JPS6338107A - Scan type laser range finder - Google Patents

Scan type laser range finder

Info

Publication number
JPS6338107A
JPS6338107A JP18166186A JP18166186A JPS6338107A JP S6338107 A JPS6338107 A JP S6338107A JP 18166186 A JP18166186 A JP 18166186A JP 18166186 A JP18166186 A JP 18166186A JP S6338107 A JPS6338107 A JP S6338107A
Authority
JP
Japan
Prior art keywords
light
laser
center axis
mirror
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18166186A
Other languages
Japanese (ja)
Inventor
Hideyuki Yuzawa
秀行 湯澤
Akira Takahashi
暁 高橋
Norio Takahashi
憲男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18166186A priority Critical patent/JPS6338107A/en
Publication of JPS6338107A publication Critical patent/JPS6338107A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To take a measurement speedily with accuracy by simple facilities by turning a reflecting mirror around its center axis of turning by a specific angle and reflecting projection light by the center axis of turning. CONSTITUTION:Laser light emitted by a laser oscillator 1a is reflected by the center axis 5 of turning of the turning mirror 4 and projected as spot light on an object 8. Laser reflected light 7 which returns in the same course with the laser protected light 6 when viewed from the center axis 5 among various scattered light beams of the spot light is received by a photodetector 2a. Then the mirror 4 is rotated around the center axis 5 by an angle theta and then the spot light moves on the object 8 from a point P to a point Q. The position of the light spot on the detector 2a is detected in synchronism with laser light scanning by the turning of the mirror 4 to measure the isolation distance of the scanning range (P-Q) continuously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 木光明は、対象物との離間距離を連続的に計測して、対
象物の表面形状を計測する走査式レーザ距離計に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] Kikomei relates to a scanning laser distance meter that continuously measures the distance from the object to measure the surface shape of the object.

〔従来の技術〕[Conventional technology]

光の矢となって真直に突き進み、強い光のままはね返っ
てくるレーザの性質を利用し、対象物体の形状や離間距
離をとらえるレーザ距離計はあらゆる方面で数多く使用
されている。
Laser rangefinders are used in a wide variety of fields to capture the shape and distance of objects by utilizing the property of lasers, which travel straight through as arrows of light and bounce back as strong light.

レーザ距離計の原理は第5図に示す通り、レーザ発振器
1 (M点)からレーザ光を対象物に投射し、レーザ発
振器1の近傍に配置された光検出器2により、対象物上
のN1点、またはN2点に生ずる光スポットを写像し、
光検出器2上の光スポットの位e Q ” Q sから
距$M−N、またはM−N2を計測するものである。
As shown in Figure 5, the principle of the laser distance meter is that a laser beam is projected onto the target object from a laser oscillator 1 (point M), and a photodetector 2 placed near the laser oscillator 1 detects N1 on the target object. Map the light spot that occurs at the point or N2 points,
The distance $M-N or M-N2 is measured from the position eQ''Qs of the light spot on the photodetector 2.

また、対象物のプロフィールを測定する場合には、第6
図に示すように、対象物8を固定しておき、レーザ発振
器1と光検出器2を一体に構成したレーザ距離計10を
対象物8に平行に移動さぜながら、Po−Pnまでの距
#立0−立。をJll定し、あるいは1反対に、レーザ
距離計10を固定し、対象物を平行移動させ距離を31
1定し、この移動距離を計測して、その移動距離に対す
る立0””unを求め、プロフィールを得る一f段が提
案されている。
In addition, when measuring the profile of an object, the sixth
As shown in the figure, the object 8 is fixed, and the distance from Po to Pn is measured by moving the laser distance meter 10, which integrates the laser oscillator 1 and the photodetector 2, parallel to the object 8. #Standing 0-Standing. Or, conversely, fix the laser distance meter 10 and move the object in parallel to obtain a distance of 31
A 1f stage has been proposed in which the profile is obtained by measuring the moving distance and determining the vertical 0""un for the moving distance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した技術手段は、レーザ距離計あるいは対象物を移
動させるため大がかりな設備を必要とし、レーザ距離計
自体の移動中におけるガタや振動が測定誤差となりやす
く、また計測に要する時間も長くかかるという問題があ
った。
The above-mentioned technical means require large-scale equipment to move the laser rangefinder or the object, and there are problems in that rattling and vibration of the laser rangefinder itself while it is moving can easily cause measurement errors, and it takes a long time to complete the measurement. was there.

