JPS6337995B2 - - Google Patents

Info

Publication number
JPS6337995B2
JPS6337995B2 JP54112221A JP11222179A JPS6337995B2 JP S6337995 B2 JPS6337995 B2 JP S6337995B2 JP 54112221 A JP54112221 A JP 54112221A JP 11222179 A JP11222179 A JP 11222179A JP S6337995 B2 JPS6337995 B2 JP S6337995B2
Authority
JP
Japan
Prior art keywords
output
voltage
detection circuit
signal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54112221A
Other languages
Japanese (ja)
Other versions
JPS5636272A (en
Inventor
Yoshihiro Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11222179A priority Critical patent/JPS5636272A/en
Publication of JPS5636272A publication Critical patent/JPS5636272A/en
Publication of JPS6337995B2 publication Critical patent/JPS6337995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Description

【発明の詳細な説明】 本発明は高速動作のラインセンサに適し該セン
サと同一半導体基板上で一体化し得る電荷検出回
路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge detection circuit that is suitable for a high-speed operating line sensor and can be integrated with the sensor on the same semiconductor substrate.

近年の半導体機能素子はそれを動作させるに必
要な周辺回路等も同一半導体基板上に一体化(オ
ンチツプ化)されて行く傾向にあるが、この傾向
は文字認識装置やフアクシミリ(以下OCR,
Faxと略称する)に用いられるラインセンサにつ
いても同様である。
In recent years, there has been a tendency for semiconductor functional devices to have the peripheral circuits necessary to operate them integrated on the same semiconductor substrate (on-chip), but this trend is also becoming more prevalent in character recognition devices and facsimile machines (hereinafter referred to as OCR).
The same applies to line sensors used for fax (abbreviated as fax).

ラインセンサにおける読み出し部のシフトレジ
スタ駆動回路(CCDの転送パルス発生回路)や
信号電荷検出回路などのオンチツプ化はすでに行
われており、最近では信号処理回路のうちの簡単
なもの、例えばサンプルホールド回路などを一体
化してしまう傾向にある。また一方ラインセンサ
は最近の情報処理技術の向上とあいまつてその性
能上に高速性、高感度特性などが要求されて来て
いる。
On-chip implementation of shift register drive circuits (CCD transfer pulse generation circuits) and signal charge detection circuits in the readout section of line sensors has already been carried out, and recently simple signal processing circuits, such as sample and hold circuits, have been implemented on-chip. There is a tendency to integrate such things. On the other hand, along with recent improvements in information processing technology, line sensors are now required to have high speed and high sensitivity characteristics in terms of their performance.

第1図は従来の2系統の読み出し部B1,B2
備えたラインセンサと、出力ダイオードDに現れ
るその信号出力の検出回路の例である。照明され
た撮像対象物、例えば帳票上の描線等の横一列ず
つを光電変換によつて読み取る役割はAに示した
感光部が行い、その中の奇数番目および偶数番目
の感光セル群中で生じた信号電荷群は図示しない
移送ゲートの動作によつてそれぞれの読み出し部
B1,B2を構成する例えば2相駆動型のCCDシフ
トレジスタ中の各ビツトに一挙に移送される。こ
れら2系統の信号電荷群は点線で示した電荷堰
CSで画定された各転送路内を、転送電極11,
12,13,14,15……および21,22,
23,24,25……に印加される第2図a,b
に図示のごとき転送電圧φ1,φ2によつて矢印イ
およびロの方向にそれぞれ転送され、出力ゲート
OGの直下を交互に通過して出力ダイオードDに
供給される。
FIG. 1 shows an example of a conventional line sensor equipped with two readout sections B 1 and B 2 and a detection circuit for the signal output appearing at the output diode D. The photosensitive section shown in A plays the role of reading each horizontal row of the illuminated image pickup object, such as lines drawn on a form, by photoelectric conversion, and the photosensitive section shown in A is responsible for reading the illuminated image pickup object, for example, lines drawn on a form, one by one, by photoelectric conversion. The group of signal charges is transferred to each readout section by the operation of a transfer gate (not shown).
The data is transferred all at once to each bit in, for example, a two-phase drive type CCD shift register constituting B 1 and B 2 . These two signal charge groups are shown by the dotted line.
Transfer electrodes 11,
12, 13, 14, 15... and 21, 22,
Figure 2 a, b applied to 23, 24, 25...
are transferred in the directions of arrows A and B, respectively, by the transfer voltages φ 1 and φ 2 as shown in the figure, and the output gate
It alternately passes directly under OG and is supplied to output diode D.

