JPS6338076B2 - - Google Patents

Info

Publication number
JPS6338076B2
JPS6338076B2 JP57219492A JP21949282A JPS6338076B2 JP S6338076 B2 JPS6338076 B2 JP S6338076B2 JP 57219492 A JP57219492 A JP 57219492A JP 21949282 A JP21949282 A JP 21949282A JP S6338076 B2 JPS6338076 B2 JP S6338076B2
Authority
JP
Japan
Prior art keywords
oil
petroleum
reaction
heavy oil
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57219492A
Other languages
Japanese (ja)
Other versions
JPS59109590A (en
Inventor
Takaaki Aiba
Hiroshi Sumita
Kenichiro Kumatorya
Kenjiro Kawazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP57219492A priority Critical patent/JPS59109590A/en
Priority to KR1019830000189A priority patent/KR900000913B1/en
Priority to BR8306840A priority patent/BR8306840A/en
Priority to SU833675150A priority patent/SU1545946A3/en
Publication of JPS59109590A publication Critical patent/JPS59109590A/en
Publication of JPS6338076B2 publication Critical patent/JPS6338076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は石油系重質油を熱分解して分解油及び
芳香族ピツチを製造する処理方法に関するもので
ある。 最近、原油価格の高騰に伴ない重質油を分解し
て軟質化し原油から油の得率を大にすることが
益々重要になつて来た。本出願人は先に石油系重
質油の熱分解処理方法として特公昭54−15444号,
特公昭57−15795号を提出した。即ち、特公昭54
−15444号では反応缶を複数基備えて石油系重質
油を第1の反応缶に導入し、張り込み終了後第2
の反応缶に導入するようにして順次張り込みを切
り換えて石油系重質油を連続的に熱処理する方法
を提案し、更に特公昭57−15795号では反応缶に
石油系重質油を導入する前に温度の低い石油系重
質油を前もつて一部量を張りこみ熱シヨツクによ
る反応缶の材質疲労を緩和する方法を提案した。
本出願人はこれらの特許に基いた技術により、石
油系重質油であるアスフアルトの熱分解処理を多
年操業して工業的成果を挙げて来た。 しかし或る場合は熱分解生成物であるピツチの
性状がかなり不均一になり、その為反応缶内のコ
ークス析出が多くなり長期安定運転に支障をきた
した。また、或る場合は分解油収率が低くなり経
済性が損われることがあつた。従つて分解油の収
率を維持したうえで安定に良質なピツチを製造す
るような熱分解処理方法の技術が強く要望されて
いた。 本発明者等は多年石油系重質油の熱分解処理方
法を研究した結果、原料油の張り込み期間におけ
る温度上昇曲線が大きな意味をもつことを解明
し、ここに前記問題点を解決する本発明を完成し
た。 即ち、本発明は、1基の加熱炉と複数基の反応
缶からなる系列を使用し、石油系重質油を加熱炉
から第1反応缶に張り込み、終了後第2の反応缶
に張り込み、順次各反応缶に連続して張り込むと
同時に、非反応性熱媒体ガスを反応缶底部より吹
き込み該非反応性熱媒体ガスを石油系重質油に直
接接触させて熱分解反応をするに際し、張り込み
期間に於ける反応缶液相温度を次の式と式の
間の領域になるように温度を上昇させることを特
徴とする分解油及び芳香族ピツチを製造する石油
系重質油の熱分解処理方法 TL=440−90exp(−0.085θ) () TL=400−100exp(−0.085θ) () 但し、TL液相温度(℃),θ;重質油の張り込
み後の経過時間(分)である。 以下本発明について詳述する。 本発明で原料油として用いる石油系重質油は、
常圧残渣油,減圧残渣油,熱分解残渣油,及び各
種残渣油など石油系重質油に包含される油であれ
ばいずれも使用することができる。 また熱媒体ガスとして用いる非反応性熱媒体ガ
スとしては、スチーム,窒素,アルゴン等の不活
性ガス、及び実質的に酸素を含まない完全燃焼ガ
ス,分解ガス,ガス化生成ガス等が適宜使用され
る。 石油系重質油の熱分解方法は1基の加熱炉と複
数基の反応缶からなる系列で行なう。原料の石油
系重質油を加熱炉で定常的に加熱して第1の反応
缶に張り込み、張り込み終了後切り換え弁を切り
換えて第2の反応缶に張り込み、順次複数基の反
応缶に張り込み、再び第1の反応缶に戻るように
繰り返して連続的に導入する。この際加熱炉での
石油系重質油の加熱時間は0.5〜15分で、出口温
度は350〜520℃になるようにする。また反応缶に
は所定の流量プログラムに従つた400〜800℃の非
反応性熱媒体ガスを反応缶底部より吹き込み、液
相の石油系重質油と直接接触させて400〜440℃の
反応温度で石油系重質油の熱分解反応を行なう。
この際反応缶に直ちに高温の石油系重質油や熱媒
体ガスを導入すると、缶体が急激な熱シヨツクを
受け反応缶材質が疲労するので熱シヨツクを緩和
する為に、前もつて低温の原料の石油系重質油の
一部量(イニシヤルチヤージと称す)を張り込ん
でおいてもよい。反応缶内に張り込まれた石油系
重質油は張り込み時間及び所定の反応時間にわた
つて熱分解反応を受け、分解,重縮合によつて分
解ガスと分解油、及びピツチが生成される。分解
ガスと分解油は熱媒体ガスと共に反応中に反応缶
頂部より排出され、分離,蒸留により分解油を製
造する。また反応缶液相の石油系重質油は重縮合
が進むことによりピツチになり、所定の軟化点の
ピツチになつたところでピツチをクエンチして反
応を停止して、反応缶底部よりピツチを溶融状態
で取り出す。 石油系重質油を熱分解反応して出来るだけ収率
よく分解油を得、また均質なピツチを製造する目
的の為に、液相温度400〜440℃の範囲、及び張り
込み時間0.5〜4時間、張り込み後の反応時間10
時間以内の範囲で熱分解反応を行なえば一応良い
結果が得られたが、更にこの処理を改良するには
初期における反応缶液相温度の上昇を制御するこ
とが重要である。即ち反応缶に高温の石油系重質
油を導入し始めると液相温度は上昇し始めるが、
この温度上昇を次の式と式の間の領域になる
ように熱分解反応を行なう。 TL=440−90exp(−0.085θ) () TL=400−100exp(−0.085θ) () 但し、TL;液相温度(℃),θ;重質油の張り
込み時間(分) 反応缶の液相温度上昇カーブを第1図に示す。
横軸は張込時間θ、縦軸は液相温度TLであり、
式,式は夫々曲線,曲線で示される。液
相温度上昇は、導入する石油系重質油の温度,流
量,及び吹き込む非反応性熱媒体ガスの温度,流
量で決まるのでこれらを制御すればよい。また反
応缶にイニシヤルチヤージをした場合は、上記の
条件にイニシヤルチヤージの温度,量を合わせて
制御すればよい。 液相温度上昇は式、式により反応開始時θ
=0の350〜300℃から始まり、30分迄は比較的急
激に上昇し、以後緩やかに上昇しθ=40〜60分で
は440〜400℃になるようにする。張り込みを切り
換えた後の反応時間(例えば後述する実施例運転
No.3の場合には反応時間は第1図に示す如く50分
とする)では液相温度は熱収支で決まる下降線に
沿つて幾分低くなる。生成ピツチの軟化点が目標
値になつたところで反応を停止する。液相温度の
制御を張り込み石油系重質油の温度,流量、及び
熱媒体ガスの温度,流量を制御することにより容
易に行なうことができるが、イニシヤルチヤージ
をしておくと更に制御が容易である。尚、熱媒体
ガスとして過熱スチームを吹き込む操作の1例を
第2図に示す。 第1図において曲線と曲線の間の領域A内
で温度上昇させると、分解油の生成量が多くな
り、また得られるピツチの性状が均一になる。曲
線より高い領域B内に温度上昇させると得られ
