JPS6337837A - Magneto-optical recording medium and its production - Google Patents

Magneto-optical recording medium and its production

Info

Publication number
JPS6337837A
JPS6337837A JP17965586A JP17965586A JPS6337837A JP S6337837 A JPS6337837 A JP S6337837A JP 17965586 A JP17965586 A JP 17965586A JP 17965586 A JP17965586 A JP 17965586A JP S6337837 A JPS6337837 A JP S6337837A
Authority
JP
Japan
Prior art keywords
magnetic film
film
magneto
optical recording
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17965586A
Other languages
Japanese (ja)
Inventor
Yasuo Inoue
靖雄 井上
Shuichi Nogawa
修一 野川
Eiji Kamijo
栄治 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP17965586A priority Critical patent/JPS6337837A/en
Publication of JPS6337837A publication Critical patent/JPS6337837A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of a magnetic film consisting of an amorphous alloy of a rare earth element and transition metal element on a substrate by superposing a nitride layer of the constituting element of the magnetic film on said magnetic film. CONSTITUTION:A semi-processed product formed with the prescribed magnetic film 8 on the substrate 4 is housed in a vacuum vessel 12 and an ion source 16 is disposed toward the magnetic film 8. An N ion beam 18 is implanted to the surface of the magnetic film in a high vacuum to form the nitride layer 10 of the element constituting the film 8. The layer 10 having good corrosion resistance is obtd. if the quantity of the implantation is selected in a 10<12>-10<18> pieces/cm<2> range. The film 10 is formed in the depth direction from the surface of the film 8 and is free from the problem of exfoliation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁性膜表面の保護手段の改良を図った光磁
気記録媒体とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium with an improved means for protecting the surface of a magnetic film, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

光磁気記録媒体用の磁性膜として最も有望なものは、希
土類元素(例えばGd 、Tb 、DV等)と遷移金属
元素(例えばFe 、Co等)とのアモルファス合金(
薄)膜であるが、そのような磁性膜は酸化劣化を生じ易
く耐食性に欠けるという欠点がある。
The most promising magnetic films for magneto-optical recording media are amorphous alloys of rare earth elements (e.g. Gd, Tb, DV, etc.) and transition metal elements (e.g. Fe, Co, etc.).
However, such magnetic films have the drawback of being susceptible to oxidative deterioration and lacking in corrosion resistance.

そのため従来から、磁性膜表面の酸化の進行を防ぐため
に、磁性膜の表面を保護膜で覆うという手段が検討され
ており、この保護膜の材質としては5iO1SiO□、
A l 20 :l 、A I N 、 S i 3 
N 、、ZnS等が報告されている。
Therefore, in order to prevent the progression of oxidation on the surface of the magnetic film, methods of covering the surface of the magnetic film with a protective film have been considered, and the materials for this protective film include 5iO1SiO□,
A l 20 : l , A I N , S i 3
N,, ZnS, etc. have been reported.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような磁性膜は例えば高周波スパッタ法、マグネ
トロンスパッタ法、真空蒸着法等によって形成され、上
記のような保護膜は例えば高周波スバッタ法、反応性ス
パッタ法、CVD法等によって形成されるが、−膜内に
、磁性膜の成膜速度に比べて保護膜の成膜速度は115
〜1/3程度と非常に遅い。これは簡単に言えば、保護
膜形成材料が絶縁物であるためスパンタレート等が小さ
いことに起因する。
The above-mentioned magnetic film is formed by, for example, a high-frequency sputtering method, a magnetron sputtering method, a vacuum evaporation method, etc., and the above-mentioned protective film is formed by, for example, a high-frequency sputtering method, a reactive sputtering method, a CVD method, etc. - The film formation speed of the protective film is 115% compared to the film formation speed of the magnetic film.
It is very slow at ~1/3. Simply put, this is due to the fact that the protective film forming material is an insulator and therefore has small amounts of spuntalate and the like.