本発明は、これらの問題点を一挙に解決し、簡単な設備
で精度よ〈且つ迅速に測定できる走査式レーザ距離計を
提案することを目的とするものである。
The object of the present invention is to solve these problems all at once and to propose a scanning laser distance meter that can measure accurately and quickly with simple equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解決するもので、次の技術手段
を採った。すなわち、 ■レーザ光を対象物に投射するレーザ発振器と、 ■対象物からの反射光を検出する光検出器と、■投射光
と反射光の光路に介在する反射ミラーから走査式レーザ
距離計を構成し、 反射ミラーは回動中心軸を中心に所定の角度回動させ、
投射光を回動中心軸で反射して、対象物の表面を連続し
て走査させるとともに、対象物表面からの反射光を回動
中心軸で光検出器に反射する構成とした。
The present invention is intended to solve the above-mentioned problems, and employs the following technical means. In other words, ■a laser oscillator that projects laser light onto a target object, ■a photodetector that detects reflected light from the target object, and ■a scanning laser distance meter that uses a reflective mirror interposed in the optical path of the projected light and reflected light. The reflecting mirror is rotated at a predetermined angle around the central axis of rotation,
The projection light is reflected from the rotational center axis to continuously scan the surface of the object, and the reflected light from the object surface is reflected to the photodetector at the rotational center axis.

〔作用〕[Effect]

本発明の作用を第3図、第4図をもって説明する。第3
図は斜視図、第4図は平面図を示している。レーザ発振
器1aから投射されたレーザ光は、回動ミラー4の回動
中心軸5上で反射して。
The operation of the present invention will be explained with reference to FIGS. 3 and 4. Third
The figure shows a perspective view, and FIG. 4 shows a plan view. The laser beam projected from the laser oscillator 1a is reflected on the rotation center axis 5 of the rotation mirror 4.

対象物8上にスポット光を投光する。Spot light is projected onto the object 8.

スポット光からの色々の散乱光の中で、ミラー回動中心
軸5方向からみて、レーザ投射光6と同一の経路で戻っ
てくるレーザ反射光7を光検出器2aで受ける。従って
、光検出器2aはミラー回動中心軸5方向からみて投射
光6の上側にレンズ3を介して設置する(第4図)。
Among the various scattered lights from the spot light, the photodetector 2a receives the laser reflected light 7 that returns along the same path as the laser projection light 6 when viewed from the direction of the mirror rotation center axis 5. Therefore, the photodetector 2a is installed through the lens 3 above the projected light 6 when viewed from the direction of the mirror rotation center axis 5 (FIG. 4).

上記の構成において回動ミラー4を中心軸5で角度θ回
転させるとスポット光は対象物8上をP点からQ点まで
移動する。
In the above configuration, when the rotating mirror 4 is rotated by an angle θ about the central axis 5, the spot light moves on the object 8 from point P to point Q.

ミラー回動中心軸5の点0からP点、Q点までの距離を
OF、OQとする。
Let the distances from point 0 of the mirror rotation center axis 5 to points P and Q be OF and OQ.

もし、0F=OQなら、投射光6と反射光7のなす角度
φは同一であり、φP=φQとなる。この角度φに対応
した光検出器2a上の光スポットP′とQ′の位置は同
一である。
If 0F=OQ, the angle φ formed by the projected light 6 and the reflected light 7 is the same, and φP=φQ. The positions of the light spots P' and Q' on the photodetector 2a corresponding to this angle φ are the same.

また、OP≠OQなら角度φは異なり、φpf−φQと
なる。この角度φP、φQに対応した光検出器2a上の
光スポットP′とQ′の位置は異なる位置となる。
Further, if OP≠OQ, the angle φ is different and becomes φpf - φQ. The positions of the light spots P' and Q' on the photodetector 2a corresponding to the angles φP and φQ are different positions.

