPH0223401Y2 (en)
JP2941596B2 (en) Flexible multilayer film
JPS5874313A (en) Manufacture of deeply drawn packing material
JPH0556268B2 (en)
JPH0235790Y2 (en)
JPH0310286B2 (en)
JP2541005Y2 (en) Paper container