そのため、光磁気記録媒体を連続的に製造する場合、そ
のスループットを左右するのは保護膜の成膜時間となっ
ており、これが量産化に対して大きな障害となっている
。例えば、4インチの高周波マグネトロンスパッタ法で
Si○を成膜する場合の成膜速度は約50^/minで
あり、約Ionm厚の保護膜形成に約20分もかかり非
常に遅い。
Therefore, when magneto-optical recording media are manufactured continuously, the throughput is determined by the time required to form the protective film, which is a major obstacle to mass production. For example, when forming a 4-inch Si◯ film by high-frequency magnetron sputtering, the film formation rate is about 50^/min, which is extremely slow as it takes about 20 minutes to form a protective film with a thickness of about Ionm.

そこでこの発明は、成膜速度の遅い上記のような保護膜
とは別の手段によって磁性膜の耐食性の改善を図った光
磁気記録媒体とその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magneto-optical recording medium and a method for manufacturing the same, in which the corrosion resistance of a magnetic film is improved by means other than the above-mentioned protective film, which has a slow film formation rate.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の光磁気記録媒体は、基体上に設けられた希土
類元素と遷移金属元素とのアモルファス合金から成る磁
性膜の表面に、当該磁性膜を構成する元素の窒化物層を
形成していることを特徴とする。
In the magneto-optical recording medium of the present invention, a nitride layer of an element constituting the magnetic film is formed on the surface of a magnetic film made of an amorphous alloy of a rare earth element and a transition metal element provided on a substrate. It is characterized by

この発明の第1の製造方法は、基体上に設けられた希土
類元素と遷移金属元素とのアモルファス合金から成る磁
性膜の表面に窒素イオンビームを照射することによって
、当該磁性膜の表面に磁性膜を構成する元素の窒化物層
を形成することを特徴とする。
The first manufacturing method of the present invention is to irradiate the surface of a magnetic film made of an amorphous alloy of a rare earth element and a transition metal element provided on a substrate with a nitrogen ion beam, thereby forming a magnetic film on the surface of the magnetic film. It is characterized by forming a nitride layer of elements constituting the .

この発明の第2の製造方法は、基体上に設けられた希土
類元素と遷移金属元素とのアモルファス合金から成る磁
性膜の表面に窒素プラズマを照射することによって、当
該磁性膜の表面に磁性膜を構成する元素の窒化物層を形
成することを特徴とする。
A second manufacturing method of the present invention is to form a magnetic film on the surface of the magnetic film by irradiating nitrogen plasma onto the surface of the magnetic film made of an amorphous alloy of rare earth elements and transition metal elements provided on a substrate. It is characterized by forming a nitride layer of the constituent elements.

〔作用〕[Effect]

この発明の光磁気記録媒体においては、磁性膜を構成す
る元素の窒化物層によって磁性膜の表面が保護されるた
め、磁性膜の耐食性が向上する。
In the magneto-optical recording medium of the present invention, the surface of the magnetic film is protected by the nitride layer of the element constituting the magnetic film, so that the corrosion resistance of the magnetic film is improved.

この発明の第1の製造方法によれば、窒素イオンビーム
照射によって窒素イオンが磁性膜表面に注入され、それ
によって当該表面に磁性膜を構成する元素の窒化物層が
形成される。
According to the first manufacturing method of the present invention, nitrogen ions are implanted into the surface of the magnetic film by nitrogen ion beam irradiation, thereby forming a nitride layer of the element constituting the magnetic film on the surface.

この発明の第2の製造方法によれば、窒素プラズマ中の
窒素イオンが磁性膜表面に注入され、それによって当該
表面に磁性膜を構成する元素の窒化物層が形成される。
According to the second manufacturing method of the present invention, nitrogen ions in nitrogen plasma are injected into the surface of the magnetic film, thereby forming a nitride layer of the elements constituting the magnetic film on the surface.

〔実施例〕〔Example〕

第1図は、この発明に係る光磁気記録媒体の一例を部分
的に示す断面図である。この光磁気記録媒体2は、基体
4上に誘電体膜6を介して磁性膜8を設けており、そし
て当該磁性膜8の表面に磁性膜8を構成する元素の窒化
物層10を形成している。
FIG. 1 is a sectional view partially showing an example of a magneto-optical recording medium according to the present invention. This magneto-optical recording medium 2 has a magnetic film 8 provided on a substrate 4 via a dielectric film 6, and a nitride layer 10 of the elements constituting the magnetic film 8 is formed on the surface of the magnetic film 8. ing.

