JPS63301295A - Method of thermal cracking of heavy oil - Google Patents

Method of thermal cracking of heavy oil

Info

Publication number
JPS63301295A
JPS63301295A JP13734287A JP13734287A JPS63301295A JP S63301295 A JPS63301295 A JP S63301295A JP 13734287 A JP13734287 A JP 13734287A JP 13734287 A JP13734287 A JP 13734287A JP S63301295 A JPS63301295 A JP S63301295A
Authority
JP
Japan
Prior art keywords
reaction
oil
product
steam
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13734287A
Other languages
Japanese (ja)
Other versions
JPH07116450B2 (en
Inventor
Norio Yagi
八木 憲雄
Hisashi Fukuoka
福岡 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI SEKIYU KK
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
FUJI SEKIYU KK
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI SEKIYU KK, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical FUJI SEKIYU KK
Priority to JP62137342A priority Critical patent/JPH07116450B2/en
Publication of JPS63301295A publication Critical patent/JPS63301295A/en
Publication of JPH07116450B2 publication Critical patent/JPH07116450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To attain thermal cracking of heavy oil in a reduced period of time using a reduced amt. of steam while limiting production of quinoline insolubles, by continuing reaction for a period of time which is in a predetermined proportion to feeding time after feeing of a product from a tube heating furnace into a reaction vessel. CONSTITUTION:A petroleum heavy oil as a stock oil is preheated to about 350 deg.C by a preheater furnace 2. The preheated heavy oil is mixed with a heavy end fraction of a thermal cracking product oil falling as a recycle oil in a distillation column 3. The mixture undergoes first thermal cracking at 490 deg.C or above at a cracking reaction rate of 30-45% in a tube heating furnace 4, thereby obtaining a product. Subsequently, the product is fed through a selector valve 5 into reaction vessels 6, 6' partially fed with the stock oil through a selector valve 7 from the distillation column 3. Selector valves 5, 7 are each actuated at predetermined time intervals so that the stock oil and the above-mentioned product are alternately fed into the two reaction vessels 6, 6'. A single feeding period is set at 50-100min, and 15-25pts. wt. steam, per 100pts.wt. stock oil comprising the use fed to the heating furnace 4 and the one fed to reaction vessels 6, 6' and heated to 500-700 deg.C using a steam superheater 8, is introduced into the reaction vessels 6, 6'. The contents of the reaction vessels 6, 6' are retained for 15-45% of the above-mentioned feeding period, thereby effecting second thermal cracking. The cracking product is quenched and extracted from the vessels.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は石油系重質油の熱分解処理方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for thermally decomposing heavy petroleum oil.

〔従来技術〕[Prior art]

石油系重質油を連続的に熱分解処理するために。 For continuous pyrolysis treatment of petroleum-based heavy oil.

管状加熱分解炉において熱分解処理する第1熱分解処理
工程と、この第1熱分解処理工程で得られた熱分解処理
生成物を、2個の反応槽に交互に導入して熱分解反応を
行わせる第2熱分解処理工程からなり、かつ第1熱分解
処理工程で得られた熱分解処理生成物を反応槽に導入す
るに先立ち、あらかじめ石油系重質油を部分的に張込む
方法は知られている(特公昭57−15795号公報)
A first pyrolysis treatment step in which pyrolysis treatment is carried out in a tubular pyrolysis furnace, and a pyrolysis treatment product obtained in this first pyrolysis treatment step is alternately introduced into two reaction vessels to undergo a pyrolysis reaction. The method consists of a second pyrolysis treatment step, and before introducing the pyrolysis product obtained in the first pyrolysis treatment step into the reaction tank, petroleum-based heavy oil is partially filled in advance. Known (Special Publication No. 57-15795)
.

このような熱分解処理方法は既に工業的に実施されてお
り、その最適操作条件としては、第1熱分解処理工程で
は、温度=485〜490℃、熱分解反応率:24〜2
9%の条件が採用され、第2熱分解処理工程では、温度
570〜630℃の高温スチームを使用すると共に、熱
分解処理生成物の反応槽に対する張込時間=2時間、反
応温度:400〜430℃、反応時間:30〜60分の
条件が採用されている。この方法によれば5石油系重質
油を比較的効率的に熱分解し、脂肪族炭化水素を主成分
とする分解油分と、水素と炭素との原子比(+(/C)
1.0以下の芳香族性ピッチを得ることができる。しか
し、この従来方法の場合、第2熱分解処理工程で用いる
スチーム量が多く、経済性の点で未だ満足し得るもので
なく、またスチーム使用量を節約する為にスチーム温度
を1000℃以上に」二げることは加熱方式や管材質面
で従来法に比較して著しく経済性が損なわれ、更に、ス
チーム使用量を節約しようとすると、生成されるピッチ
中のキノリンネ溶分が増加し、ピッチの品質が低下する
ばかりか反応槽のコーキングが起こり易くなるという問
題が生じる。
Such a thermal decomposition treatment method has already been carried out industrially, and its optimal operating conditions include, in the first thermal decomposition treatment step, temperature = 485-490°C, thermal decomposition reaction rate: 24-2
9% conditions were adopted, and in the second pyrolysis treatment step, high temperature steam with a temperature of 570 to 630°C was used, the time for charging the pyrolysis product to the reaction tank = 2 hours, and the reaction temperature: 400 to 630°C. Conditions of 430° C. and reaction time: 30 to 60 minutes are adopted. According to this method, 5 petroleum-based heavy oils are thermally cracked relatively efficiently, and the cracked oil containing aliphatic hydrocarbons as the main component and the atomic ratio of hydrogen and carbon (+ (/C)
An aromatic pitch of 1.0 or less can be obtained. However, in the case of this conventional method, the amount of steam used in the second pyrolysis treatment step is large, and it is still unsatisfactory from an economic point of view.In addition, in order to save the amount of steam used, the steam temperature is increased to 1000°C or higher. The disadvantage is that the heating method and tube material are significantly less economical than conventional methods, and furthermore, trying to reduce the amount of steam used increases the amount of quinoline dissolved in the pitch produced. Problems arise in that not only the quality of the pitch deteriorates, but also coking of the reaction tank becomes more likely to occur.

