JPS6338137A - Diagnosis device for deterioration of lead-clad cable - Google Patents

Diagnosis device for deterioration of lead-clad cable

Info

Publication number
JPS6338137A
JPS6338137A JP18297286A JP18297286A JPS6338137A JP S6338137 A JPS6338137 A JP S6338137A JP 18297286 A JP18297286 A JP 18297286A JP 18297286 A JP18297286 A JP 18297286A JP S6338137 A JPS6338137 A JP S6338137A
Authority
JP
Japan
Prior art keywords
lead
rigid body
sheathed cable
hardness
repulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18297286A
Other languages
Japanese (ja)
Other versions
JPH0560539B2 (en
Inventor
Keiichi Sudo
佳一 須藤
Mitsumasa Hishiyama
菱山 光正
Fujio Hirabayashi
平林 富士夫
Junichi Masuda
順一 増田
Kishio Arita
紀史雄 有田
Yasunori Yoshiki
泰紀 由木
Hiroto Miyaura
宮浦 宏人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18297286A priority Critical patent/JPS6338137A/en
Publication of JPS6338137A publication Critical patent/JPS6338137A/en
Publication of JPH0560539B2 publication Critical patent/JPH0560539B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To facilitate the estimation of the life of a lead-clad cable by digitizing the output voltage from a sensor device for measuring repulsion hardness and making angle correction in accordance with the program preliminarily loaded in a memory device and arithmetic processing unit. CONSTITUTION:A rigid body including a magnetic material is brought into collision against the lead-clad cable and the change of the speed right before and after the collision of the rigid body is detected by a sensor 1. The output of the sensor 1 is inputted to a CPU 4 after amplification 2 and A/D conversion 3. The memory 5 stores the information on the correction of the measuring angle of the sensor 1 and the information on the judgement of the life of the lead-clad cable. The CPU 4 calculates the angle between the moving direction of the rigid body and the perpendicular direction from the speed just before the collision of the rigid body against the lead-clad cable and determines the change of the repulsion hardness of the lead-clad cable from the speed change just before and after the collision of the rigid body. Said unit corrects the repulsion hardness of the lead-clad cable according to the angle by using the information on the angle correction of the memory 5, determines the remaining life of the lead-clad cable from the repulsion hardness after the correction by using the time elapsed after laying of the lead-clad cable and the information on the judgement of the life thereof and outputs the same to a printer 6 or liquid crystal display 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は既に布設されている通信用鉛被ケーブルの残存
寿命を、鉛被ケーブルの反発硬さを測定することで非破
壊でかつ、現場で稼動中のまま簡便に診断する装置に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention measures the remaining life of lead-sheathed communication cables that have already been installed by measuring the repulsion hardness of lead-sheathed cables in a non-destructive and on-site manner. The present invention relates to a device that can be easily diagnosed while in operation.

〔従来技術〕[Prior art]

従来この種の装置としては、ケーブル被覆劣化診断装置
(特願昭tO−3rl/J−)がある、この装置は、本
願発明と同様に被測定物である材料の反発硬さを用いて
、ケーブル被覆の劣化程度を診断するものであるが、通
常は有機材料で作られた外被が対象であり、金属の外被
には使えず、しかも、劣化程度の判定は人間が、予め求
めておいた基準値によって行わねばならない、という欠
点があった。
As a conventional device of this type, there is a cable coating deterioration diagnostic device (patent application ShotoO-3rl/J-). Similar to the present invention, this device uses the repulsion hardness of the material to be measured, This is used to diagnose the degree of deterioration of cable sheathing, but it usually targets outer sheaths made of organic materials and cannot be used for metal outer sheaths. There was a drawback that the process had to be carried out using established reference values.

また従来から反発硬さは、反発硬さを測定しようとする
材料に対して、センサ装置を鉛直に当てて行うため、構
造物の部位によっては、このセンサ装置を鉛直方向から
傾けて測定しなければならない。
In addition, conventionally, rebound hardness has been measured by applying a sensor device vertically to the material whose rebound hardness is to be measured, so depending on the part of the structure, the sensor device may have to be measured by tilting it from the vertical direction. Must be.