基体4は例えばガラス基板であり、その形態としてはデ
ィスク状等の種々のものが採り得る。
The base body 4 is, for example, a glass substrate, and can take various shapes such as a disk shape.

基体4と磁性膜8間には、必要に応じてこの例のように
誘電体膜6を設けたり、他の膜を設けたりしても良いが
、それらを設けずに基体4上に直接磁性膜8を設けても
良い。ちなみにこの誘電体膜6は、基体4側から光を入
射させて磁性膜8における反射光を利用する場合に出力
をエンハンスメントする働きや、基体4側からの磁性膜
8への酸素の浸入を防ぐ働き等をする。
If necessary, a dielectric film 6 may be provided between the base 4 and the magnetic film 8 as in this example, or another film may be provided between the base 4 and the magnetic film 8. A membrane 8 may also be provided. Incidentally, this dielectric film 6 serves to enhance the output when light is incident from the base 4 side and the reflected light from the magnetic film 8 is used, and also to prevent oxygen from entering the magnetic film 8 from the base 4 side. work etc.

磁性膜8は、前述したような希土類元素と遷移金属元素
とのアモルファス合金から成る。当該磁性膜8は、この
例のように単層であっても、あるいは必要に応じて多層
化されていても良い。
The magnetic film 8 is made of an amorphous alloy of rare earth elements and transition metal elements as described above. The magnetic film 8 may be a single layer as in this example, or may be multilayered as necessary.

窒化物層10は、例えばFeNxや希土類元素の窒化物
等から成る。
The nitride layer 10 is made of, for example, FeNx or a nitride of a rare earth element.

上記のような光磁気記録媒体2においては、窒化物層l
Oによって磁性膜8の表面が酸化等から保護されるため
、磁性膜8の耐食性が向上する。
In the magneto-optical recording medium 2 as described above, the nitride layer l
Since the surface of the magnetic film 8 is protected from oxidation and the like by O, the corrosion resistance of the magnetic film 8 is improved.

しかもこの窒化物層10は、従来の保護膜の場合のよう
に別の薄膜を堆積させるのと違って、磁性膜8の表面の
みの窒化処理によって形成することができるので、短時
間で形成することができる。
Moreover, this nitride layer 10 can be formed in a short time because it can be formed by nitriding only the surface of the magnetic film 8, unlike depositing another thin film as in the case of a conventional protective film. be able to.

従って、このような光磁気記録媒体2を連続的に製造す
る場合の生産性(スループット)は、従来の光磁気記録
媒体を製造する場合に比べて向上する。
Therefore, the productivity (throughput) when continuously manufacturing such magneto-optical recording media 2 is improved compared to when manufacturing conventional magneto-optical recording media.

次に上記のような光磁気記録媒体2の製造方法の例を第
2図あるいは第3図を参照して説明する(但し、以下に
おいては前述した誘電体膜6を設けないものを例に説明
する。)。
Next, an example of a method for manufacturing the magneto-optical recording medium 2 as described above will be explained with reference to FIG. 2 or FIG. do.).

第2図は、窒素イオンビーム照射による方法を実施する
装置の例を示す。即ち、前述したような基体4上に磁性
膜8を形成したものがホルダ14に取り付けられて真空
容器12内に収納されており、当該磁性膜8に向けてイ
オン源16が配置されている。イオンa16は例えばい
わゆるパケット型イオン源であり、均一で大面積の窒素
イオンビーム18を磁性膜8の表面に照射することがで
きる。
FIG. 2 shows an example of an apparatus for carrying out the method using nitrogen ion beam irradiation. That is, a substrate 4 as described above with a magnetic film 8 formed thereon is attached to a holder 14 and housed in a vacuum container 12, and an ion source 16 is arranged facing the magnetic film 8. The ions a16 are, for example, a so-called packet type ion source, and can irradiate the surface of the magnetic film 8 with a uniform, large-area nitrogen ion beam 18.