換言すれば、回動中心0点から対象物までの距離は、投
射光6と反射光7のなす角φに対応して光検出器2aJ
zの光スポットの位置として計測でき1回動ミラー4の
回動角0に依存しない。
In other words, the distance from the rotation center 0 point to the target object is determined by the distance from the photodetector 2aJ corresponding to the angle φ formed by the projected light 6 and the reflected light 7.
It can be measured as the position of the light spot of z and does not depend on the rotation angle 0 of the single rotation mirror 4.

従って、回動ミラー4の回動によるレーザ走査に同期し
て、光検出器2a上の光スポットの位置を検出すれば、
走査範囲(P点〜Q点)の離間距離を連続的に計測する
ことが可能である。
Therefore, if the position of the light spot on the photodetector 2a is detected in synchronization with the laser scanning by the rotation of the rotating mirror 4,
It is possible to continuously measure the distance between the scanning ranges (points P to Q).

なお、レーザ光の入射が回動ミラーの回動中心軸5を外
れた場合、ミラーの回動角によって計測距離に誤差が生
じるので、回動ミラーの回動中心軸5に入射する必要が
ある。例えば回動中心軸5をX m m外れた点にレー
ザ光を入射した場合の計測誤差ΔZXはミラーの回動角
をθXとすれば・・・(1) で示され、ΔIXはOxの関数として表わされるため、
回動角θXを計測すればΔIXを補正することが可能で
ある。
Note that if the incident laser beam deviates from the rotation center axis 5 of the rotation mirror, an error will occur in the measurement distance depending on the rotation angle of the mirror, so it is necessary to make the laser beam incident on the rotation center axis 5 of the rotation mirror. . For example, the measurement error ΔZX when the laser beam is incident on a point X mm away from the rotation center axis 5 is expressed as follows, where θX is the rotation angle of the mirror...(1) where ΔIX is a function of Ox. Since it is expressed as
By measuring the rotation angle θX, it is possible to correct ΔIX.

その理由を第7図、第8図により説明する。図に示す如
くミラーの中心0を原点とした直角座標をとる。
The reason for this will be explained with reference to FIGS. 7 and 8. As shown in the figure, rectangular coordinates are taken with the center 0 of the mirror as the origin.

ここに Sl :走査式レーザ距離計9が正位置の場合の座標 S2:走査式レーザ距離計9がX m mずれた場合の
座標 0 :ミラー回動角 A:光検出器からミラー中心までの距離BEEラー中心
から対象物表面までの距離とすれば、 (O中心軸にレーザ光を照射した時の任意の角度θXに
おけるセンサから対象物表面までの距#Lxは、第7図
から ■ 次にy軸よりX m mずれた位置にセンサがセッ
トされた時の距離Lx+は、第8図からLXI=  5
2QX  +  QXPXIここで 52QX=A   (X−tan(−Ox))Sin 
L (/X   Sin l tlx故にLX 1=A
+Xa tan Oxとなる。
Here, Sl: Coordinates when the scanning laser rangefinder 9 is in the correct position S2: Coordinates when the scanning laser rangefinder 9 is shifted by X mm 0: Mirror rotation angle A: From the photodetector to the mirror center If the distance is the distance from the center of the BEE laser to the surface of the object, then (the distance #Lx from the sensor to the surface of the object at any angle θX when the laser beam is irradiated to the center axis of O is as follows from Figure 7) The distance Lx+ when the sensor is set at a position offset by X mm from the y-axis is LXI = 5 from Figure 8.
2QX + QXPXI where 52QX=A (X-tan(-Ox)) Sin
L (/X Sin l tlx therefore LX 1=A
+Xa tan Ox.

■ 従って、距離誤差ΔflXは(3)式と(2)式の
差より求められるから ΔAx ”LX 1−LX すなわち、(1)式が得られる。
(2) Therefore, since the distance error ΔflX is obtained from the difference between equations (3) and (2), the equation (1) is obtained.

〔実施例〕〔Example〕

第1図および第2図に本発明の走査式レーザ距離計を熱
間コイルの先端形状の検出に適用した例を示す9本実施
例では、コイルの回転に伴う計測距離の誤差を取除くた
めに2式の走査式レーザ距離計を用いている。コイル径
に合せてコイル中心軸に距離計をプリセットして45度
の角1=でレーザを走査する。コイルを等速回転させて
おき。
Figures 1 and 2 show an example in which the scanning laser distance meter of the present invention is applied to detecting the tip shape of a hot coil. Two types of scanning laser range finders are used. A distance meter is preset on the coil center axis according to the coil diameter, and the laser is scanned at an angle of 45 degrees. Let the coil rotate at a constant speed.