反発硬さの測定は、このセンサ装置の硬さ測定用の剛体
を、被測定物の表面に衝突せしめ、その衝突直前並びに
直後の剛体の速度比から求めるものであるため、重力加
速度に影響される。従って同一の硬さの材料を測定して
も、構造物の部位によっては、センサ装置の傾きの影響
で得られる反発硬さの値は、被測定物の材料そのものの
値と異なってしまう。
Repulsion hardness is measured by colliding the hardness measurement rigid body of this sensor device with the surface of the object to be measured, and finding it from the velocity ratio of the rigid body just before and after the collision, so it is not affected by gravitational acceleration. Ru. Therefore, even if materials of the same hardness are measured, depending on the part of the structure, the value of repulsion hardness obtained due to the influence of the tilt of the sensor device may differ from the value of the material itself of the object to be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の劣化診断装置では、測定時のセンサ装置と鉛直方
向の角度を別な手段で測定し、これを人間が計算して補
正することにより、被測定物の材料を水平、センサ装置
を鉛直方向での測定値に直すという方法が取られていた
。このため従来の装置では、測定時のセンナ装置の傾き
を別な手段で測定しなければならず、またこれら測定値
を使って人間が計算しなければならないといった繁雑な
手続が必要であった。
With conventional deterioration diagnosis equipment, the angle between the sensor device and the vertical direction at the time of measurement is measured by another means, and this is calculated and corrected by humans, so that the material of the object to be measured is horizontal and the sensor device is vertical. The method used was to change the value to the measured value. For this reason, with conventional devices, the inclination of the senna device during measurement must be measured by a separate means, and a human being must perform calculations using these measured values, which is a complicated procedure.

〔問題点を解決するための手段〕[Means for solving problems]

センサ装置のアナログ出力である電圧値を、A/Dコン
バータでデジタル量に変換し、予め作成しである鉛被ケ
ーブル外被の劣化診断の測定手順プログラム、劣化診断
の算出プログラム並びに定数をメモリ装置に記憶させて
おき、これらプログラムに従い、演算処理装置により、
センサ装置の硬さ測定用の剛体のデジタル景変換された
被測定物である鉛被ケーブル外被への衝突直前と衝突直
後の速度変化から、被測定物である鉛被ケーブル外被の
反発硬さを求め、センサ装置を鉛直方向での測定値に自
己補正するとともに、被測定物である鉛被ケーブル外被
の反発硬さ経時変化から、被測定物である鉛被ケーブル
の残存寿命を求め、演算処理装置の結果を表示器とプリ
ンターで表示・出力する。
The voltage value, which is the analog output of the sensor device, is converted into a digital quantity by an A/D converter, and the measurement procedure program for deterioration diagnosis of lead-sheathed cable jacket, the calculation program for deterioration diagnosis, and constants prepared in advance are stored in the memory device. According to these programs, the arithmetic processing unit performs
Digital view of the rigid body used to measure the hardness of the sensor device The repulsive hardness of the lead-sheathed cable sheath, the object to be measured, can be determined from the speed changes immediately before and after the collision with the lead-sheathed cable sheath, which is the object to be measured. In addition to self-correcting the sensor device to the measured value in the vertical direction, the remaining life of the lead-sheathed cable, which is the object to be measured, is determined from the change in repulsion hardness of the lead-sheathed cable jacket, which is the object to be measured. , displays and outputs the results of the arithmetic processing unit on a display and printer.

0作 用〕 本願発明は、反発硬さ測定用のセンサ装置からの出力電
圧をディジタル化して予めメモリ装置と演算処理装置に
搭載したプログラムに従い角度補正を行なった後、通信
用鉛被ケーブルの残存寿命を、人手を煩わすことなく自
動的に計算処理して、その結果を表示・出力する8 〔実施例〕 第1図は本発明実施例における装置の構成図であって、
/はセン′す装置、λはアンプ、3は、へ/Dコンバー
タ、≠は演算処理部、夕はメモリ装置、6はプリンタ、
7は液晶表示である一反発硬さ測定時にセンサ装置/に
発生した電圧はアンプλで増巾され、A/Dコンバータ
3でデジタル値に変換される。演算処理装置はA/Dコ
ンバータ3のデジタル変換値をもとにメモリ装置!に記
憶されたプログラムに従い反発硬さの値を計算し、さら
シこ上記一連の流れの繰返しによって得た複数の反発硬
さの値から残存寿命の推定を行う。演算処理部μの演算
によって得た反発硬さの値、残存寿命の値は、プリンタ
乙あるいは液晶表示7に出力。
0 operation] The present invention digitizes the output voltage from a sensor device for measuring repulsion hardness, performs angle correction according to a program installed in a memory device and an arithmetic processing device in advance, and then calculates the remaining lead-covered communication cable. 8. Automatically calculate lifespan without any manual effort and display/output the results 8 [Embodiment] FIG. 1 is a configuration diagram of a device in an embodiment of the present invention,
/ is a sensor device, λ is an amplifier, 3 is a /D converter, ≠ is an arithmetic processing unit, evening is a memory device, 6 is a printer,
7 is a liquid crystal display.The voltage generated in the sensor device/when measuring the repulsion hardness is amplified by the amplifier λ, and converted into a digital value by the A/D converter 3. The arithmetic processing unit is a memory device based on the digital conversion value of the A/D converter 3! The value of repulsion hardness is calculated according to the program stored in the program, and the remaining life is estimated from a plurality of values of repulsion hardness obtained by repeating the above series of steps. The values of repulsion hardness and remaining life obtained by the calculations of the calculation processing unit μ are output to the printer B or the liquid crystal display 7.