るピツチの性状が不均一となり、例えば軟化点や
キノリン不溶分等のばらつきが大きく、且つコー
クスの生成が多く長時間の工業的運転の障害にな
る。一方曲線より低い領域C内で温度上昇させ
ると分解油の生成が少くなる。温度上昇の領域
A,B,Cによる生成物の相違を後述の実施例で
具体的に示す。 得られる分解油は脂肪族系炭化水素に富んだ油
で燃料油として適している。分解油の収率は液相
温度上昇が領域Aでは領域Cよりも大で、例えば
領域A約64%、領域C約62%で2%の差がある。
2%は小さいように見えるが一般に石油系重質油
は工業的に大量処理されるので分解油の生産量は
大巾に増産できる。また得られるピツチは多環芳
香族炭化水素であり、コールタール系ピツチや市
販の一般の石油系ピツチに比し軟化点が高くキノ
リン不溶分が小である為に良質のバインダーとな
り、例えば非粘結炭にバインダーとして本発明ピ
ツチを少量添加してコークス化すると製鉄高炉用
コークスとなり、またカーボンやセラミツクスの
バインダーとして広く利用できる。 以上述べた如く本発明の石油系重質油の熱分解
反応方法は、生成分解油量が多く均質なピツチが
得られ、且つ工業的に安定に運転ができるのでエ
ネルギー産業に寄与するところは非常に大であ
る。 以下本発明の実施例について述べる。 実施例 カフジ原油及びガツチサラン原油各々の減圧残
油の混合液を原料油(その性状を第1表に示し
た)とし約40Kg/Hで4つの異なる条件で熱処理
を行つた。その熱処理の条件を第2表に示す。
The present invention relates to a processing method for producing cracked oil and aromatic pitch by thermally decomposing heavy petroleum oil. Recently, with the rise in crude oil prices, it has become increasingly important to crack down heavy oil to make it softer and increase the yield of oil from crude oil. The present applicant previously published Japanese Patent Publication No. 54-15444 as a thermal decomposition treatment method for petroleum-based heavy oil.
Special Publication No. 15795 was submitted. In other words, the special public service in 1977
-No. 15444 is equipped with multiple reactors, and petroleum-based heavy oil is introduced into the first reactor, and after filling is completed, the second reactor is
proposed a method of continuously heat-treating petroleum-based heavy oil by sequentially switching the charging of petroleum-based heavy oil into a reactor. We proposed a method in which a portion of low-temperature petroleum-based heavy oil is injected into the reactor in advance to alleviate material fatigue in the reactor caused by heat shock.
Using technology based on these patents, the applicant has been operating thermal decomposition treatment of asphalt, which is a heavy petroleum oil, for many years and has achieved industrial results. However, in some cases, the properties of the pitch, which is a thermal decomposition product, became quite non-uniform, and as a result, a large amount of coke was deposited in the reactor, which hindered long-term stable operation. Furthermore, in some cases, the yield of cracked oil may be low, impairing economic efficiency. Therefore, there has been a strong demand for a technology for a thermal decomposition treatment method that can stably produce high-quality pitch while maintaining the yield of cracked oil. As a result of many years of research on thermal decomposition treatment methods for petroleum-based heavy oil, the present inventors discovered that the temperature rise curve during the feeding period of feedstock oil has a great significance.Herein, the present invention solves the above-mentioned problems. completed. That is, the present invention uses a series consisting of one heating furnace and a plurality of reaction cans, pouring petroleum-based heavy oil from the heating furnace into the first reaction can, and after completion, pouring it into the second reaction can, At the same time, a non-reactive heating medium gas is blown into each reaction vessel from the bottom of the reaction vessel, and the non-reactive heating medium gas is brought into direct contact with petroleum-based heavy oil to cause a thermal decomposition reaction. Thermal decomposition treatment of petroleum-based heavy oil to produce cracked oil and aromatic pitch, characterized by increasing the liquid phase temperature of the reactor during a period of time to a range between the following formulas and formulas. Method T L = 440-90exp (-0.085θ) () T L = 400-100exp (-0.085θ) () However, T L liquidus temperature (℃), θ; elapsed time after filling heavy oil ( minute). The present invention will be explained in detail below. The petroleum heavy oil used as the raw material oil in the present invention is