前記2系統の読み出し部B1,B2から交互に送
られて来た時系列としての信号電荷によつて同じ
く時系列としてもたらされる出力電圧は第1のソ
ースフオロワ増幅器1によつて逐次検出されるの
であるが、前記出力ダイオードDに流入した1信
号電荷が検出されてしまつた後もなお残留してい
ると次に検出されるべき流入電荷と混ざり合つて
しまう。こうしたことを避けるため1回の電荷検
出が完了するたびごとにその残留電荷を除去して
おく必要があり、これを目的として出力ダイオー
ドDにはリセツト電圧φRで駆動されるリセツト
用MOSトランジスタ(以下MOSTと略す)QR
を介して逆バイアス電圧が印加されている。
The output voltage, which is also provided in a time series by the signal charges sent in a time series alternately from the two readout sections B 1 and B 2 , is sequentially detected by the first source follower amplifier 1. However, if one signal charge that has flowed into the output diode D remains even after being detected, it will be mixed with the charge that is to be detected next. To avoid this, it is necessary to remove the residual charge each time one charge detection is completed.For this purpose, the output diode D is equipped with a reset MOS transistor ( Hereinafter abbreviated as MOST) QR
A reverse bias voltage is applied via.

第2図a,bに図示した転送電圧φ1,φ2を用
いて上述の動作を示せば、例えば第1の読出し部
B1からの流入電荷の検出は第1相転送電圧φ1
波形前半部の期間τ1で行い該電荷の除去(リセツ
ト)は同じ波形の後半部の期間τ2で行う。また、
第2の読み出し部B2からの流入電荷の検出は第
2相転送電圧φ2の前半の期間τ3で、またリセツト
は後半の期間τ4で行う。これは続いて第1および
第2の読み出し部から交互に流入してくる以後の
信号電荷に対しても同様であり、検出はそれぞれ
τ5,τ7……で行い、リセツトはτ6,τ8……で行
う。つまりリセツト電圧は第2図cに示したごと
くτ2,τ4,τ6,τ8……で印加されるゆえに、この
期間リセツトMOST・QRが導通状態となつて逆
電圧VRが出力ダイオードDに加わる。
If the above operation is shown using the transfer voltages φ 1 and φ 2 shown in FIGS. 2a and 2b, for example, the first reading section
The inflow charge from B1 is detected during the period τ1 of the first half of the waveform of the first phase transfer voltage φ1 , and the charge is removed (reset) during the period τ2 of the second half of the same waveform. Also,
Detection of the inflow charge from the second reading section B2 is performed during the first half period τ3 of the second phase transfer voltage φ2 , and reset is performed during the second half period τ4 . The same applies to subsequent signal charges that subsequently flow in alternately from the first and second reading sections, and detection is performed at τ 5 , τ 7 , etc., respectively, and reset is performed at τ 6 , τ 8 Do it with... In other words, since the reset voltage is applied at τ 2 , τ 4 , τ 6 , τ 8 . join.