表示される構成となっている。The configuration is displayed.

先ず本発明に用いる反発硬さ計センサの一例について説
明する。第2図は本発明実施例における反発硬さ計セン
サの断面図であって、りは筐筒、IOは剛体、/lは剛
体セット用バネ、/2は剛体発射用バネ、/3はリリー
スボタン、/4はコイル、/!は磁性体、/乙は鉛被ケ
ーブルである。
First, an example of a repulsion hardness meter sensor used in the present invention will be explained. FIG. 2 is a sectional view of a repulsion hardness meter sensor according to an embodiment of the present invention, where ri is a housing, IO is a rigid body, /l is a rigid body setting spring, /2 is a rigid body firing spring, and /3 is a release Button, /4 is coil, /! is a magnetic material, /B is a lead-sheathed cable.

筐筒り内に存在する剛体ioをコイル/≠からリリース
ボタン/3方向へ押し込んでやると剛体10の上部先端
が剛体セット用バネ/Iの下部先端にセントされる。こ
の時、同時に剛体発射用バネ/2が収縮される。この状
態で筐筒下部を鉛被ケーブル16の表面に垂直に押し当
ててIJ IJ−スボタン13を押すと、リリースボタ
ン/3は剛体セット用バネl/の下部先端を広げるよう
(で動作するため剛体IOの先端は剛体セット用バネl
/の下部先端を離れ、剛体発射用バネ12の力によって
剛体10は第2図中の下方へ発射される。剛体i。
When the rigid body io existing in the housing is pushed in from the coil /≠ to the release button /3 direction, the upper tip of the rigid body 10 is centered on the lower tip of the rigid body setting spring /I. At this time, the rigid body firing spring /2 is simultaneously contracted. In this state, when the lower part of the housing cylinder is pressed perpendicularly to the surface of the lead-sheathed cable 16 and the IJ IJ- button 13 is pressed, the release button /3 spreads the lower tip of the rigid body setting spring l/. The tip of the rigid body IO is a rigid body set spring l
Leaving the lower tip of /, the rigid body 10 is launched downward in FIG. 2 by the force of the rigid body launch spring 12. Rigid body i.

はこの時の初速度Va と勅諭速度の影響とにょシ決定
される速度v、で鉛被ケーブルl乙表面に衝突する。剛
体IOは鉛被ケーブル16表面は衝突したことによりエ
ネルギーをロスし、今度は第2図中の上方へ向って速度
v2で反発する。一方、剛体io中には磁性体l!が内
蔵されており、な。
collides with the surface of the lead-sheathed cable l at a velocity v determined by the influence of the initial velocity Va and the imperial velocity at this time. The rigid body IO loses energy due to the collision with the surface of the lead-sheathed cable 16, and now rebounds upward in FIG. 2 at a speed v2. On the other hand, there is a magnetic body l! in the rigid body io! It has a built-in function.

おかつ筐筒り外部にはコイルl≠が巻かれているため、
電磁効果により剛体ioの速度V+ 、 V2に比例し
た電圧V、 、 V、がコイルに生じる。
Since the coil l≠ is wound on the outside of the okatsu housing,
Due to electromagnetic effects, voltages V, , V, proportional to the velocity V+, V2 of the rigid body io are generated in the coil.

第3図は本発明実施例におけるコイルl≠の電圧経時変
化を示したものである。反発硬さ値Hr。
FIG. 3 shows the voltage change over time of the coil l≠ in the embodiment of the present invention. Repulsion hardness value Hr.