〔目   的〕〔the purpose〕

本発明は、前記従来技術に見られる問題を解決すること
を口約とする。
The present invention seeks to solve the problems found in the prior art.

〔構  成〕〔composition〕

本発明によれば、石油系重質油を管状加熱炉において熱
分解処理する第1熱分解処理工程と、該熱分解処理工程
で得られた熱分解処理生成物を2個の反応槽に交互に導
入して熱分解処理を行う第2熱分解処理工程とからなり
、かつ該第1熱分解処理工程で得られた熱分解処理生成
物を反応槽に導入するに先立ち、あらかじめ石油系重質
油を部分的に張込む石油系重質油の熱分解処理方法にお
いて、該第1熱分解処理工程を490℃より高い温度で
分解反応率30〜45%の条件で行い、該第1熱分解処
理工程で得られた熱分解処理生成物を該第2熱分解工程
へ張込時間50〜100分で張込むと共に、該反応槽に
500〜700℃のスチームを導入し、かつ該張込後、
該スチームの導入を続けて該反応槽内容物を該張込時間
の15%〜45%の割合の時間保持した後、該反応槽内
容物を急冷し、該反応槽外へ抜出すことからなり、かつ
該スチームの使用割合が、該第1熱分解処理工程の管状
加熱炉に供給される重質油と該第2熱分解処理工程の反
応槽にあらかじめ張込まれる重質油の合計量100重量
部に対して、15〜25重量部であることを特徴とする
石油系重質油の熱分解処理方法が提供される。
According to the present invention, there is a first pyrolysis process in which petroleum-based heavy oil is pyrolyzed in a tubular heating furnace, and a pyrolysis product obtained in the pyrolysis process is alternately transferred to two reaction vessels. and a second pyrolysis treatment step in which the pyrolysis product obtained in the first pyrolysis treatment step is introduced into the reaction tank. In a method for pyrolysis treatment of petroleum-based heavy oil in which oil is partially charged, the first pyrolysis treatment step is performed at a temperature higher than 490° C. under conditions of a decomposition reaction rate of 30 to 45%, and the first pyrolysis step The pyrolysis product obtained in the treatment step is charged into the second pyrolysis step for a charging time of 50 to 100 minutes, and steam at 500 to 700°C is introduced into the reaction tank, and after the charging ,
After continuing to introduce the steam and holding the contents of the reaction tank for a period of time corresponding to 15% to 45% of the charging time, the contents of the reaction tank are rapidly cooled and then withdrawn from the reaction tank. , and the usage ratio of the steam is 100 in the total amount of heavy oil supplied to the tubular heating furnace of the first pyrolysis treatment step and heavy oil charged in advance to the reaction tank of the second pyrolysis treatment step. Provided is a method for thermally decomposing heavy petroleum oil, characterized in that the amount is 15 to 25 parts by weight.

本発明においては、石油系重質油の熱分解処理において
、そのプロセス経済性を高めるために、第1熱分解処理
工程を、管状加熱炉を用いて、4900Cより高い温度
、好ましくは495〜500℃という高い反応温度で行
うと共に、その熱分解反応率Rを、30〜45%、好ま
しくは35〜45%という高い範囲に規定する。
In the present invention, in the pyrolysis treatment of petroleum-based heavy oil, in order to improve the process economy, the first pyrolysis treatment step is performed at a temperature higher than 4900C, preferably 495 to 500C using a tubular heating furnace. The reaction is carried out at a high reaction temperature of .degree. C., and the thermal decomposition reaction rate R is defined in a high range of 30 to 45%, preferably 35 to 45%.

本発明者らの研究によれば、前記のように、管状加熱炉
の熱分解処理温度を490℃よりも高い温度にし、かつ
その熱分解反応率を30〜4部という高い水準に規定す
る時には、後続の反応槽における反応熱及び分解油のス
トリッピングに必要な熱量の大部分が管状加熱炉からの
生成物によって補給されるので、熱源としてのスチーム
供給量を大巾に節約することができる上1反応槽の温度
が高い水準に保持されることから、分解油は非常にスチ
ームストリッピングされ易くなり、結局、それらの結果
として、従来の方法に比較し、著しくスチーム量を節約
し得ることが見出された。さらに、重質油の熱分解反応
温度は、反応槽での反応温度も含め、前記の構成を採用
する本発明の場合は、従来法に比較し、全体的に高い温
度水準に保持されることから、キノリンネ溶分の副生が
抑制され。
According to the research conducted by the present inventors, as mentioned above, when the pyrolysis temperature in the tubular heating furnace is set higher than 490°C and the pyrolysis reaction rate is set at a high level of 30 to 4 parts, Since most of the heat of reaction in the subsequent reactor and the heat required for stripping of the cracked oil are supplied by the product from the tubular heating furnace, the amount of steam supplied as a heat source can be greatly saved. Since the temperature of the first reactor is maintained at a high level, the cracked oil is very easily steam-stripped, and as a result, the amount of steam can be significantly saved compared to the conventional method. was discovered. Furthermore, the thermal decomposition reaction temperature of heavy oil, including the reaction temperature in the reaction tank, can be maintained at a higher overall temperature level in the case of the present invention adopting the above configuration compared to conventional methods. As a result, the by-product of quinoline dissolved matter is suppressed.