ところで増幅器1は能動素子として働く
MOST・Q1と負荷として働くMOST・Q1Lから
なつているがその出力端子Pに現れる出力電圧
Voの波形は、MOST・Q1の導通時の抵抗と、こ
れにつながるスイツチ用MOST・QSHの存在に
よる寄生容量、配線容量ならびにMOST・Q2
絶縁ゲート容量の影響で立ち上がりが急峻になら
ない。またMOST・Q1の遮断時には、負荷用
MOST・Q1Lの抵抗と前記の諸容量との影響で
出力電圧Voの立ち下がりも急峻とならず、第2
図dに示したごとき波形となる。ただし、
MOST・Q2は第2のソースフオロワ増幅器2の
能動素子であり、MOST・Q2Lは該能動素子の
負荷用MOST、そしてVDDは第1および第2のソ
ースフオロワ増幅器の電源電圧である。このよう
なことからリセツト電圧φRの繰返し周波数は第
2図からも明らかなように転送電圧φ1,φ2の繰
り返し周波数例えば10MHzの2倍にしなければな
らず、このため該電圧φRの継続時間は50ns程度
となる。また出力電圧Voは前に述べたようにパ
ルス列として表れるからこれをアナログ信号にす
るには該電圧に対してサンプルホールドを施さね
ばならない。このサンプルホールド回路(以下
S/H回路と略す)はMOST・Q1が遮断状態に
あるため、MOST・QSHとMOST・Q2の絶縁ゲ
ート容量ならびにMOST・Q1Lのコンダクタン
スによつて構成されるが約30nsの時定数を有す
る。信号は該S/H回路を通つたあと、即ち第2
のソースフオロワ回路2を通過した後に出力端子
Oに現れ、出力電圧はリセツト電圧VR上に重畳
した形となるが、第2図fでは理解の便宜のため
この電圧VRを省略すると共に該電圧VRを基準
レベルとし、振幅が負の極性方向に現れる信号電
圧Voのみを示した。
By the way, amplifier 1 works as an active element.
The output voltage that appears at the output terminal P, which consists of MOST・Q 1 and MOST・Q 1 L, which acts as a load.
The waveform of Vo does not rise sharply due to the influence of the resistance when MOST/Q 1 is turned on, the parasitic capacitance due to the presence of the connected MOST/QSH for the switch, the wiring capacitance, and the insulated gate capacitance of MOST/Q 2 . Also, when disconnecting MOST/Q 1 , the load
Due to the influence of the MOST・Q 1 L resistance and the various capacitances mentioned above, the fall of the output voltage Vo does not become steep, and the second
The waveform will be as shown in Figure d. however,
MOST·Q 2 is an active element of the second source follower amplifier 2, MOST·Q 2 L is a MOST for loading the active element, and V DD is a power supply voltage of the first and second source follower amplifiers. For this reason, the repetition frequency of the reset voltage φ R must be twice the repetition frequency of the transfer voltages φ 1 and φ 2 , for example, 10 MHz, as is clear from FIG . The duration is about 50ns. Furthermore, as mentioned above, the output voltage Vo appears as a pulse train, so in order to convert it into an analog signal, it is necessary to sample and hold the voltage. This sample-and-hold circuit (hereinafter abbreviated as S/H circuit) is configured by the insulated gate capacitance of MOST-QSH and MOST- Q 2 and the conductance of MOST-Q 1 L because MOST-Q 1 is in the cut-off state. However, it has a time constant of approximately 30 ns. After the signal passes through the S/H circuit, that is, the second
After passing through the source follower circuit 2 of Only the signal voltage Vo whose amplitude appears in the negative polarity direction is shown as a reference level.

ところで第2図dの電圧Voにサンプルホール
ドを施すには該電圧の波形の前縁部に続く平坦部
Fが適当に広いことが必要であるが現実には前述
した理由から平坦部Fの狭い、ないしはほとんど
平坦部のない波形しか得られず、このため極めて
幅の狭いサンプリングパルスを発生する第1図に
図示のパルス発生回路3が入用となる。こうした
パルス発生回路3の構成には分周器や論理回路の
複雑な組合せが必要であり、これを前記のライン
センサと同一の半導体基板上で一体化するには回
路が複雑になり、困難が生ずる。その上、電圧
Voの平坦部がこのように狭いとサンプリングパ
ルスの設定タイミングが極めて困難なものとな
る。
By the way, in order to sample and hold the voltage Vo in Figure 2 d, it is necessary that the flat part F following the leading edge of the voltage waveform is appropriately wide, but in reality, for the reasons mentioned above, the flat part F is narrow. , or only a waveform with almost no flat portions can be obtained, and for this reason, the pulse generating circuit 3 shown in FIG. 1, which generates extremely narrow sampling pulses, is required. The configuration of the pulse generation circuit 3 requires a complex combination of frequency dividers and logic circuits, and integrating this on the same semiconductor substrate as the line sensor requires a complicated circuit and is difficult. arise. Besides, the voltage
If the flat portion of Vo is narrow like this, it becomes extremely difficult to set the sampling pulse timing.