は HL = I vz/v+ l X 1000    
  (1)式で定義される。ところで反発硬さ計のセン
サは第2図のような構造となっているため、測定しよう
とする鉛被ケーブル/6の表面が水平方向に対して角度
θを持つ場合には、センサ装置の筐筒りの方向が鉛直方
向に向かず、重力加速度gの影響がθによって異なって
しまい、結果的に速度V 、 、 VtO値が変化して
しまう。このため(1)式により求めたI(Lの値が・
同一の硬さのものを測定してもθの違いにより異なって
しまうという現象が生じる。
is HL = I vz/v+ l x 1000
It is defined by equation (1). By the way, the sensor of the repulsion hardness meter has a structure as shown in Figure 2, so if the surface of the lead-sheathed cable/6 to be measured has an angle θ with respect to the horizontal direction, the casing of the sensor device Since the direction of the cylinder is not vertical, the influence of the gravitational acceleration g differs depending on θ, and as a result, the velocity V, , VtO value changes. Therefore, the value of I(L obtained by equation (1) is
A phenomenon occurs in which even if objects of the same hardness are measured, the hardness differs due to the difference in θ.

本発明ではこの角度θによる)lL値の変化を補正する
ためにセンサからの情報(電圧)を基に演算処理部によ
り計算を行い、得られるHz、値を0=O(センサ装置
を鉛直方向にむけた時)の値に直している。以下に詳細
に説明する。
In the present invention, in order to correct the change in lL value (due to this angle θ), the arithmetic processing unit performs calculations based on the information (voltage) from the sensor, and the obtained Hz value is set to 0=O (when the sensor device is placed in the vertical direction). The value is adjusted to the value of This will be explained in detail below.

第≠図は本センサ装置を用い、vl値(電圧)と角度θ
の測定結果を示したものである。この図から電圧v1 
とθとの間には V+ = 7.j O+0./ Icesθ     
   (2)式なる関係が存在する。従って、反発硬さ
測定時に電圧v1値を求めてやれば、θは によって求められる。
Figure ≠ shows the vl value (voltage) and angle θ using this sensor device.
This figure shows the measurement results. From this figure, voltage v1
and θ, V+ = 7. j O+0. /Icesθ
(2) There exists a relationship as shown in equation (2). Therefore, if the voltage v1 value is found when measuring the repulsion hardness, θ can be found as follows.

第5図は同−硬さの鉛被ケーブルに対して、θをθ〜/
♂0 (deg )変化させて反発硬さを測定した時の
値1(Lと、θが0 (deg )の時の反発硬さ■I
Lφとの差(ΔILL )をとり、角度とのΔHL関係
を求めたものである。
Figure 5 shows θ for a lead-sheathed cable with the same hardness as θ~/
Value 1 when repulsion hardness is measured by varying ♂0 (deg) (L and repulsion hardness when θ is 0 (deg)■I
The difference (ΔILL) from Lφ is taken to determine the relationship between ΔHL and the angle.

ΔHL=/rcas(θ−11グ) + i I   
  (a)式で与えられることが明らかとなった。以上
の検討結果から1本発明ではθによる反発硬さの誤差を
補正するために、まず(2)′式によりθを求め(3)
式によりΔHr、値を求め HLφ= FIL−ΔHb           (4
)式によってセンサ装置の角度を鉛直方向に向けて反発
硬さを測定した時の値HLφに補正している。
ΔHL=/rcas(θ-11g) + i I
It became clear that it is given by equation (a). From the above study results, 1. In the present invention, in order to correct the error in repulsion hardness due to θ, θ is first calculated using equation (2)′ (3)
Find the value of ΔHr using the formula HLφ= FIL−ΔHb (4
), the repulsion hardness is corrected to the value HLφ when the repulsion hardness is measured with the angle of the sensor device facing the vertical direction.

第6図は上述のようにして角度θの影響を補正するため
に演算処理部が行うフローを示したものである・ 次に、演算処理部≠が行う残存寿命の測定について説明
する。鉛被ケーブルl乙はPb−8o−Sb三元系合金
であ’) 、Sn、 Sbは強度を向上させることを目
的に添加される一Pb−8n、 L’b−8bは常温の
平衡状態では単一の固溶体を形成する領域が狭く通信用
のものではλ相になるのが安定である。
FIG. 6 shows the flow performed by the arithmetic processing unit to correct the influence of the angle θ as described above.Next, the measurement of the remaining life performed by the arithmetic processing unit ≠ will be explained. The lead-sheathed cable is a Pb-8o-Sb ternary alloy.Sn and Sb are added to improve strength.Pb-8n and L'b-8b are in equilibrium at room temperature. However, the region in which a single solid solution is formed is narrow, and in communications applications, the λ phase is stable.