Any oil included in petroleum heavy oils such as normal pressure residual oil, vacuum residual oil, thermal decomposition residual oil, and various residual oils can be used. In addition, as the non-reactive heat carrier gas used as the heat carrier gas, inert gases such as steam, nitrogen, argon, etc., complete combustion gas that does not substantially contain oxygen, decomposition gas, gasification product gas, etc. may be used as appropriate. Ru. The thermal decomposition method for petroleum-based heavy oil is carried out in a series consisting of one heating furnace and a plurality of reactors. Petroleum-based heavy oil as a raw material is constantly heated in a heating furnace and poured into a first reaction can, and after the filling is finished, the switching valve is switched to pour it into a second reaction can, and then a plurality of reaction cans are sequentially filled. The mixture is continuously introduced again so as to return to the first reaction vessel. At this time, the heating time of the petroleum heavy oil in the heating furnace is 0.5 to 15 minutes, and the outlet temperature is set to 350 to 520°C. In addition, a non-reactive heating medium gas of 400 to 800℃ is blown into the reaction vessel from the bottom of the reaction vessel according to a predetermined flow rate program, and is brought into direct contact with the liquid phase petroleum heavy oil to achieve a reaction temperature of 400 to 440℃. The thermal decomposition reaction of petroleum-based heavy oil is carried out.
At this time, if high-temperature petroleum-based heavy oil or heat carrier gas is introduced into the reactor immediately, the reactor body will receive a sudden heat shock and the reactor material will become fatigued. A portion of petroleum-based heavy oil as a raw material (referred to as an initial charge) may be charged. The petroleum-based heavy oil charged into the reactor undergoes a thermal decomposition reaction over a charging time and a predetermined reaction time, and cracked gas, cracked oil, and pitch are produced by decomposition and polycondensation. The cracked gas and cracked oil are discharged from the top of the reactor during the reaction together with the heat carrier gas, and cracked oil is produced by separation and distillation. In addition, the petroleum-based heavy oil in the liquid phase of the reactor becomes pitch as the polycondensation progresses, and when the pitch reaches a predetermined softening point, the pitch is quenched to stop the reaction, and the pitch is melted from the bottom of the reactor. Take it out in good condition. In order to obtain cracked oil with the highest possible yield through thermal decomposition of petroleum-based heavy oil and to produce homogeneous pitches, the liquidus temperature is in the range of 400 to 440°C and the charging time is 0.5 to 4 hours. , reaction time after stakeout 10
Although good results have been obtained if the thermal decomposition reaction is carried out within a certain period of time, in order to further improve this process, it is important to control the rise in the liquidus temperature of the reactor at the initial stage. In other words, when high-temperature heavy petroleum oil starts to be introduced into the reactor, the liquidus temperature begins to rise, but
The thermal decomposition reaction is carried out so that this temperature rise falls within the range between the following equations. T L =440−90exp(−0.085θ) () T L =400−100exp(−0.085θ) () However, T L : Liquidus temperature (°C), θ : Pumping time of heavy oil (minutes) Reaction The liquid phase temperature rise curve of the can is shown in Figure 1.
The horizontal axis is the filling time θ, the vertical axis is the liquidus temperature T L ,