本発明は上記のような困難に鑑みてなされたも
のでこの問題を解決するためにセンサの読み出し
部B1,B2中の各転送電荷を1つの出力ダイオー
ドに集めずに、別個に用意された各出力ダイオー
ドに取り出し、これら各ダイオードにそれぞれ接
続された初段増幅器で検出し、サンプルホールド
をほどこした後に第1および第2系統の各信号を
組み合わせるようにした新しい信号電荷検出回路
を提供するものであつて以下図面を用いてその詳
細について述べる。
The present invention was made in view of the above-mentioned difficulties, and in order to solve this problem, each transfer charge in the readout sections B 1 and B 2 of the sensor is not collected in one output diode, but is separately prepared. The present invention provides a new signal charge detection circuit in which each signal of the first and second systems is combined after being detected by a first-stage amplifier connected to each of these diodes and sampled and held. The details will be described below using the drawings.

第3図は本発明に係るラインセンサの好ましい
信号検出回路の一実施例を示したもの、また第4
図は該回路における諸電圧のタイミングチヤート
であつてそれぞれ前記第1図、第2図と同等の部
位には同一記号を付して示してある。
FIG. 3 shows a preferred embodiment of the signal detection circuit for the line sensor according to the present invention, and FIG.
The figure is a timing chart of various voltages in the circuit, and portions equivalent to those in FIGS. 1 and 2 are designated by the same symbols.

まず感光部A内の奇数番目、偶数番目の各セル
群中の電荷は図示しない移送ゲートの働きによつ
て各読み出し部B1,B2を構成するCCDシフトレ
ジスタ中の各ビツトに一挙に移される。これら2
系統の信号電荷はそれぞれ矢印イおよびロの方向
に転送された出力ゲートOG直下を通過してそれ
ぞれの読み出し部B1,B2が有する出力ダイオー
ドD1とD2に流入する。まず第1系統の信号電荷
は時刻t1〜t2,t5〜t6,……なる期間にリセツト
用MOST・QR1に印加されるリセツト電圧φR1
よつてリセツトされ、該リセツト電圧φR1が低レ
ベルに戻つたt2〜t5,t6〜t9……なる期間に第1
の増幅器1Aによつて検出されて該増幅器の出力
端子P1にVo1として現れる。また第2系統の信号
電荷は時刻t3〜t4,t7〜t8……なる期間にリセツ
ト用MOST・QR2に印加されるリセツト電圧φR2
によつてリセツトされ、該リセツト電圧φR2が低
レベルに戻つたt4〜t7,t8〜t11……なる期間に第
2の増幅器1Bによつて検出されて該増幅器の出
力端子P2にVo2として現れる。
First, the charges in the odd-numbered and even-numbered cell groups in the photosensitive section A are transferred all at once to each bit in the CCD shift registers constituting each readout section B 1 and B 2 by the action of a transfer gate (not shown). It will be done. These 2
The signal charges of the system pass directly under the output gate OG transferred in the directions of arrows A and B, respectively, and flow into the output diodes D 1 and D 2 of the respective readout sections B 1 and B 2 . First, the signal charge of the first system is reset by the reset voltage φ R1 applied to the reset MOST QR 1 during the period from time t 1 to t 2 , t 5 to t 6 , . . . During the period from t 2 to t 5 , from t 6 to t 9 when R1 returned to a low level, the first
is detected by the amplifier 1A and appears as Vo 1 at the output terminal P 1 of the amplifier. Moreover, the signal charge of the second system is the reset voltage φ R2 applied to the reset MOST/QR 2 during the period from time t 3 to t 4 , from t 7 to t 8 .
During the period t 4 -t 7 , t 8 -t 11 . 2 appears as Vo 2 .