かつ熱分解反応時間が短縮され、キノリンネ溶分の減少
されたピッチを生産性良く製造できる利点もある。重質
油の熱分解反応温度が上ると、キノリンネ溶分の生成原
因となる重縮合反応速度K(重合)及び分解ガス、分解
油を生成する分解反応速度K(分解)は共に上昇するが
、その反応速度の上昇割合はK(分解)の方が大きく、
結局、両者の比:K(分解)/K(重合)は大となり、
ピッチ中のキノリンネ溶分の生成割合は抑制されること
になる。さらにまた、本発明では、キノリンネ溶分の生
成割合を抑え、均一な性状のピッチを得るために、管状
加熱炉からの生成物を反応槽へ張込んだ後、反応槽にお
ける重質油の滞留時間を均一化するために張込時間に対
して一定の割合、通常、15%〜45%。
There is also the advantage that the thermal decomposition reaction time is shortened and pitch with reduced quinolinated content can be produced with good productivity. When the thermal decomposition reaction temperature of heavy oil increases, both the polycondensation reaction rate K (polymerization), which causes the formation of quinolinated components, and the decomposition reaction rate K (decomposition), which generates cracked gas and cracked oil, increase. The rate of increase in the reaction rate is greater for K (decomposition),
In the end, the ratio of the two: K (decomposition)/K (polymerization) becomes large,
The production rate of quinoline dissolved components in the pitch will be suppressed. Furthermore, in the present invention, in order to suppress the production rate of quinoline dissolved components and obtain pitch with uniform properties, after the product from the tubular heating furnace is charged into the reaction tank, heavy oil remains in the reaction tank. A fixed percentage of the tensioning time to equalize the time, usually 15% to 45%.

好ましくは25〜45%の割合の時間反応を継続する構
成を採用する。
Preferably, a configuration is adopted in which the reaction is continued for a period of time of 25 to 45%.

このようにして得られたピッチは、キノリンネ溶分が比
較的少なく均質なものであるために、反応槽のコーキン
グが抑制されるばかりではなく。
Since the pitch thus obtained is homogeneous with relatively little quinolinous content, it not only suppresses coking in the reaction tank.

粘結成分が多く製鉄用コークス製造用バインダーとして
好適であるとともに、燃料として用いる場合にも燃え切
り性に優れ、製品価値の高いものである。
It has a high viscosity content and is suitable as a binder for producing coke for steelmaking, and also has excellent burnout properties and high product value when used as a fuel.

本発明において原料として使用する石油系重質油とは、
常圧残渣油、減圧残渣油、熱分解残渣油及び各種製油残
油、例えばデュオツル抽出油、フルフラール抽出油、プ
ロパン、ブタン、ペンタン等のパラフィン系溶剤による
抽出残渣油等である。
The petroleum heavy oil used as a raw material in the present invention is:
These include atmospheric residual oil, vacuum residual oil, thermal decomposition residual oil, and various oil refinery residual oils, such as Duoturu extracted oil, furfural extracted oil, and extracted residual oil with paraffinic solvents such as propane, butane, and pentane.

次に1本発明を図面を参照して説明する。Next, one embodiment of the present invention will be explained with reference to the drawings.

図面は本発明を実施する場合のフローシートを示すもの
である。
The drawing shows a flow sheet for carrying out the invention.

原料油は原料タンクより送られ原料予熱炉2により35
0℃程度に予熱され蒸留塔3に入る。ここでリサイクル
油として塔底に落ちてくる分解油のヘビーエンド留分と
混合される。このリサイクル油の原料に対する比率は0
.1.0−0.25、好ましくは0.15〜0.20で
ある。リサイクル油と混合された原料油は管状加熱炉4
に送られる。管状加熱炉では、原料油を490〜500
℃、好ましくは495〜500 ’Cの温度にまで加熱
し分解する。
Raw material oil is sent from the raw material tank and sent to the raw material preheating furnace 2 at 35
It is preheated to about 0°C and enters the distillation column 3. Here, it is mixed as recycled oil with the heavy end fraction of cracked oil that falls to the bottom of the tower. The ratio of this recycled oil to the raw material is 0
.. 1.0-0.25, preferably 0.15-0.20. The raw oil mixed with the recycled oil is sent to the tubular heating furnace 4.
sent to. In the tubular heating furnace, the raw material oil is heated to 490 to 500
Decomposition by heating to a temperature of 495-500'C, preferably 495-500'C.