処理に際しては、真空容器12を高真空(例えば10−
’〜10−’T o r r程度)に排気した後、イオ
ン源16からの窒素イオンビーム18を磁性膜8の表面
に照射する。これによって、窒素イオンが磁性膜8の表
面に注入され、磁性膜8の表面に当該磁性膜8を構成す
る元素の窒化物!10(第1図参照)が形成される。
During processing, the vacuum container 12 is placed in a high vacuum (for example, 10-
After evacuation to a temperature of approximately 10-10 Torr), the surface of the magnetic film 8 is irradiated with a nitrogen ion beam 18 from the ion source 16. As a result, nitrogen ions are implanted into the surface of the magnetic film 8, and nitrides of the elements constituting the magnetic film 8 are deposited on the surface of the magnetic film 8! 10 (see FIG. 1) is formed.

その場合、窒素イオンビーム18のエネルギーは、50
Kevを越えると窒素イオンの注入深さが深くなり磁性
膜8の磁気特性を劣化させる恐れが出てくるので、50
KeV以下、特に20KeV〜500eV程度の範囲内
にするのが好ましい。
In that case, the energy of the nitrogen ion beam 18 is 50
If Kev is exceeded, the implantation depth of nitrogen ions becomes deep and there is a risk of deteriorating the magnetic properties of the magnetic film 8.
KeV or less, particularly preferably within a range of about 20 KeV to 500 eV.

また、窒素イオンの注入量は、1012個/cm”未満
の場合は、磁性膜8の表面全体が窒化物層10で被覆さ
れないため耐食性が悪く、逆に1018個/cm”を越
えると、磁性膜8の表面に窒素ガスによるボイドが生成
して磁気特性を劣化されるため、10′2〜1018個
/cm2の範囲内にするのが好ましい。
If the amount of nitrogen ions implanted is less than 1012 ions/cm", the entire surface of the magnetic film 8 will not be covered with the nitride layer 10, resulting in poor corrosion resistance. Conversely, if the amount of nitrogen ions implanted exceeds 1018 ions/cm", the magnetic film 8 will not be covered with the nitride layer 10, resulting in poor corrosion resistance. Since voids due to nitrogen gas are generated on the surface of the film 8 and the magnetic properties are deteriorated, the number is preferably within the range of 10'2 to 1018 voids/cm2.

尚、上記処理に際しては、基体4および磁性膜8の温度
上昇による変形、特性劣化等を防止するため、ホルダ1
4に冷却水等の冷却媒体を供給して基体4および磁性膜
8を冷却するようにしても良い。
In addition, during the above processing, in order to prevent deformation and characteristic deterioration of the base 4 and the magnetic film 8 due to temperature rise,
The base body 4 and the magnetic film 8 may be cooled by supplying a cooling medium such as cooling water to the magnetic film 4 .

上記のような方法によれば、洒単にしかも短時間で、磁
性膜8の表面に窒化物層10を形成することができる。
According to the method described above, the nitride layer 10 can be formed on the surface of the magnetic film 8 in a stylish manner and in a short time.

しかもこの窒化物層10は、磁性膜80表面から深さ方
向に形成されるため、それの剥離の問題も無い。
Furthermore, since the nitride layer 10 is formed in the depth direction from the surface of the magnetic film 80, there is no problem of its peeling off.

具体的な実験例を示せば、上記のような方法に基づいて
、TbFe合金の磁性膜の表面に、窒素イオンビームを
500eVのエネルギー、10mAのビーム電流で5分
間照射して表面を窒化した。
To give a specific experimental example, based on the method described above, the surface of a TbFe alloy magnetic film was irradiated with a nitrogen ion beam at an energy of 500 eV and a beam current of 10 mA for 5 minutes to nitridize the surface.

この磁性膜を、温度80℃、湿度80%の恒温層内で加
速劣化させたところ、何ら異常は認められなかった。つ
まり、磁性膜8の表面の保護する手段を形成する時間が
、従来では保護膜形成のために20分も要していたもの
が、この例では5分に短縮できたことになる。
When this magnetic film was subjected to accelerated deterioration in a constant temperature layer at a temperature of 80° C. and a humidity of 80%, no abnormality was observed. In other words, the time required to form a means for protecting the surface of the magnetic film 8, which conventionally required 20 minutes to form a protective film, can be reduced to 5 minutes in this example.