各出力電圧Vo1,Vo2はこのように別個の増幅
器1A,1Bによつて独立に取出されているた
め、繰返し周波数は第2図に示した出力電圧Vo
に比べて半分即ち転送電圧φ1,φ2の繰返し周波
数に同じとなつている。そしてこのため第4図
e,fに見られるごとく、電圧Vo1の平坦部F11
F12……ならびに電圧Vo2の平坦部の継続期間
F21,F22は充分に広くなつており、このためサン
プリングパルスの幅は比較的広くてもサンプルホ
ールドが施しやすくなつている。したがつてサン
プリングパルス幅を充分狭くするために該パルス
発生器回路を複雑なものにする必要はなくなり、
該回路の規模が大型化するおそれがない。第4図
gは上述第1系統および第2系統の出力電圧
Vo1,Vo2にそれぞれサンプリングを施した後、
第3図に示したS点において合成し、該合成点S
に接続された第2段目のソースフオロワ増幅器2
で上記のサンプルホールド済みの合成電圧を検出
した後、該増幅器の負荷用MOST・Q2Lの両端
に現れる最終出力電圧VSHの波形を示したもの
である。
Since each output voltage Vo 1 and Vo 2 is taken out independently by separate amplifiers 1A and 1B in this way, the repetition frequency is equal to the output voltage Vo shown in FIG.
, that is, the repetition frequency of the transfer voltages φ 1 and φ 2 is the same. For this reason, as seen in Fig. 4e and f, the flat part F 11 of the voltage Vo 1 ,
F 12 ... as well as the duration of the plateau of voltage Vo 2
F 21 and F 22 are sufficiently wide, making it easy to perform sample hold even if the width of the sampling pulse is relatively wide. Therefore, there is no need to make the pulse generator circuit complicated in order to make the sampling pulse width sufficiently narrow.
There is no risk that the scale of the circuit will increase. Figure 4g shows the output voltage of the first and second systems mentioned above.
After sampling Vo 1 and Vo 2 ,
Combine at the point S shown in FIG.
the second stage source follower amplifier 2 connected to
This figure shows the waveform of the final output voltage VSH that appears across the load MOST Q 2 L of the amplifier after detecting the sampled and held composite voltage.