本発明においては、この管状加熱炉における反応温度を
490〜500℃に規定し、その熱分解反応率Rを30
〜45%、好ましくは35〜4錦という高い範囲に規定
する。なお、この場合の熱分解反応率R(%)は次の式
で定議される。
In the present invention, the reaction temperature in this tubular heating furnace is set at 490 to 500°C, and the thermal decomposition reaction rate R is set at 30°C.
-45%, preferably in a high range of 35 to 4 brocades. Note that the thermal decomposition reaction rate R (%) in this case is determined by the following formula.

−B R=−X100(%) A;管状加熱炉原料油中の沸点538℃以上の成分の割
合 B:管状加熱炉から得られた熱分解処理生成物中の沸点
538℃以上の成分の割合 本発明では、管状加熱炉4を前記した如き条件で運転す
ることにより、後記において詳述する如き種々の利点を
得ることができるものである。
-B R=-X100 (%) A: Proportion of components with a boiling point of 538°C or higher in the tubular heating furnace feedstock B: Proportion of components with a boiling point of 538°C or higher in the thermal decomposition product obtained from the tubular heating furnace In the present invention, by operating the tubular heating furnace 4 under the conditions as described above, various advantages as described in detail later can be obtained.

加熱炉4における出口圧力は常圧〜4kg/a#であり
、反応時間は通常0.5〜10分、好ましくは2〜5分
程度である。加熱炉4で得られた高温の熱分解処理生成
物は、切替弁5を介して所定の反応槽6にフラッシュさ
せながら導入するが、その導入に先立ち、蒸留塔3の塔
底より切替弁7を介して、原料油を部分的に張り込む。
The outlet pressure in the heating furnace 4 is normal pressure to 4 kg/a#, and the reaction time is usually about 0.5 to 10 minutes, preferably about 2 to 5 minutes. The high-temperature thermal decomposition product obtained in the heating furnace 4 is flashed and introduced into a predetermined reaction tank 6 via a switching valve 5. Partially fill the raw material oil through.

この張込量は反応槽の全張込量の5〜18%、好ましく
は10〜15%である。また、その予備張込原料油の温
度は約340℃である。切替弁5゜7はそれぞれ一定時
間毎に作動し、原料油及び加熱炉4からの熱分解処理生
成物を2つの反応槽6,6′に対しそれぞれ周期的に交
互に張り込む。このような周期的な操作により、加熱炉
4から連続的に供給される熱分解処理生成物の反応槽に
おける熱分解処理が連続的に実施される。
The charging amount is 5 to 18%, preferably 10 to 15% of the total charging amount of the reaction tank. Further, the temperature of the pre-charged raw material oil is about 340°C. The switching valves 5 and 7 are operated at regular intervals, and feed oil and the thermally decomposed product from the heating furnace 4 are periodically and alternately charged into the two reaction vessels 6 and 6'. Through such periodic operations, the thermal decomposition treatment of the thermal decomposition product continuously supplied from the heating furnace 4 is continuously carried out in the reaction tank.

反応槽6,6′は、通常、円筒型の容器であり、原料導
入口、熱媒体ガス導入口、分解ガス、分解油及び熱媒体
ガスの排出口及び残留物取出口が設けられている。また
、必要に応じ、撹拌機を設置することができる。
The reaction vessels 6, 6' are usually cylindrical containers, and are provided with a raw material inlet, a heating medium gas inlet, an outlet for cracked gas, cracked oil, and a heating medium gas, and a residue outlet. Additionally, a stirrer can be installed if necessary.

熱媒体ガスとしてのスチームは、スチームスーパーヒー
ター8により、ここで500〜700℃、好ましくは5
50〜650℃に加熱された後、9,9′を介して反応
Mj6.6’に吹き込まれる。加熱炉4からの熱分解処
理生成物を反応N96,6’に張り込む場合、張込む直
前の反応槽内の予備張込物の温度は約340℃である。
Steam as a heating medium gas is heated to a temperature of 500 to 700°C, preferably 5°C by a steam superheater 8.
After heating to 50-650°C, it is blown into reaction Mj 6.6' via 9,9'. When charging the thermal decomposition product from the heating furnace 4 into the reaction N96, 6', the temperature of the preliminary charging in the reaction tank immediately before charging is about 340°C.

この張込の開始と共に、反応槽内の温度は430〜44
0℃にまで上昇し、槽内に導入された熱分解処理生成物
の分解反応及び重縮合反応がさらに進行する。本発明で
は、この1回の張込時間は、50〜100分、好ましく
は60〜90分程度に設定する。
At the start of this charging, the temperature inside the reaction tank was 430 to 44℃.
The temperature rises to 0° C., and the decomposition reaction and polycondensation reaction of the thermally decomposed product introduced into the tank further proceed. In the present invention, the duration of this one time is set to about 50 to 100 minutes, preferably about 60 to 90 minutes.