45度の走査範囲においてコイル表面までの距離すなわ
ち表面形状を計測して、コイル先端形状の検出を行う。
The distance to the coil surface, that is, the surface shape, is measured in a 45-degree scanning range to detect the shape of the tip of the coil.

第1図は計測時の光路図を示し、第2図は異径のコイル
に対応するために、走査式レーザ距離計をプリセットし
ておき、コイルの先端位置の検出に使用する例であり、
第2図(a)は側面図を示し、第2図(b)、第2図(
C)は平面図でそれぞれ小径、大径のコイルに対応して
計測する場合を示している。
Figure 1 shows an optical path diagram during measurement, and Figure 2 shows an example in which a scanning laser distance meter is preset to accommodate coils of different diameters and is used to detect the tip position of the coil.
Figure 2(a) shows a side view, Figure 2(b), Figure 2(
C) is a plan view showing the case where measurements are made corresponding to small-diameter and large-diameter coils, respectively.

本発明の実施例では、ミラーの回動には偏芯カムを用い
、 ミラー回動角速度 60 d e g / s e c
ミラー回動角 33.75°≦θ≦56.25゜計測走
査時間 750 m s / 1 s c a n戻り
走査時間 250m5/′1scanサンプリング周期
 5ms (200Hz)として計測の効率化と等間隔
のデータサンプリングをI可能とした。また2式の距離
計において回動ミラーは共有する構成とした。
In the embodiment of the present invention, an eccentric cam is used to rotate the mirror, and the mirror rotation angular velocity is 60 deg/sec.
Mirror rotation angle 33.75°≦θ≦56.25° Measurement scanning time 750 m s / 1 scan Return scanning time 250 m5 / '1scan Sampling period 5 ms (200 Hz) to improve measurement efficiency and equally spaced data Sampling was made possible. Additionally, the two rangefinders share a rotating mirror.

なお、前述のレーザ光の入射が回動ミラーの回動中心軸
5を外れた場合の左右計測圧#誤差は。
Note that the left and right measured pressure # error is when the incidence of the laser beam mentioned above deviates from the rotation center axis 5 of the rotation mirror.

本実施例のミラー回動角では、−例としてXが−1m 
mずれた場合を(1)式から求めるとΔ!;L1 =−
0,41mm へ12=  0.41mm となる。
In the mirror rotation angle of this embodiment, for example, X is -1 m.
The case where the deviation is m is calculated from equation (1) as Δ! ;L1 =-
0.41mm to 12=0.41mm.

〔発明の効果〕 本発明の走査式レーザ距離計は、対象物体の形状測定、
離間距離の測定が簡単な設備で、精度よく迅速に行うこ
とができるので、例えば、熱間コイルの先端形状および
コイルの巻き方向の自動検出が可能となり、ラインの自
動化ができるほか、他方面への応用範囲も広く、業務の
効−V的推進に優れた効果を奏する。
[Effects of the Invention] The scanning laser distance meter of the present invention can measure the shape of a target object,
The separation distance can be measured quickly and accurately with simple equipment, so for example, it is possible to automatically detect the tip shape of a hot coil and the winding direction of the coil, making it possible to automate the line, as well as It has a wide range of applications and is highly effective in promoting business efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の−・実施例であり、第31A
および第4図は本発明の作用説1!11図、第5図およ
び第6図は従来例の説明図、第7 +におよび第8図は
数式証明用説明図である。 1・・・レーザ発振器  1a・・・レーザ発振器2・
・・光検出器    2a・・・光検出器3・・・レン
ズ 4・・・回動ミラー 5・・・回動中心軸 6・・・レーザ投射光 7・・・レーザ反射光 8・・・対象物 9・・・走査式レーザ距離計 10・・・レーザ距離計 φP、φQ、0、θX・・・角度 M、N1.N2.O,P、Pn、P’、Q、Q’、Sl
、32・・・点
1 and 2 are embodiments of the present invention, and FIG. 31A
4 are explanations of the working theory of the present invention, FIGS. 5 and 6 are explanatory diagrams of the conventional example, and FIGS. 7 and 8 are explanatory diagrams for proving the mathematical formula. 1... Laser oscillator 1a... Laser oscillator 2.
...Photodetector 2a...Photodetector 3...Lens 4...Rotating mirror 5...Rotating center axis 6...Laser projection light 7...Laser reflected light 8... Object 9...Scanning laser distance meter 10...Laser distance meter φP, φQ, 0, θX...Angle M, N1. N2. O, P, Pn, P', Q, Q', Sl
, 32 points