この回路の大きな長所として指摘できること
は、第4図のタイミングダイアグラムから容易に
判断できるごとく、サンプリングパルスとしてリ
セツト電圧をそのまま流用できる点である。すな
わち時刻t3〜t4,t7〜t8……の間持続する第2リ
セツト電圧φR2は第1出力電圧Vo1が前縁におい
て立ち上がつた後のt3〜t5,t7〜t9……の間継続
する各平坦部F11,F12,……内にあるから該リセ
ツト電圧φR2で第1出力電圧Vo1を充分サンプリ
ングできる。そして時刻t5〜t6,t9〜t10の間持続
する第1リセツト電圧φR1は第2出力電圧Vo2
前縁部に引きつづいてt5〜t7,t9〜t11,……なる
期間継続する各平坦部F21,F22,……内にあるた
め、該電圧φR1で第2出力電圧Vo2を充分サンプ
リングできる。ちなみにこの検出回路は、3相以
上の転送電圧で駆動される3個以上のCCDを読
出し部としたラインセンサにも、さらにラインセ
ンサ以外の機能素子にも適用可能である。ただし
その場合には読出し部の数に応じてサンプルホー
ルド用MOSTを3個以上組合わせて各読出し部
からの信号の合成を行えばよい。本発明に係るラ
インセンサの信号電荷検出回路は以上に述べたご
とく、サンプリングが容易であり、しかもサンプ
リングパルスとしてリセツト電圧をそのまま利用
できるため高性能のサンプリングパルス発生器を
省略することができる。このため工程数の減少、
チツプサイズの小型が実現でき、高速動作に適し
たものとなしうるため、実用上極めて大なる効果
が期待できる。
A major advantage of this circuit, as can be easily determined from the timing diagram in FIG. 4, is that the reset voltage can be directly used as the sampling pulse. That is , the second reset voltage φ R2 that lasts from time t 3 to t 4 , t 7 to t 8 . Since it is within each flat portion F 11 , F 12 , . . . which continues for a period of t 9 . . . , the first output voltage Vo 1 can be sufficiently sampled with the reset voltage φ R2 . The first reset voltage φ R1 , which lasts from time t5 to t6 , from t9 to t10 , continues at the leading edge of the second output voltage Vo2 from t5 to t7 , from t9 to t11 , . . , the second output voltage Vo 2 can be sufficiently sampled with the voltage φ R1 . Incidentally, this detection circuit can be applied to a line sensor having a readout section of three or more CCDs driven by transfer voltages of three or more phases, and also to functional elements other than line sensors. However, in that case, three or more sample-and-hold MOSTs may be combined depending on the number of readout sections, and signals from each readout section may be combined. As described above, the signal charge detection circuit for a line sensor according to the present invention allows easy sampling, and since the reset voltage can be directly used as a sampling pulse, a high-performance sampling pulse generator can be omitted. This reduces the number of processes,
Since the chip size can be reduced and it can be made suitable for high-speed operation, extremely large practical effects can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のラインセンサの要部とその信号
電荷検出回路を示す図、第2図は該回路中の各部
印加電圧を示すタイミングダイヤグラム、第3図
は本発明に係るラインセンサの要部とその信号電
荷検出回路を示す図、第4図は該回路中の各部印
加電圧を示すタイミングダイヤグラムである。 1,1A,1B:第1段目のソースフオロワ増
幅器、2:第2段目のソースフオロワ増幅器、
3:サンプルパルス発生回路、11,12,1
3,14,15……,21,22,23,24,
25……:CCD転送電極、A:感光部、B1
B2:読み出し部、D,D1,D2:出力ダイオード、
O:最終出力端子、P,P1,P2:第1段ソース
フオロワ増幅器の出力端子、Q1,Q2,Q1L,
Q2L,Q11,Q21,Q12,Q22,QSH1,QSHz,QR,
QR1,QR2:MOSトランジスタ、φR,φR1
φR2:リセツト電圧、φSH,φSH1,φSH2:サンプリ
ング電圧。
Fig. 1 is a diagram showing the main parts of a conventional line sensor and its signal charge detection circuit, Fig. 2 is a timing diagram showing the voltage applied to each part in the circuit, and Fig. 3 is a main part of the line sensor according to the present invention. FIG. 4 is a timing diagram showing voltages applied to various parts of the circuit. 1, 1A, 1B: 1st stage source follower amplifier, 2: 2nd stage source follower amplifier,
3: Sample pulse generation circuit, 11, 12, 1
3, 14, 15..., 21, 22, 23, 24,
25...: CCD transfer electrode, A: Photosensitive part, B 1 ,
B 2 : Readout section, D, D 1 , D 2 : Output diode,
O: Final output terminal, P, P 1 , P 2 : Output terminal of first stage source follower amplifier, Q 1 , Q 2 , Q 1 L,
Q 2 L, Q 11 , Q 21 , Q 12 , Q 22 , QSH 1 , QSHz, QR,
QR 1 , QR 2 :MOS transistor, φ R , φ R1 ,
φR2 : Reset voltage, φSH , φSH1 , φSH2 : Sampling voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 光電変換によつて信号電荷を発生する複数の
受光セルからなる感光部と、該感光部の奇数番目
の受光セルの信号電荷と偶数番目の受光セルの信
号電荷を別々に転送して時系列として出力する2
系統の読み出し部とで構成されたラインセンサに
おいて、各読み出し部に出力ダイオード、そのリ
セツト手段、ならびに初段増幅手段で構成された
検出回路をそれぞれ接続するとともに、該各検出
回路の出力側にそれぞれサンプルホールド回路を
接続し、かつ一方の検出回路のリセツト手段に対
するリセツトパルスに一致する関係で他方の検出
回路に連なるサンプルホールド回路にサンプリン
グパルスを交互に供給し、両サンプルホールド回
路の出力信号を合成して単一系統の出力として取
り出すことを特徴とするラインセンサの信号電荷
検出回路。
1. A photosensitive section consisting of a plurality of light receiving cells that generate signal charges through photoelectric conversion, and a time-series transfer of the signal charges of the odd-numbered light-receiving cells and the signal charges of the even-numbered light-receiving cells of the photosensitive section separately. Output as 2
In a line sensor consisting of a system readout section, a detection circuit consisting of an output diode, its reset means, and first stage amplification means is connected to each readout section, and a sample is connected to the output side of each detection circuit. The hold circuits are connected, and sampling pulses are alternately supplied to the sample and hold circuits connected to the other detection circuit in a relationship that matches the reset pulse to the reset means of one of the detection circuits, and the output signals of both sample and hold circuits are combined. A signal charge detection circuit for a line sensor, which is characterized in that the signal is extracted as a single output.
JP11222179A 1979-08-31 1979-08-31 Signal charge detecting circuit of line sensor Granted JPS5636272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11222179A JPS5636272A (en) 1979-08-31 1979-08-31 Signal charge detecting circuit of line sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11222179A JPS5636272A (en) 1979-08-31 1979-08-31 Signal charge detecting circuit of line sensor