この張込終了時には、槽内残留物(以下、単にピッチと
も言う)の軟化点は上昇する。この張込終了後も高温ス
チームの吹込みを続けて、さらに反応を進行させる。本
発明では、張込後の反応時間を張込時間の15%−45
%、好ましくは25ト4椙の割合の時間に規定する。前
記したように、本発明の場合、管状加熱炉からの熱分解
処理生成物は、相当の熱分解反応を受け、しかも温度が
高いため、反応槽に対する張込時間を長くすると、張込
後の反応時間(保持時間)を殆ど用いる必要のないもの
であるが、このようにして得たピッチは均質性の悪いも
のである。そこで、本発明では、均質のピッチを得るた
めに、張込時間を50〜100分に制限し。
At the end of this filling, the softening point of the residue in the tank (hereinafter simply referred to as pitch) increases. Even after this filling is completed, high temperature steam is continued to be blown in to further advance the reaction. In the present invention, the reaction time after tensioning is 15%-45% of the tensioning time.
%, preferably 25 to 4 hours. As mentioned above, in the case of the present invention, the pyrolyzed product from the tubular heating furnace undergoes a considerable pyrolysis reaction and the temperature is high. Although it is not necessary to use much reaction time (holding time), the pitch obtained in this way has poor homogeneity. Therefore, in the present invention, in order to obtain a homogeneous pitch, the setting time is limited to 50 to 100 minutes.

そして張込終了後、張込時間の15〜45%程度の時間
は高温スチームの吹込みを継続して熱分解処理を継続さ
せる。
After the filling is completed, high-temperature steam is continued to be blown for about 15 to 45% of the filling time to continue the thermal decomposition treatment.

本発明において、反応槽に供給するスチーム温度は、5
00−700℃という比較的低温のスチームの使用で十
分であり、また、その供給量も少なくてすみ、管状加熱
炉4と反応槽6,6′に対する合計原料油供給量1kg
に対する割合で、0.15〜0.25kgの割合で十分
である。このことは本発明の大きな利点である。本発明
の場合、管状加熱炉からの熱分解処理生成物は、既に相
当の熱分解反応を受け、しかも490〜500℃という
高温にあることから、この熱分解処理生成物を反応槽に
張り込む時にはその保有する熱によって、反応槽での熱
分解反応や、反応生成物中からの分解油のストリッピン
グに必要な熱気の相当量が補給されるので、熱源として
のスチーム供給量を大幅に節減することができる。
In the present invention, the temperature of the steam supplied to the reaction tank is 5
It is sufficient to use steam at a relatively low temperature of 00 to 700°C, and the supply amount is also small, and the total amount of raw oil supplied to the tubular heating furnace 4 and the reaction vessels 6 and 6' is 1 kg.
A ratio of 0.15 to 0.25 kg is sufficient. This is a major advantage of the present invention. In the case of the present invention, the pyrolysis product from the tubular heating furnace has already undergone a considerable pyrolysis reaction and is at a high temperature of 490 to 500°C, so the pyrolysis product is poured into the reaction tank. In some cases, the retained heat supplies a considerable amount of the hot air required for the pyrolysis reactions in the reactor and for stripping the cracked oil from the reaction products, thus significantly reducing the amount of steam supplied as a heat source. can do.

また、反応槽の温度は従来の場合に比して高い水準に保
持されることから分解油は非常にストリンピングされ易
くなり、反応槽での分解油の分圧を下げてストリッピン
グし易くする役割としてのスチーム供給量も軽減できる
In addition, since the temperature of the reaction tank is maintained at a higher level than in the conventional case, the cracked oil is much easier to strip, and the partial pressure of the cracked oil in the reaction tank is lowered to make stripping easier. The role of steam supply can also be reduced.

さらに、本発明の場合、加熱炉での熱分解反応率が高く
、加熱炉で生成した分解油の相当量はペーパーとして反
応槽に供給されることから、従来の場合に比して1反応
槽における熱分解反応及び分解油のストリッピングに要
する熱量自体も少ないことから、結果的にスチームの使
用量を著しく節約することができる。
Furthermore, in the case of the present invention, the thermal decomposition reaction rate in the heating furnace is high, and a considerable amount of cracked oil produced in the heating furnace is supplied to the reaction tank as paper, so compared to the conventional case, one reaction tank is used. Since the amount of heat required for the thermal decomposition reaction and stripping of cracked oil is small, the amount of steam used can be significantly reduced as a result.

前記加熱炉4からの熱分解生成物の張込中及びその後の
反応処理中において、熱分解生成物のうちのガス状物質
及びスチームは反応槽の上部排出口から留出させ、蒸留
塔3へ送る。
During charging of the thermal decomposition products from the heating furnace 4 and during the subsequent reaction treatment, gaseous substances and steam of the thermal decomposition products are distilled out from the upper discharge port of the reaction tank and sent to the distillation column 3. send.

前記反応槽6における反応終了後、反応槽6の冷却(ク
エンチ)を開始し、反応槽温度を320〜380℃に降
下させて反応を実質的に停止させた後、反応槽6内のピ
ッチを直ちに液状ピッチ貯槽10に移す。
After the reaction in the reaction tank 6 is completed, cooling (quenching) of the reaction tank 6 is started, and the reaction tank temperature is lowered to 320 to 380°C to substantially stop the reaction, and then the pitch in the reaction tank 6 is Immediately transfer to liquid pitch storage tank 10.

このピッチ貯槽10は、撹拌機を有し、反応槽6,6′
からのピッチを交互に受取り、均一に混合する機能も有
する。また、その底部から過熱スチームを吹込み、槽内
ピッチ温度を300〜370℃に保持して、液状に保持
すると共に、ピッチ中から軽質留分をストリッピングさ
せ、これをライン11を介して蒸留塔3へ送る。液状ピ
ッチ貯槽10内のピッチは。
This pitch storage tank 10 has a stirrer, and the reaction tanks 6, 6'
It also has the function of alternately receiving pitches from other sources and mixing them uniformly. In addition, superheated steam is blown into the bottom of the tank to maintain the pitch temperature in the tank at 300 to 370°C to keep it in a liquid state, and light fractions are stripped from the pitch, which is distilled via line 11. Send it to Tower 3. The pitch in the liquid pitch storage tank 10 is as follows.