Claims (1)

【特許請求の範囲】 1 レーザ光を対象物に投射するレーザ発振器と、対象
物からの反射光を検出する光検出器と、前記投射光と反
射光の光路に介在する反射ミラーからなり、前記反射ミ
ラーは、回動中心軸を中心に所定の角度回動させ、前記
投射光を前記回動中心軸で反射して、対象物の表面を連
続して走査させるとともに、対象物表面からの反射光を
前記回動中心軸で前記光検出器に反射することを特徴と
する走査式 レーザ距離計。
[Scope of Claims] 1. Consisting of a laser oscillator that projects laser light onto an object, a photodetector that detects reflected light from the object, and a reflecting mirror that is interposed in the optical path of the projected light and reflected light, The reflecting mirror is rotated by a predetermined angle around a rotational center axis, and reflects the projected light at the rotational center axis to continuously scan the surface of the object, and also to reflect light from the surface of the object. A scanning laser distance meter characterized in that light is reflected to the photodetector at the rotation center axis.
JP18166186A 1986-08-01 1986-08-01 Scan type laser range finder Pending JPS6338107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18166186A JPS6338107A (en) 1986-08-01 1986-08-01 Scan type laser range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18166186A JPS6338107A (en) 1986-08-01 1986-08-01 Scan type laser range finder

Publications (1)

Publication Number Publication Date
JPS6338107A true JPS6338107A (en) 1988-02-18

Family

ID=16104653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18166186A Pending JPS6338107A (en) 1986-08-01 1986-08-01 Scan type laser range finder

Country Status (1)

Country Link
JP (1) JPS6338107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239105A (en) * 2012-05-17 2013-11-28 Jfe Steel Corp Device for measuring number of circular cross section long articles in hexagonal bundle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055210A (en) * 1983-09-06 1985-03-30 Nec Corp Contactless three-dimensional measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055210A (en) * 1983-09-06 1985-03-30 Nec Corp Contactless three-dimensional measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239105A (en) * 2012-05-17 2013-11-28 Jfe Steel Corp Device for measuring number of circular cross section long articles in hexagonal bundle

Similar Documents

Publication Publication Date Title
US5973788A (en) System for point-by-point measuring of spatial coordinates
CN110207588B (en) Method for assembling and adjusting optical vertex aiming device of pyramid prism
WO1989000674A1 (en) An optical angle-measuring device
US4776699A (en) Optical measuring device
CN111982028A (en) Laser radar scanning galvanometer three-dimensional angle measuring device and method
JPS5999308A (en) Distance measuring sensor
US11629959B2 (en) Surveying instrument
JPS6338107A (en) Scan type laser range finder
JP2001318148A (en) Omnidirectional light-wave distance measuring instrument and travel control system
US11635490B2 (en) Surveying system having a rotating mirror
JPH11183174A (en) Position measuring apparatus for mobile
US4595288A (en) Method and apparatus for measuring deep mirrors
JPH0529887B2 (en)
JPH0854234A (en) Three-dimensional coordinate position measuring method
JPH03167404A (en) Method for measuring size of large object
JP2006132955A (en) Device for measuring mirror eccentricity and surface irregularities of polygon mirror motor
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
JP2694647B2 (en) Distance measuring theodolite
US20230168354A1 (en) Method and system for aligning surveying instruments
JPH0721409B2 (en) Optical distance detector
JPH09189545A (en) Distance measuring device
JP3492406B2 (en) 3D coordinate measuring device
JP2936074B2 (en) Optical distance measuring device
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPS6355481A (en) Device for generating line object rotary laser beam in plane position detecting device using laser