Equations and formulas are shown by curves and curves, respectively. The liquidus temperature rise is determined by the temperature and flow rate of the petroleum-based heavy oil introduced, and the temperature and flow rate of the non-reactive heating medium gas blown in, so these can be controlled. When the reaction vessel is initially charged, the temperature and amount of the initial charge may be controlled to match the above conditions. The liquidus temperature rise is determined by the formula θ at the start of the reaction.
The temperature starts from 350 to 300°C at θ = 0, increases relatively rapidly until 30 minutes, and then gradually increases to 440 to 400°C at θ = 40 to 60 minutes. Reaction time after switching the tension (for example, in the example operation described later)
In the case of No. 3, the reaction time is 50 minutes as shown in FIG. 1), the liquidus temperature becomes somewhat lower along the descending line determined by the heat balance. The reaction is stopped when the softening point of the produced pitch reaches the target value. The liquid phase temperature can be easily controlled by controlling the temperature and flow rate of the heavy petroleum oil and the temperature and flow rate of the heat carrier gas, but it is even easier to control it by performing an initial charge. It's easy. Note that FIG. 2 shows an example of the operation of blowing superheated steam as the heat medium gas. When the temperature is increased within the region A between the curves in FIG. 1, the amount of cracked oil produced increases and the properties of the resulting pitch become uniform. If the temperature is raised in region B higher than the curve, the properties of the resulting pitch will be non-uniform, for example, the softening point and quinoline insoluble content will vary greatly, and a large amount of coke will be produced, which will impede long-term industrial operation. . On the other hand, if the temperature is increased within the region C below the curve, the generation of cracked oil will be reduced. Differences in products depending on the temperature rise regions A, B, and C will be specifically shown in Examples below. The resulting cracked oil is rich in aliphatic hydrocarbons and is suitable as fuel oil. Regarding the yield of cracked oil, the rise in liquidus temperature is greater in region A than in region C, for example, there is a difference of 2% between region A of about 64% and region C of about 62%.
2% may seem small, but since heavy petroleum oil is generally processed in large quantities industrially, the production amount of cracked oil can be greatly increased. In addition, the resulting pitch is a polycyclic aromatic hydrocarbon, which has a higher softening point and less quinoline-insoluble content than coal tar-based pitch or general petroleum-based pitch, making it a good binder, such as non-viscous pitch. When a small amount of the pitch of the present invention is added as a binder to coke and coke is produced, it becomes coke for blast furnaces in steel manufacturing, and can also be widely used as a binder for carbon and ceramics. As mentioned above, the thermal cracking reaction method for petroleum-based heavy oil of the present invention can produce a large amount of cracked oil and produce a homogeneous pitch, and can be operated stably industrially, so it will greatly contribute to the energy industry. It is large. Examples of the present invention will be described below. Example A mixture of vacuum residues of Kafji crude oil and Gatsuchi Saran crude oil was used as feedstock (its properties are shown in Table 1) and heat treated at about 40 kg/H under four different conditions. The conditions for the heat treatment are shown in Table 2.