しかし、鉛被ケーブル製造時には溶融状態から急冷を行
うため、単−相の準安定状態にある。そのため、応力・
温度などの外部的な要因が鉛被ケーブルに加わると、鉛
被の組織は単−相からより安定な2相へと分離する。第
7図は劣化した金属組織を模式的に示したもので、17
が準安定相、/rが安定相、lりが亀裂である8鉛被ケ
ーブルの製造時には準安定相/7のみの単−相であるが
、応力、温度などが加わると、lどの安定相が分離して
くる。この安定相itはより純鉛に近いものであるため
、準安定相/7に比べると機械的強度が低く、亀裂lり
は安定相/rのみを通って成長する。一方、鉛被ケーブ
ルの強度設計は通常、準安定相17の機械的性質をもっ
て行われるため、安定相/gが増加するにつれて鉛被ケ
ーブルの強度は設計値以下となる。従って鉛被の金4m
織が変化し、安定相itが増加すると安定相/rに亀裂
/7が発生する。
However, since lead-sheathed cables are rapidly cooled from a molten state during manufacture, they are in a single-phase metastable state. Therefore, stress
When external factors, such as temperature, are applied to a lead-sheathed cable, the structure of the lead-sheath separates from a single-phase to a more stable two-phase structure. Figure 7 schematically shows the deteriorated metal structure.
is a metastable phase, /r is a stable phase, and l is a crack.8 When lead-sheathed cable is manufactured, it is a single phase with only a metastable phase /7, but when stress, temperature, etc. will separate. Since this stable phase it is closer to pure lead, its mechanical strength is lower than that of the metastable phase /7, and cracks grow only through the stable phase /r. On the other hand, the strength of the lead-sheathed cable is usually designed based on the mechanical properties of the metastable phase 17, so as the stable phase/g increases, the strength of the lead-sheathed cable becomes less than the design value. Therefore, 4m of lead-covered gold
When the texture changes and the stable phase it increases, cracks /7 occur in the stable phase /r.

第2図は鉛被ケーブルの反発硬さ11Lφと鉛被組織中
の安定相itが発生量〔チ〕との関係を示したものであ
る。第2図に示したように安定相1gの量が増大すると
反発硬さは低下する傾向にあシ、この関係を用いれば鉛
被組織に発生した安定相i!rの量を定量化できる。
FIG. 2 shows the relationship between the repulsion hardness 11Lφ of the lead-sheathed cable and the amount of stable phase it generated in the lead-sheathed structure. As shown in Fig. 2, as the amount of 1 g of stable phase increases, the rebound hardness tends to decrease.Using this relationship, the stable phase i generated in the lead-covered structure can be calculated. The amount of r can be quantified.

第7図は鉛被ケーブルの寿命診断の考え方を模式的に示
したものである。第り図の縦軸は反発硬さITLφ、横
軸は経過年数を示した。鉛被ケーブルの硬さは合金の成
分比と製造方法によって定まるため一定の成分比、同一
の製造方法をとっている通信用鉛被ケーブルの場合、製
造直後の鉛被の硬さは一定値III、、となる。先に述
べたような現象により鉛被の反発硬さが低下し、その低
下の仕方は応力、温度などそのケーブルが布設された環
境で定まる傾きにより第7因に示したように経過年数に
対してほぼ直線で与えられる。一方、鉛被ケーブルに加
わり、亀裂を発生させる応力は鉛被ケーブルの布設条件
、即ちケーブルの曲率几で決定する。従って亀裂が発生
する時の鉛被ケーブルの硬さl11Bは、ケーブルの曲
率几によって異る。ところで、ケーブルの布設にあたっ
てはケーブル自身の強度上、あるいは伝送特性上の問題
から最小曲率が決められており、この最小曲率からケー
ブルに加わる最大応力を求めることができる。この最大
応力が加わった時に鉛被ケーブルに亀裂が発生する硬さ
をI]LBとして代表させることとし、このFILBに
達する年数をケーブルの寿命と定義する。
Figure 7 schematically shows the concept of lifespan diagnosis for lead-sheathed cables. The vertical axis of the figure shows the repulsion hardness ITLφ, and the horizontal axis shows the number of years that have passed. The hardness of lead-sheathed cables is determined by the alloy component ratio and manufacturing method, so in the case of communication lead-sheathed cables that have a fixed component ratio and the same manufacturing method, the hardness of the lead sheath immediately after manufacturing is a constant value III. ,, becomes. Due to the above-mentioned phenomenon, the repulsion hardness of the lead sheath decreases, and the manner in which it decreases depends on the slope determined by the environment in which the cable is installed, such as stress and temperature, and as shown in the seventh factor, it changes over the years. is given by an almost straight line. On the other hand, the stress that is applied to a lead-sheathed cable and causes cracks is determined by the installation conditions of the lead-sheathed cable, that is, the curvature of the cable. Therefore, the hardness l11B of the lead-sheathed cable when a crack occurs varies depending on the curvature of the cable. By the way, when installing a cable, a minimum curvature is determined due to problems in the strength of the cable itself or transmission characteristics, and the maximum stress applied to the cable can be determined from this minimum curvature. The hardness at which cracks occur in the lead-sheathed cable when this maximum stress is applied is represented by I]LB, and the number of years to reach this FILB is defined as the cable life.