ピッチ同化設備12で冷却固化された後ピッチ貯蔵設備
】3に送られる。
After being cooled and solidified in the pitch assimilation facility 12, it is sent to the pitch storage facility 3.

し効  果〕 本発明によれば、前記のように、管状加熱炉の操作条件
及びそれに関連させて反応槽の操作条件を特定の範囲に
規定したことにより、従来工業的に実施されてる方法に
比較して、反応槽に供給するスチームの供給量を著しく
低減させることができて、プロセス経済性を著しく改良
し得る上、製品の生産効率も向上させることができる。
According to the present invention, as described above, the operating conditions of the tubular heating furnace and the related operating conditions of the reaction tank are defined within a specific range, thereby improving the conventional industrially practiced method. In comparison, the amount of steam supplied to the reaction tank can be significantly reduced, which can significantly improve process economics and improve product production efficiency.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 原料油として下記性状の中東系及びメキシコ系混合原油
の減圧残渣油を用いた。
Example 1 Vacuum residue oil of a mixed crude oil of Middle Eastern and Mexican origin having the following properties was used as a raw material oil.

表−1 この原料油を図面に示したフローシー1−に従って熱分
解処理した。
Table 1 This raw material oil was thermally decomposed according to Flow Sheet 1 shown in the drawing.

即ち、原料油を予熱炉2に流量50t/hrで連続的に
通し350℃に予熱した後蒸留塔3に供給する。ここで
分解油のヘビーエンド留分と混合し、管状加熱炉4に流
ff151.5t/hr即ち、ヘビーエンド留分ノリサ
イクル量を予熱炉への原料供給量に対し15〃になるよ
うに供給し、表−2に示す条件下で加熱処理し、得られ
た熱分解生成物を切替弁5を介して、先ず反応槽6にフ
ラッシュさせながら張り込んだ。
That is, raw material oil is continuously passed through a preheating furnace 2 at a flow rate of 50 t/hr, preheated to 350° C., and then supplied to a distillation column 3. Here, it is mixed with the heavy end fraction of the cracked oil and supplied to the tubular heating furnace 4 at a flow rate of 151.5 t/hr, that is, the amount of recycled heavy end fraction is 15 times the amount of raw material supplied to the preheating furnace. Then, heat treatment was performed under the conditions shown in Table 2, and the resulting thermal decomposition product was first poured into the reaction tank 6 through the switching valve 5 while being flushed.

なお張込みに先立ち、反応槽6には、あらかじめ蒸留塔
3より原料油を切替弁7を介して、反応槽への原料油の
全張込量の12%の割合で張込んだ。この加熱炉からの
反応生成物の張込終了後、切替弁を作動させて、生成物
を同様に原料油を予備的に張り込んだ他方の反応槽6′
に導入した。反応槽6゜6′に対する予備的な原料油の
張り込み及び管状加熱炉からの熱分解生成物の張り込み
は、前記のようにして一定時間毎に交互に行った。また
、各反応槽6,6′は高さ14m、内径5.5mのもの
で、内部には撹拌器を有するものであった。反応槽6,
6′にはその底部から過熱スチームを導入した。
Prior to charging, raw oil was charged into the reaction tank 6 in advance from the distillation column 3 via the switching valve 7 at a rate of 12% of the total amount of raw oil charged into the reaction tank. After charging the reaction product from this heating furnace, the switching valve is operated to transfer the product to the other reaction tank 6', which has also been preliminarily charged with raw material oil.
It was introduced in The preliminary charging of raw material oil and the charging of the thermal decomposition product from the tubular heating furnace into the reaction tank 6°6' were carried out alternately at regular intervals as described above. Further, each reaction tank 6, 6' had a height of 14 m, an inner diameter of 5.5 m, and had a stirrer inside. reaction tank 6,
Superheated steam was introduced into 6' from its bottom.

管状加熱炉からの熱分解生成物は、前記のようにして反
応槽6,6′に張込んだ後、一定時間反応温度に保持し
てさらに熱分解処理を続けた後、クエンチ(温度350
℃)し、過熱スチームが吹込まれている液状ピッチ貯槽
9(温度340°C)に移した。
The thermal decomposition products from the tubular heating furnace are charged into the reaction vessels 6 and 6' as described above, held at the reaction temperature for a certain period of time, and further thermal decomposition treatment is continued.
°C) and transferred to a liquid pitch storage tank 9 (temperature: 340 °C) into which superheated steam was blown.

一方、反応槽6,6′上部よりスチームと共に分解ガス
及び分解油を留出させ、蒸留塔3に送り、分解ガスと分
解油を分離した。
On the other hand, cracked gas and cracked oil were distilled out along with steam from the upper part of the reaction tanks 6 and 6' and sent to the distillation column 3, where the cracked gas and cracked oil were separated.

前記の熱処理結果を、種々の操作条件との関連で表−2
に示す。
Table 2 shows the above heat treatment results in relation to various operating conditions.
Shown below.