【表】【table】

【表】 原料油は150℃に予熱したタンクに貯蔵し、管
状加熱炉で、第2表に示した温度で加熱した後、
2基からなる反応缶システムに導いて熱分解処理
した。各反応缶は、高さ2m、内径300mmの円筒
状で、底部に撹拌機を設け、50rpmで撹拌した。
原料油は、一つの反応缶に2時間フラツシユさせ
ながら張り込んだ後、もう一つの反応缶に同様に
2時間張り込むということを周期的に繰り返す如
く、連続的に熱処理された。反応缶の液相温度曲
線を第1図に示した。又、反応缶底部から過熱ス
チームを第2図に示した如く吹き込み、反応を促
進させると共に分解生成物をこのスチームと共に
反応缶外に速やかに溢出させ、分解油を得た。分
解油の高沸点留分はリサイクル油として原料油と
混合され加熱炉に供給される。このリサイクル油
の原料油に対する割合をリサイクル比と云う。張
り込みが終了した後も、一定時間(この時間を、
反応時間と呼ぶ)上記過熱スチームを供給し、反
応を進行させ反応缶内容物(これをピツチと呼
ぶ)が所定の軟化点になつたところで、ピツチを
急冷し取り出した。 運転No.1は反応缶液相温度が式よりも高い領
域Bを通過する第1図b、運転No.2,No.3は本発
明の式と式の間の領域Aで行なつた第1図a
―1,a―2、運転No.4は式より低い領域Cを
通過する第1図cの場合であつた。
[Table] Raw material oil is stored in a tank preheated to 150℃, heated in a tubular heating furnace at the temperature shown in Table 2, and then
The mixture was introduced into a two-unit reactor system for thermal decomposition. Each reaction vessel had a cylindrical shape with a height of 2 m and an inner diameter of 300 mm, and was equipped with a stirrer at the bottom for stirring at 50 rpm.
The feedstock oil was continuously heat-treated by periodically repeating the process of charging the raw oil into one reaction can with flashing for 2 hours and then charging it into the other reaction can for 2 hours. The liquidus temperature curve of the reaction vessel is shown in FIG. Further, superheated steam was blown from the bottom of the reactor as shown in FIG. 2 to accelerate the reaction and cause the decomposition products to quickly overflow out of the reactor along with the steam, thereby obtaining cracked oil. The high boiling point fraction of the cracked oil is mixed with the raw material oil and supplied to the heating furnace as recycled oil. The ratio of this recycled oil to the raw material oil is called the recycling ratio. Even after the stakeout is over, a certain period of time (this time,
The superheated steam (referred to as reaction time) was supplied to allow the reaction to proceed, and when the contents of the reaction can (referred to as pitch) reached a predetermined softening point, the pitch was rapidly cooled and taken out. Operation No. 1 is shown in Figure 1b, in which the reactor liquid phase temperature passes through region B, which is higher than the formula, and operation No. 2 and No. 3 are carried out in region A, which is between the formula of the present invention and the formula. Figure 1a
-1, a-2, Operation No. 4 was the case of Fig. 1 c, which passed through region C lower than the formula.