次に第2図を用いてケーブルの寿命を診断する方法を以
下に説明する。ケーブルを布設してからy年後に診断し
ようとする鉛被ケーブルの硬さI−1陸を測定すれば、
ケーブルの布設環境が布設時から一定で今後も変化しな
いと仮定して次式(5)により残存寿命LTを求めるこ
とができる。
Next, a method for diagnosing the lifespan of a cable will be explained below using FIG. If we measure the hardness I-1 of a lead-sheathed cable to be diagnosed y years after the cable was installed,
Assuming that the cable installation environment has been constant since the time of installation and will not change in the future, the remaining life LT can be calculated using the following equation (5).

LT = ((I(Lφ−HLB)X Y) / (H
l、I −11Lφ) (5)式以上述べたように通信
用鉛被ケーブルの場合、布設されていた期間(y年)と
その時の反発硬さの値(HLφ)がわかれば、残存寿命
(LT )  を求めることができる。なお第り図(イ
)及び(ロ)はそれぞれ測定値の最大値及び最小値を示
している。
LT = ((I(Lφ-HLB)X Y) / (H
l, I -11Lφ) Equation (5) As stated above, in the case of lead-sheathed communication cables, if the period during which they were laid (y years) and the value of repulsion hardness at that time (HLφ) are known, the remaining life ( LT) can be obtained. Note that Figures (a) and (b) show the maximum and minimum values of the measured values, respectively.

(5)式においては、■ILBを最大応力が加った時で
決めているため、残存寿命(LT )は全ての場合にお
いて安全側で求められる。
In equation (5), ■ILB is determined at the time when the maximum stress is applied, so the remaining life (LT) is determined on the safe side in all cases.

第10図は本発明実施例における演算処理部≠の劣化診
断動作フロ〜を示したものである。本発明の診断器は安
全側で残存寿命(LT)を推定するため、複数点の反発
硬さを測定し、安全サイドを考慮してその中の最小値を
もって(5)式の計算を行っている。
FIG. 10 shows the operational flow for diagnosing deterioration of the arithmetic processing unit in the embodiment of the present invention. In order to estimate the remaining life (LT) on the safe side, the diagnostic device of the present invention measures the repulsion hardness at multiple points, and calculates equation (5) using the minimum value among them, taking the safe side into consideration. There is.