表−2 実施例2 実施例1で用いた設備と基本的には同様のフローではあ
るが、原料処理量が300kg/hrと小規模で。
Table 2 Example 2 The flow was basically the same as that of the equipment used in Example 1, but the raw material throughput was 300 kg/hr and on a smaller scale.

予熱炉を持たずに管状加熱炉で予熱と分解を同時に行う
設備を用いて熱分解処理した。
Thermal decomposition treatment was carried out using equipment that performs preheating and decomposition simultaneously in a tubular heating furnace without having a preheating furnace.

即ち、原料油264kg/hrに対し、蒸留塔塔底から
の分解油のヘビーエンド留分45kg/hrを混合し。
That is, 45 kg/hr of the heavy end fraction of cracked oil from the bottom of the distillation column was mixed with 264 kg/hr of raw oil.

流量309kg/hrで管状加熱炉に供給し、表−3に
示す条件下で加熱処理し、得られた熱分解生成物を反応
槽にフラッシュさせながら張り込んだ。なお張込みに先
立ち、反応槽にはあらかじめ原料タンクより36kgの
原料油を張り込んだ。この反応生成物の張込終了後、切
替弁を作動させて、生成物を同様に予備的に張り込んだ
他方の反応槽に導入した。
It was supplied to a tubular heating furnace at a flow rate of 309 kg/hr and heat-treated under the conditions shown in Table 3, and the resulting thermal decomposition product was poured into the reaction tank while being flashed. Prior to charging, 36 kg of raw material oil was charged into the reaction tank from the raw material tank. After charging the reaction product, the switching valve was operated to introduce the product into the other reaction tank, which was also preliminarily charged.

反応槽にはその底部からスチームスーパーヒーターから
の過熱スチームを導入した。反応槽は加熱炉からの生成
物を張り込んだ後、過熱スチームの導入を継続し、さら
に一定時間反応温度に保持し、熱分解処理を続けた後、
クエンチし、液状ピッチ貯槽に移した。一方、反応槽上
部よりスチームと共に分解ガス及び分解油を留出させ、
蒸留塔に送り、分解ガス、分解油を蒸留分離し、分解油
のヘビーエンド留分は管状加熱炉に原料油と共に供給し
た。
Superheated steam from a steam superheater was introduced into the reactor from the bottom. After filling the reaction tank with the product from the heating furnace, the introduction of superheated steam is continued, and the reaction temperature is maintained for a certain period of time to continue the thermal decomposition treatment.
Quenched and transferred to liquid pitch storage tank. Meanwhile, cracked gas and cracked oil are distilled out along with steam from the upper part of the reaction tank.
It was sent to a distillation column, and the cracked gas and cracked oil were separated by distillation, and the heavy end fraction of the cracked oil was fed to a tubular heating furnace together with the raw oil.

反応槽への原料油の予備張込は全張込量の12%、分解
油のヘビーエンド留分のリサイクル量は原料油の処理量
に対し15%と、実施例1と同じ条件で実施した。また
原料油は実施例1と同一の減圧残油を用いた。熱処理結
果を種々の操作条件との関連で表−3に示す。
Preliminary charging of raw material oil into the reaction tank was 12% of the total charging amount, and the recycling amount of the heavy end fraction of cracked oil was 15% of the amount of raw material oil processed, which was carried out under the same conditions as in Example 1. . Moreover, the same vacuum residual oil as in Example 1 was used as the raw material oil. The heat treatment results are shown in Table 3 in relation to various operating conditions.

表−3Table-3

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法のフローシートを示す。 2・・・・・・予熱炉 3・・・・・・蒸留塔 4・・・・・・管状加熱炉 6.6′・・・・反応槽 13・・・・・・ピッチ貯槽 The drawing shows a flow sheet of the method of the invention. 2... Preheating furnace 3... Distillation column 4...Tubular heating furnace 6.6'・・・Reaction tank 13...Pitch storage tank

Claims (1)

【特許請求の範囲】[Claims] (1)石油系重質油を管状加熱炉において熱分解処理す
る第1熱分解処理工程と、該熱分解処理工程で得られた
熱分解処理生成物を2個の反応槽に交互に導入して熱分
解処理を行う第2熱分解処理工程とからなり、かつ該第
1熱分解処理工程で得られた熱分解処理生成物を反応槽
に導入するに先立ち、あらかじめ石油系重質油を部分的
に張込む石油系重質油の熱分解処理方法において、該第
1熱分解処理工程を490℃より高い温度で分解反応率
30〜45%の条件で行い、該第1熱分解処理工程で得
られた熱分解処理生成物を該第2熱分解処理工程へ張込
時間50〜100分で張込むと共に、該反応槽に500
〜700℃のスチームを導入し、かつ該張込後、該スチ
ームの導入を続けて該反応槽内容物を該張込時間の15
%〜45%の割合の時間保持した後、該反応槽内容物を
急冷し、該反応槽外へ抜出すことからなり、かつ該スチ
ームの使用割合が、該第1熱分解処理工程の管状加熱炉
に供給される重質油と該第2熱分解処理工程の反応槽に
あらかじめ張込まれる重質油の合計量100重量部に対
して、15〜25重量部であることを特徴とする石油系
重質油の熱分解処理方法。
(1) A first pyrolysis treatment step in which petroleum-based heavy oil is pyrolyzed in a tubular heating furnace, and a pyrolysis product obtained in the pyrolysis treatment step is alternately introduced into two reaction vessels. a second pyrolysis treatment step in which a pyrolysis treatment is carried out, and before the pyrolysis product obtained in the first pyrolysis treatment step is introduced into the reaction tank, petroleum-based heavy oil is partially dissolved in advance. In the pyrolysis treatment method for petroleum-based heavy oil that is poured into a tank, the first pyrolysis treatment step is performed at a temperature higher than 490° C. under conditions of a decomposition reaction rate of 30 to 45%, and in the first pyrolysis treatment step, The obtained pyrolysis treatment product is charged into the second pyrolysis treatment step for a charging time of 50 to 100 minutes, and at the same time, 500
~700°C steam is introduced, and after the charging, the steam is continued to be introduced and the contents of the reaction vessel are heated for 15 minutes during the charging time.
% to 45% of the time, the contents of the reaction vessel are rapidly cooled and discharged from the reaction vessel, and the proportion of the steam used is the same as that of the tubular heating of the first pyrolysis treatment step. Petroleum in an amount of 15 to 25 parts by weight based on 100 parts by weight of the heavy oil supplied to the furnace and the heavy oil charged in advance into the reaction tank of the second pyrolysis treatment step. A method for thermal decomposition of heavy oil.
JP62137342A 1987-05-30 1987-05-30 Pyrolysis treatment method for heavy oil Expired - Lifetime JPH07116450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137342A JPH07116450B2 (en) 1987-05-30 1987-05-30 Pyrolysis treatment method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137342A JPH07116450B2 (en) 1987-05-30 1987-05-30 Pyrolysis treatment method for heavy oil