【表】【table】

【表】 第3表及び第4表から明らかな如く、運転No.1
のピツチはキノリン不溶分自体も多く又ピツチ中
に分散している通常メソフエーズと呼ばれる光学
的異方性体のサイズがNo.2〜4に比し大きく、こ
の意味でピツチが不均一であつた。このメソフエ
ーズの大きさは溶融ピツチのハンドリングにおい
て重要なばかりでなく、反応缶内部のコーキング
に対しても大きな影響をもたらす。 即ち、No.1の運転では、連続10バツチの運転
後、開放して反応缶内壁のコーク厚みを計つたと
ころ平均で2.2mm/バツチであり、No.2〜4に比
し、コーク析出速度が大きく、長期安定運転が問
題となつた。それに比べて、他の条件ではメソフ
エーズのサイズも小さく、コークの析出速度は遅
かつた。 運転No.4の運転結果はピツチ質には問題がない
が、分解油収率が低く経済性で劣ることがわかつ
た。 運転No.2,No.3は、標準的な運転であり、ピツ
チの均質性と製品収率の両面から望ましい例とい
える。
[Table] As is clear from Tables 3 and 4, operation No. 1
The pitch of No. 2 contained a large amount of quinoline insoluble matter itself, and the size of the optically anisotropic substance usually called mesophase dispersed in the pitch was larger than that of No. 2 to No. 4, and in this sense, the pitch was nonuniform. . The size of this mesophase is not only important in handling the molten pitch, but also has a large effect on coking inside the reaction vessel. That is, in No. 1 operation, after 10 consecutive batches of operation, the coke thickness on the inner wall of the reactor was measured after opening and the average thickness was 2.2 mm/batch, and compared to Nos. 2 to 4, the coke precipitation rate was was large, and long-term stable operation became a problem. In comparison, under other conditions, the mesophase size was small and the coke precipitation rate was slow. The results of Operation No. 4 showed that there was no problem with the pitch quality, but the cracked oil yield was low and the economy was poor. Operations No. 2 and No. 3 are standard operations, and can be said to be desirable examples from the viewpoint of both pitch homogeneity and product yield.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応缶の液相温度を示す図であり、第
2図は実施例運転No.3に対応する過熱スチームの
吹き込み流量を示す図である。 A,B,C…領域、p…最大流量。
FIG. 1 is a diagram showing the liquidus temperature of the reaction vessel, and FIG. 2 is a diagram showing the flow rate of superheated steam blown corresponding to Example Operation No. 3. A, B, C...area, p...maximum flow rate.

Claims (1)

【特許請求の範囲】 1 1基の加熱炉と複数基の反応缶からなる系列
を使用し、石油系重質油を加熱炉から第1反応缶
に張り込み、終了後第2の反応缶に張り込み、順
次各反応缶に連続して張り込むと同時に、非反応
性熱媒体ガスを反応缶底部より吹き込み該非反応
性熱媒体ガスを石油系重質油に直接接触させて熱
分解反応をするに際し、張り込み期間に於ける反
応缶液相温度を次の式と式 TL=440−90exp(−0.085θ) () TL=400−100exp(−0.085θ) () 但し、TL;液相温度(℃),θ;時間(分)の
間の領域になるように温度を上昇させることを特
徴とする分解油及び芳香族ピツチを製造する石油
系重質油の熱分解処理方法。
[Claims] 1. Using a series consisting of one heating furnace and a plurality of reaction vessels, petroleum-based heavy oil is poured from the heating furnace into the first reaction vessel, and after completion of the heating, it is poured into the second reaction vessel. At the same time, a non-reactive heating medium gas is blown into each reaction vessel from the bottom of the reaction vessel and the non-reactive heating medium gas is brought into direct contact with petroleum-based heavy oil to cause a thermal decomposition reaction. The liquidus temperature of the reactor during the charging period is calculated using the following formula: T L = 440−90exp (−0.085θ) () T L = 400−100exp (−0.085θ) () However, T L ; liquidus temperature A method for pyrolysis treatment of petroleum-based heavy oil to produce cracked oil and aromatic pitch, characterized by raising the temperature to a range between (°C) and θ: time (minutes).
JP57219492A 1982-12-15 1982-12-15 Thermal cracking of heavy petroleum oil Granted JPS59109590A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57219492A JPS59109590A (en) 1982-12-15 1982-12-15 Thermal cracking of heavy petroleum oil
KR1019830000189A KR900000913B1 (en) 1982-12-15 1983-01-19 Process for heating resolve of petroleum heavy oil
BR8306840A BR8306840A (en) 1982-12-15 1983-12-12 PROCESS TO THERMALLY DRY A HEAVY PETROLEUM OIL
SU833675150A SU1545946A3 (en) 1982-12-15 1983-12-14 Method of producing hydrocarbon fuel and pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219492A JPS59109590A (en) 1982-12-15 1982-12-15 Thermal cracking of heavy petroleum oil