計算の結果得られた残存寿命(LT)の値はプリンタj
1液晶乙に表示、出力される。
The remaining life (LT) value obtained as a result of the calculation is
1 Displayed and output on the LCD screen.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ5K、本発明を用いれば■反発硬さ測定
時における角度補正を自己のデータのみで行い、■反発
硬さの測定を行うだけで測定したケーブル鉛彼の残存寿
命を表示するから、従来の繁雑な手読hpこより診断を
行う方法に比較して容易に寿命推定が行えるという利点
がある。
As explained above, if you use the present invention, ■ Angle correction during repulsion hardness measurement will be performed using only your own data, and ■ The remaining life of the measured cable lead will be displayed just by measuring repulsion hardness. This method has the advantage that lifespan can be estimated more easily than the conventional method of diagnosing by manually reading the HP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例における装置の構成図、第2図は
反発硬さ計センサの断面図、第3図は本発明実施例にお
けるコイルの電圧の経時変化を示す図、第≠図はVlと
θとの関係を示す図、第夕図はΔHLとθとの関係を示
す図、第6図は角度補正のフロー、第7図は劣化した金
属組織の模式図、第2図は反発硬さと安定相発生量との
関係を示す図、第り図は鉛被ケーブルの寿命診断の考え
方を示した模式図、第10図は演算処理部の動作フロー
である。 l:センサ装置、2:アンプ、3 : A/Dコンバー
タ、lA:演算処理部、!:メモリ装置、乙:プリンタ
、7:液晶表示、り:筐筒、10;剛体、//:剛体セ
ット用バネ、/2:剛体発射用バネ、/3:リリースボ
タン、lIl、:コイル、/j°磁性体、/乙:鉛被ケ
ーブル、/7:準安定相、/♂;安定相、/り:亀裂。 第  1  図  7苓オi刀旨飴才σ々奢直の1し入
α負μ凌ケープfし ”4  2   U   hv否ψさオfiveングめ
dt面Φ宥(1142111日:4/I  σ (グt
/〕 8.1!コ  −’Ell;F!AfMffJt=hl
フ+AI’i(61hYtfiinfAQ列定角/j 
O(deg) 第 5 υンフ シトく蒼ユFすJジビ41ら例に%l
フ々角りと。 a/−/L (Ht−Hto)のル引り自)  に 図
 オリじ明す惣防l;bノT々角σ捕正^にめの、fl
す3竹1pすflJf171)−チー−り負ち 7 シ
a!531□シ剖衾の′に化tr、xh虚偽組刺配炎イ
し芳−1ctJJl島;の岩生す(A) $   3  U  yfa$yと劣ダ乙釆uj^偽筆
のβりL訃蒼(L社!j4[(4〕 第 7図417劇1Ja
Fig. 1 is a configuration diagram of the device in the embodiment of the present invention, Fig. 2 is a sectional view of the repulsion hardness meter sensor, Fig. 3 is a diagram showing the change in coil voltage over time in the embodiment of the present invention, and Fig. Figure 6 shows the relationship between Vl and θ, Figure 6 shows the relationship between ΔHL and θ, Figure 6 is the flow of angle correction, Figure 7 is a schematic diagram of deteriorated metal structure, Figure 2 shows repulsion. Figure 10 is a diagram showing the relationship between hardness and stable phase generation amount, Figure 1 is a schematic diagram showing the concept of life diagnosis of lead-sheathed cables, and Figure 10 is an operation flow of the arithmetic processing section. l: Sensor device, 2: Amplifier, 3: A/D converter, lA: Arithmetic processing unit, ! : Memory device, B: Printer, 7: Liquid crystal display, R: Housing, 10: Rigid body, //: Spring for rigid body set, /2: Spring for rigid body firing, /3: Release button, lIl, : Coil, / j°Magnetic material, /B: Lead-coated cable, /7: Metastable phase, /♂; Stable phase, /R: Crack. 1st figure 7 蓓 い し た し ま た ま さ σ さ ま ん の の 1 に Gund G G G G G I ” 4 2 (Gt
/] 8.1! Ko-'El;F! AfMffJt=hl
F+AI'i (61hYtfiinfAQ column constant angle/j
O (deg) 5th υnfu Shitoku Aoyu Fsu J Jibi 41 et al.%l
Full-circle. a/-/L (Ht-Hto)) Fig. Origin of defense l;
Su3 Bamboo 1p flJf171) - Chee - Negative 7 Shea! 531 □ The autopsy's transformation into 'tr, (L company!j4 [(4)] Figure 7 417 Drama 1Ja

Claims (1)

【特許請求の範囲】 磁性体を含む剛体を、鉛被ケーブルに衝突せしめこの剛
体の衝突直前と衝突直後の速度変化を、センサにより検
知して前記鉛被ケーブルの反発硬さを求めることにより
、前記鉛被ケーブルの劣化診断する装置において、 前記センサの出力をデジタル化して演算処理部に入力す
る手段と、前記センサの測定角度補正情報及び前記鉛被
ケーブルの寿命判断情報を記憶しているメモリ装置と、 前記鉛被ケーブルへの前記剛体の衝突直前の速度から、
前記剛体の運動方向が鉛直方向となす角度を算出する機
能と、前記剛体の衝突直前と衝突直後の速度変化から前
記鉛被ケーブルの反発硬さを求める機能と、前記角度補
正情報を用いて前記鉛被ケーブルの反発硬さを角度に応
じて補正する機能と、劣化診断測定時の前記鉛被ケーブ
ルの布設経過時間と、前記寿命判断情報を用いて、前記
角度補正後の鉛被ケーブルの反発硬さから前記鉛被ケー
ブルの残存寿命を求める機能を有する演算処理部とを備
えたことを特徴とする鉛被ケーブル劣化診断器。
[Claims] By causing a rigid body containing a magnetic material to collide with a lead-sheathed cable, and detecting changes in speed of the rigid body immediately before and after the collision with a sensor to determine the repulsion hardness of the lead-sheathed cable, The apparatus for diagnosing deterioration of the lead-sheathed cable includes means for digitizing the output of the sensor and inputting it to an arithmetic processing unit, and a memory that stores measurement angle correction information of the sensor and life-span judgment information of the lead-sheathed cable. From the apparatus and the velocity of the rigid body immediately before the collision with the lead-sheathed cable,
a function of calculating the angle that the motion direction of the rigid body makes with the vertical direction; a function of determining the repulsion stiffness of the lead-sheathed cable from the speed change immediately before and after the collision of the rigid body; and a function of calculating the repulsion stiffness of the lead-sheathed cable using the angle correction information. A function that corrects the repulsion hardness of the lead-sheathed cable according to the angle, the elapsed installation time of the lead-sheathed cable at the time of deterioration diagnosis measurement, and the life judgment information is used to calculate the repulsion of the lead-sheathed cable after the angle correction. A lead-sheathed cable deterioration diagnostic device comprising: an arithmetic processing unit having a function of determining the remaining life of the lead-sheathed cable from its hardness.
JP18297286A 1986-08-04 1986-08-04 Diagnosis device for deterioration of lead-clad cable Granted JPS6338137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18297286A JPS6338137A (en) 1986-08-04 1986-08-04 Diagnosis device for deterioration of lead-clad cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18297286A JPS6338137A (en) 1986-08-04 1986-08-04 Diagnosis device for deterioration of lead-clad cable