Publications (2)

Publication Number Publication Date
JPS63301295A true JPS63301295A (en) 1988-12-08
JPH07116450B2 JPH07116450B2 (en) 1995-12-13

Family

ID=15196402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137342A Expired - Lifetime JPH07116450B2 (en) 1987-05-30 1987-05-30 Pyrolysis treatment method for heavy oil

Country Status (1)

Country Link
JP (1) JPH07116450B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038674B2 (en) * 2006-09-28 2012-10-03 千代田化工建設株式会社 Pyrolysis treatment method and pyrolysis treatment equipment for heavy petroleum oil
JP2008303259A (en) * 2007-06-06 2008-12-18 Chiyoda Corp Thermal cracking reaction vessel for petroleum-based heavy oil, and thermal cracking plant using the reaction vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397003A (en) * 1977-02-04 1978-08-24 Chiyoda Chem Eng & Constr Co Ltd Thermal cracking treatment of petroleum heavy oil
JPS5461206A (en) * 1977-10-24 1979-05-17 Nippon Kaihatsu Kougiyou Kk Manufacture of light oil and olefin
JPS5649789A (en) * 1979-09-29 1981-05-06 Agency Of Ind Science & Technol Production of pitch
JPS5715795A (en) * 1980-07-02 1982-01-27 Daia Soiru Kk Base expanding excavator for earth drill
JPS59109590A (en) * 1982-12-15 1984-06-25 Kureha Chem Ind Co Ltd Thermal cracking of heavy petroleum oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397003A (en) * 1977-02-04 1978-08-24 Chiyoda Chem Eng & Constr Co Ltd Thermal cracking treatment of petroleum heavy oil
JPS5461206A (en) * 1977-10-24 1979-05-17 Nippon Kaihatsu Kougiyou Kk Manufacture of light oil and olefin
JPS5649789A (en) * 1979-09-29 1981-05-06 Agency Of Ind Science & Technol Production of pitch
JPS5715795A (en) * 1980-07-02 1982-01-27 Daia Soiru Kk Base expanding excavator for earth drill
JPS59109590A (en) * 1982-12-15 1984-06-25 Kureha Chem Ind Co Ltd Thermal cracking of heavy petroleum oil

Also Published As

Publication number Publication date
JPH07116450B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
US4725349A (en) Process for the selective production of petrochemical products
KR101712238B1 (en) Process for delayed coking of whole crude oil
JPS6254153B2 (en)
US4214979A (en) Method of thermally cracking heavy petroleum oil
JPS6035087A (en) Low severity delayed coking
JPH02212593A (en) Method of conversion of heavy hydrocarbon feedstock
JPS6158514B2 (en)
JPS6158515B2 (en)
WO2012034295A1 (en) Apparatus and method for preparing lower olefin by cracking reaction
JPS5898386A (en) Conversion of heavy oil or residual oil to gas and distillable hydrocarbon
US3984305A (en) Process for producing low sulfur content fuel oils
JPS63301295A (en) Method of thermal cracking of heavy oil
US4267031A (en) Coking process
EP0156614B1 (en) Coking residuum in the presence of hydrogen donor
SU1545946A3 (en) Method of producing hydrocarbon fuel and pitch
EP2072602B1 (en) Method of thermal cracking for petroleum-derived heavy oil
US2147399A (en) Process for cracking hydrocarbons
EP0204410A2 (en) Method of supplying heat to high temperature process streams
JPS5944352B2 (en) Pituchi manufacturing method
JPH05222374A (en) Process for producing light hydrocarbon liquid in delayed coker
EP0200786B1 (en) Coking apparatus
DE2262607A1 (en) Pyrolysis of petroleum fractions - under pressure in presence of steam and methane to olefins and aromatics
US2217587A (en) Process for conversion of hydrocarbons
US2377107A (en) Chemical process
JPH0560514B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 12