Publications (2)

Publication Number Publication Date
JPS59109590A JPS59109590A (en) 1984-06-25
JPS6338076B2 true JPS6338076B2 (en) 1988-07-28

Family

ID=16736291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219492A Granted JPS59109590A (en) 1982-12-15 1982-12-15 Thermal cracking of heavy petroleum oil

Country Status (4)

Country Link
JP (1) JPS59109590A (en)
KR (1) KR900000913B1 (en)
BR (1) BR8306840A (en)
SU (1) SU1545946A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038490A1 (en) 2006-09-28 2008-04-03 Chiyoda Corporation Method of thermal cracking for petroleum-derived heavy oil and thermal cracking apparatus therefor
WO2008038731A1 (en) 2006-09-28 2008-04-03 Chiyoda Corporation Method of thermal cracking processing, thermal cracking reaction vessel and thermal cracking processing apparatus for petroleum heavy oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116450B2 (en) * 1987-05-30 1995-12-13 富士石油株式会社 Pyrolysis treatment method for heavy oil
CN110305682B (en) * 2019-06-17 2021-03-19 武城县鲁建筑路设备有限公司 Single-double-bin intermittent fuel oil and heat conduction oil composite heating asphalt composite production equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038490A1 (en) 2006-09-28 2008-04-03 Chiyoda Corporation Method of thermal cracking for petroleum-derived heavy oil and thermal cracking apparatus therefor
WO2008038731A1 (en) 2006-09-28 2008-04-03 Chiyoda Corporation Method of thermal cracking processing, thermal cracking reaction vessel and thermal cracking processing apparatus for petroleum heavy oil
US8262903B2 (en) 2006-09-28 2012-09-11 Chiyoda Corporation Process, reactor and facility for thermally cracking heavy petroleum oil

Also Published As

Publication number Publication date
KR900000913B1 (en) 1990-02-19
SU1545946A3 (en) 1990-02-23
JPS59109590A (en) 1984-06-25
KR840003277A (en) 1984-08-20
BR8306840A (en) 1984-07-24

Similar Documents

Publication Publication Date Title
US3956101A (en) Production of cokes
US2543884A (en) Process for cracking and coking heavy hydryocarbons
US4302324A (en) Delayed coking process
CN102051191B (en) Production method and system of coal-based needle coke
US4214979A (en) Method of thermally cracking heavy petroleum oil
JPS6072989A (en) Method for thermally cracking heavy oil
JPS6158511B2 (en)
EP0250136B1 (en) Delayed coking
US4663022A (en) Process for the production of carbonaceous pitch
JPH02212593A (en) Method of conversion of heavy hydrocarbon feedstock
CN101007961A (en) Pyrolysis of residual hydrocarbons
JPS6338076B2 (en)
US4340464A (en) Method for thermal cracking of heavy petroleum oil
JPS6158514B2 (en)
JPS6158515B2 (en)
US3997428A (en) Vaporization of oil feed by addition of regenerated catalyst
US4251323A (en) Method for calcining delayed coke
US4624807A (en) Process for producing microspherical, oil-containing carbonaceous particles
JPS5898386A (en) Conversion of heavy oil or residual oil to gas and distillable hydrocarbon
CN105623721B (en) A kind of method for preparing needle-shape coke raw material
CA1186262A (en) Microspherical oil-containing carbonaceous particles and process for producing the same
JPS6014787B2 (en) Method for manufacturing oil pitsuchi
JPS63301295A (en) Method of thermal cracking of heavy oil
JPS5934752B2 (en) caulking houhou
US4511456A (en) Process for continuous production of optically anisotropic pitch