Publications (2)

Publication Number Publication Date
JPS6338137A true JPS6338137A (en) 1988-02-18
JPH0560539B2 JPH0560539B2 (en) 1993-09-02

Family

ID=16127530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18297286A Granted JPS6338137A (en) 1986-08-04 1986-08-04 Diagnosis device for deterioration of lead-clad cable

Country Status (1)

Country Link
JP (1) JPS6338137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795251A (en) * 1993-09-24 1995-04-07 Nec Corp Phase modulator in microwave band
KR20200081409A (en) * 2017-11-08 2020-07-07 엔케이티 에이치브이 케이블스 에이비 Method and system for fatigue monitoring of submarine cables in offshore operation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795251A (en) * 1993-09-24 1995-04-07 Nec Corp Phase modulator in microwave band
KR20200081409A (en) * 2017-11-08 2020-07-07 엔케이티 에이치브이 케이블스 에이비 Method and system for fatigue monitoring of submarine cables in offshore operation
JP2021502547A (en) * 2017-11-08 2021-01-28 エヌケーティー エイチブイ ケーブルズ エービー Methods and systems for monitoring submarine cable fatigue during offshore operations

Also Published As

Publication number Publication date
JPH0560539B2 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
Murray et al. The bonded electrical resistance strain gage: an introduction
US20030084704A1 (en) Self-calibrating inertial measurement system method and apparatus
KR20220020242A (en) Method for Determining the Weight and Center of Gravity of a Robot Manipulator Cargo
EP3759462B1 (en) High precision weighing system and weighing method, thermogravimetric analyser and storage medium
CN106092375B (en) The method of calibration and tester of airborne equipment surface temperature sensor
CN109613302B (en) Method, device and system for measuring mechanical beam stiffness of capacitive MEMS accelerometer
CN110160492A (en) A kind of the inclination monitoring method and device of power transmission tower
JPH06160164A (en) Apparatus and method for weighing of compensation of hysteresis
CN107356786B (en) Method and device for calibrating accelerometer and computer-readable storage medium
CN110553667B (en) Method for carrying out thermal deformation compensation on star sensor
JPS6338137A (en) Diagnosis device for deterioration of lead-clad cable
JP2005516222A (en) Method and system for correcting and calibrating accelerometers with bias instability
KR101566297B1 (en) Estimation system for converting actually measured strain into displacement using predetermined strain-displacement coefficient, and method for the same
CN109196319B (en) Digital creep and drift correction
JPH0827192B2 (en) How to measure angles and angle characteristic curves
CN114370960B (en) Pull rod load measuring method, device, system and storage medium
CN110457858B (en) Method for determining modal vibration main shaft of high-rise building based on double-shaft actual measurement acceleration
JP5076774B2 (en) electronic balance
CN110672265B (en) Calibration device and method for force sensor
CN207456373U (en) A kind of cantilever member degree of disturbing measuring device based on strain
JP2008216212A (en) Method, device, and program for determining integrity of structural member
KR20080053281A (en) Sensor device
CN114354015B (en) Method for determining measurement uncertainty of thermocouple calibration system
RU2382986C2 (en) Method and system for measurement of slopes for positioning of objects
RU79659U1 (en) POSITIONING SYSTEM