第3図は、窒素プラズマ照射による方法を実施する装置
の例を示す。即ち、真空容器12内で、陰極兼用のホル
ダ14と陽極20とを対向させて、両者間に直流電源2
2を接続しており、ホルダ14上には、前述したような
基体4上に磁性膜8を形成したものが保持されている。
FIG. 3 shows an example of an apparatus for carrying out the method using nitrogen plasma irradiation. That is, in the vacuum container 12, the holder 14 which also serves as a cathode and the anode 20 are opposed to each other, and the DC power supply 2 is connected between them.
2 are connected to each other, and a magnetic film 8 formed on the base 4 as described above is held on the holder 14.

処理に際しては、真空容器12内に窒素ガスGを導入し
て真空容器12内の圧力を1〜10−”Torr程度に
保ち、ホルダ14と陽極20間に直流電源22から直流
電圧を印加すると、両者間に放電が生じて窒素プラズマ
24が生成される。そして、窒素プラズマ24中の窒素
イオンが電界の作用で陰極側に引きつけられて磁性膜8
の表面に注入され、それによって磁性膜8の表面に当該
磁性膜8を構成する元素の窒化物層10 (第1図参照
)が形成される。
During the process, nitrogen gas G is introduced into the vacuum container 12 to maintain the pressure inside the vacuum container 12 at about 1 to 10-'' Torr, and a DC voltage is applied from the DC power supply 22 between the holder 14 and the anode 20. A discharge occurs between the two to generate nitrogen plasma 24.Nitrogen ions in the nitrogen plasma 24 are attracted to the cathode side by the action of the electric field, and the magnetic film 8
As a result, a nitride layer 10 (see FIG. 1) of the elements constituting the magnetic film 8 is formed on the surface of the magnetic film 8.

その場合、ホルダ14と陽極20間に印加する電圧は、
それがあまり大きいと窒素イオンによる磁性膜8の表面
のスパフタリングや不所望な温度上昇が生じるため、5
0〜500V程度の範囲内にするのが好ましい。
In that case, the voltage applied between the holder 14 and the anode 20 is
If it is too large, sputtering on the surface of the magnetic film 8 due to nitrogen ions and an undesirable temperature rise will occur.
It is preferable to set it within the range of about 0 to 500V.

上記のような方法によっても、簡単にしかも短時間で、
磁性膜8の表面に窒化物層10を形成することができる
。またこの方法の場合も、窒化物層10は磁性膜8の表
面から深さ方向に形成されるため、その剥離の問題も無
い。
With the above method, it can be done easily and in a short time.
A nitride layer 10 can be formed on the surface of the magnetic film 8. Also in this method, since the nitride layer 10 is formed in the depth direction from the surface of the magnetic film 8, there is no problem of its peeling.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明に係る光磁気記録媒体においては
、窒化物層によって磁性膜表面が保護されるため、当B
tA4n性膜の耐食性が向上する。しかも、従来のよう
な成膜速度の遅い保護膜が不用となるため、当該光磁気
記録媒体を製造する場合の生産性も向上する。
As described above, in the magneto-optical recording medium according to the present invention, the surface of the magnetic film is protected by the nitride layer.
The corrosion resistance of the tA4n film is improved. Moreover, since the conventional protective film, which is slow to form, is not required, the productivity in manufacturing the magneto-optical recording medium is also improved.

また、この発明に係る製造方法によれば、簡単にしかも
短時間で、上記のような光磁気記録媒体を製造すること
ができる。しかもこの方法による窒化物層には剥離の問
題が無い。
Further, according to the manufacturing method according to the present invention, the above magneto-optical recording medium can be manufactured simply and in a short time. Moreover, the nitride layer produced by this method does not suffer from peeling problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る光磁気記録媒体の一例を部分
的に示す断面図である。第2図および第3図は、それぞ
れ、この発明に係る製造方法を実施する装置の例を示す
概略図である。 2、・・この発明に係る光磁気記録媒体、4・・・基体
、81.・磁性膜、10・・・窒化物層、18・・、窒
素イオンビーム、24・・・窒素プラズマ。
FIG. 1 is a sectional view partially showing an example of a magneto-optical recording medium according to the present invention. FIGS. 2 and 3 are schematic diagrams each showing an example of an apparatus for carrying out the manufacturing method according to the present invention. 2... Magneto-optical recording medium according to the present invention, 4... Substrate, 81. -Magnetic film, 10...Nitride layer, 18...Nitrogen ion beam, 24...Nitrogen plasma.