Publications (2)

Publication Number Publication Date
JPS5636272A JPS5636272A (en) 1981-04-09
JPS6337995B2 true JPS6337995B2 (en) 1988-07-27

Family

ID=14581276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11222179A Granted JPS5636272A (en) 1979-08-31 1979-08-31 Signal charge detecting circuit of line sensor

Country Status (1)

Country Link
JP (1) JPS5636272A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181274A (en) * 1981-04-30 1982-11-08 Sony Corp Solid-state image pickup element
US4985758A (en) * 1982-12-07 1991-01-15 Canon Kabushiki Kaisha Signal processing system having selected output from plural readout devices
US4814861A (en) * 1985-07-10 1989-03-21 Canon Kabushiki Kaisha Signal processing apparatus with independent gain control for chrominance and color signals
EP0282557B1 (en) * 1986-09-18 1993-12-15 EASTMAN KODAK COMPANY (a New Jersey corporation) Output circuit for image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134252A (en) * 1974-09-17 1976-03-23 Kuraray Co GOMUSOSEI BUTSU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134252A (en) * 1974-09-17 1976-03-23 Kuraray Co GOMUSOSEI BUTSU

Also Published As

Publication number Publication date
JPS5636272A (en) 1981-04-09

Similar Documents

Publication Publication Date Title
EP1178673B1 (en) Solid state image pickup apparatus
US4672453A (en) Contact type image sensor and driving method therefor
JP3947634B2 (en) High-speed CMOS image sequence correlation double sampling circuit
JP3817294B2 (en) Solid-state imaging device
US20010033337A1 (en) Image pickup apparatus
JPH0340997B2 (en)
EP0352767B1 (en) Solid-state image pickup device having shared output line for photoelectric conversion voltage
US5315114A (en) Integrated circuit detector array incorporating bucket brigade devices for time delay and integration
EP0395142B1 (en) Sensor circuit for correlated double signal sampling
US20030223003A1 (en) Fast and low-power multiplexing circuit and use thereof in imaging devices
JPS59160374A (en) Photoelectric converter
US4779005A (en) Multiple detector viewing of pixels using parallel time delay and integration circuitry
JP4489850B2 (en) Solid-state imaging device
JPS6337995B2 (en)
US4775798A (en) Device for detection with time delay and phase integration
JPH0211073A (en) Charge injecting apparatus
JP2003244397A (en) Image sensor
US7872674B2 (en) Solid-state imaging device and method of operating solid-state imaging device
JPH10173859A (en) Analog signal processing circuit
JPH11225289A (en) Edge detection solid-state image pickup device and edge detection method by driving the solid-state image pickup device
JPS6069969A (en) Image sensor
US6545776B1 (en) Image sensor IC, facsimile apparatus and image scanner apparatus using the image sensor ICS
JPH0147051B2 (en)
JPH0310562A (en) Signal correction device
JPS5911303B2 (en) Signal processing method for solid-state image sensor