Claims (3)

【特許請求の範囲】[Claims] (1)基体上に設けられた希土類元素と遷移金属元素と
のアモルファス合金から成る磁性膜の表面に、当該磁性
膜を構成する元素の窒化物層を形成していることを特徴
とする光磁気記録媒体。
(1) A magneto-optical device characterized in that a nitride layer of an element constituting the magnetic film is formed on the surface of a magnetic film made of an amorphous alloy of a rare earth element and a transition metal element provided on a substrate. recoding media.
(2)基体上に設けられた希土類元素と遷移金属元素と
のアモルファス合金から成る磁性膜の表面に窒素イオン
ビームを照射することによって、当該磁性膜の表面に磁
性膜を構成する元素の窒化物層を形成することを特徴と
する光磁気記録媒体の製造方法。
(2) By irradiating the surface of a magnetic film made of an amorphous alloy of rare earth elements and transition metal elements provided on a substrate with a nitrogen ion beam, nitrides of the elements constituting the magnetic film are formed on the surface of the magnetic film. A method for manufacturing a magneto-optical recording medium, which comprises forming a layer.
(3)基体上に設けられた希土類元素と遷移金属元素と
のアモルファス合金から成る磁性膜の表面に窒素プラズ
マを照射することによって、当該磁性膜の表面に磁性膜
を構成する元素の窒化物層を形成することを特徴とする
光磁気記録媒体の製造方法。
(3) By irradiating the surface of a magnetic film made of an amorphous alloy of rare earth elements and transition metal elements provided on a substrate with nitrogen plasma, a nitride layer of the element constituting the magnetic film is formed on the surface of the magnetic film. 1. A method for manufacturing a magneto-optical recording medium, the method comprising: forming a magneto-optical recording medium.
JP17965586A 1986-07-30 1986-07-30 Magneto-optical recording medium and its production Pending JPS6337837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17965586A JPS6337837A (en) 1986-07-30 1986-07-30 Magneto-optical recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17965586A JPS6337837A (en) 1986-07-30 1986-07-30 Magneto-optical recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6337837A true JPS6337837A (en) 1988-02-18

Family

ID=16069567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17965586A Pending JPS6337837A (en) 1986-07-30 1986-07-30 Magneto-optical recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6337837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019462A (en) * 1988-02-02 1991-05-28 Basf Aktiengesellschaft Sheet-like, multilayer magneto-optical recording material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019462A (en) * 1988-02-02 1991-05-28 Basf Aktiengesellschaft Sheet-like, multilayer magneto-optical recording material

Similar Documents

Publication Publication Date Title
JP2009270158A (en) Magnetron sputtering system and thin film production method
JPS6337837A (en) Magneto-optical recording medium and its production
JP3078853B2 (en) Oxide film formation method
JPH0867981A (en) Sputtering device
JPS60218815A (en) Manufacture of hard magnetic film
JPS6230876A (en) Opposed target type sputtering device
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
JPS63262457A (en) Preparation of boron nitride film
JPS59197567A (en) Sputtering apparatus
JPH07111791B2 (en) Method for manufacturing magneto-optical recording medium
JP3136764B2 (en) Method for producing chalcopyrite thin film
JP2840660B2 (en) Pretreatment method for optical disk substrate
JPS60132319A (en) Method for formation of thin film
JPS63213664A (en) Ion plating device
JPS62297458A (en) Production of thin &#39;permalloy(r)&#39; film
JPS61294714A (en) Formation of transparent conducting metal oxide film
JPS62103821A (en) Magnetic recording medium and its production
JPS6320303B2 (en)
JPS6333561A (en) Thin film forming method
SU1708919A1 (en) Method for applying thin films in vacuum
JPH0633456B2 (en) Method for producing aluminum material having crystalline aluminum nitride layer
JPS6353261B2 (en)
JPH0553864B2 (en)
JPS62284071A (en) Formation of permalloy layer on surface of nickel base material
JPS59170266A (en) Reactive sputtering method under oxidation