JPS6337569A - Oxygen electrode structure for high-temperature solid electrolyte fuel cell - Google Patents

Oxygen electrode structure for high-temperature solid electrolyte fuel cell

Info

Publication number
JPS6337569A
JPS6337569A JP61180010A JP18001086A JPS6337569A JP S6337569 A JPS6337569 A JP S6337569A JP 61180010 A JP61180010 A JP 61180010A JP 18001086 A JP18001086 A JP 18001086A JP S6337569 A JPS6337569 A JP S6337569A
Authority
JP
Japan
Prior art keywords
oxygen electrode
fuel cell
oxygen
solid electrolyte
electrode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61180010A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP61180010A priority Critical patent/JPS6337569A/en
Publication of JPS6337569A publication Critical patent/JPS6337569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To prevent the deterioration of the cell characteristic by providing an oxygen electrode made of a specific perovskite compound and a shielding film made of a specific perovskite compound. CONSTITUTION:An La1-yM<3>yM<4>O3-y/2 (M<3> is Sr, Mg, Ca, or Ba; M<4> is Al or In; 0<y<1 perovskite compound film is provided on an oxygen electrode made of a perovskite compound expressed by an equation La1-xM<1>xM<2>O3-x/2(M<1> is Sr, Mg, Ca, or Ba; M<2> is Co, Fe, or Mn; 0<x<1), and stabilized zirconia and the oxygen electrode are cut off. Accordingly, stabilized zirconia and the La1-xM<1>xM<2>O3-x/2 oxygen electrode are cut off by the La1-yM<3>yM<4>O3-y/2 perovskite compound film, thus it is not reacted practically with the perovskite compound, thus a fuel cell whose characteristic is not deteriorated even if it is used for a long time can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、燃料電池の酸素極構造体に関し、特には高
温下で用いられ、固体の電解質を採用した高温固体電解
質燃料電池のためのI!11素極構遺体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxygen electrode structure for a fuel cell, and particularly to an oxygen electrode structure for a high-temperature solid electrolyte fuel cell that is used at high temperatures and employs a solid electrolyte. ! 11 Concerning the remains of prime structure.

[従来技術及びその欠点] 燃料電池は、燃料の酸化反応を電気化学的に行なわせる
ことによって、その酸化反応に伴う自由エネルギー変化
を直接電気エネルギーとして取り出すことができるよう
に組み立てた電池であり、古くから種々のものが提案さ
れ開発されている。最もよく研究されているものは、水
素を燃料として用いた水素−酸素燃料電池である。水素
−酸素燃料電池ては水素と酸素とを電気化学的に反応さ
せ、直接電気エネルギーを取り出す、電極には多孔性炭
素の表面に触媒(主に白金)を添加したものが多く使用
されている。水素−酸素電極は電解質の種類により、リ
ン酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質燃
料電池に大別される。
[Prior Art and Its Disadvantages] A fuel cell is a battery assembled in such a way that the free energy change accompanying the oxidation reaction can be directly extracted as electrical energy by electrochemically carrying out the oxidation reaction of the fuel. Various methods have been proposed and developed since ancient times. The most well-studied type is the hydrogen-oxygen fuel cell, which uses hydrogen as the fuel. Hydrogen-oxygen fuel cells electrochemically react hydrogen and oxygen to directly extract electrical energy, and electrodes often use porous carbon with a catalyst (mainly platinum) added to the surface. . Hydrogen-oxygen electrodes are broadly classified into phosphoric acid fuel cells, molten carbonate fuel cells, and solid electrolyte fuel cells depending on the type of electrolyte.

リン酸型燃料電池は第一世代の燃料電池と言われ、リン
酸を電解質とし、170から220℃で作動する電池で
ある。この型の電池は1960年代から主にアメリカで
開発が進められ、現在最終的な開発段階にさしかかって
いるか、エネルギー効率が低いこと及び寿命が短いとい
う欠点を有する。
A phosphoric acid fuel cell is said to be a first generation fuel cell, uses phosphoric acid as an electrolyte, and operates at a temperature of 170 to 220°C. This type of battery has been developed mainly in the United States since the 1960s and is currently in its final development stage, but has the drawbacks of low energy efficiency and short lifespan.

溶融炭酸塩型燃料電池は電解質として炭酸リチウムと炭
酸カリウムの混合物のような炭酸塩の溶融物を電解質と
して用いたものであり、第二世代の燃料電池と呼ばれて
いるが、一般に陽極として用いられる酸化ニッケルの安
定性に問題があるので寿命が短いという欠点を有する。
Molten carbonate fuel cells use a molten carbonate, such as a mixture of lithium carbonate and potassium carbonate, as the electrolyte, and are called second-generation fuel cells, but they are generally used as the anode. Since there is a problem with the stability of the nickel oxide used, it has the disadvantage of a short life.

高温固体電解質燃料電池は、電解質に固体を用いるため
に電解質溶液、溶融塩を用いた電池に比べて電池の構成
が簡単となり、また、高温(1000°C前後)で作動
させるために貴金属触媒なして石炭改質ガス等の低純度
、安価ガスを燃料として使用できる等の利点があるか、
開発の困難度か高いので第三世代の燃料電池として位置
付けられている。固体電解質としてはジルコニア(z「
0□)に2価又は3価の金属酸化物を固溶させた安定化
ジルコニアが用いられている。安定化ジルコニアの導電
率が低温ては低いために約1000℃という高温て作動
させる必要がある。そのために電池の構成材、特に陽極
材料(酸素極材)の選択が重要となってくる。高温固体
電解質燃料電池用酸素極として要求される条件は(1)
高い導電性、(2)熱的化学的安定性(3)多孔性(4
)固体電解質(安定化ジルコニア)との密着性である。
High-temperature solid electrolyte fuel cells use a solid electrolyte, making the battery structure simpler than batteries using electrolyte solutions or molten salts, and also require no precious metal catalyst to operate at high temperatures (around 1000°C). Does it have the advantage of being able to use low-purity, cheap gas such as reformed coal gas as fuel?
Because it is highly difficult to develop, it is positioned as a third-generation fuel cell. As a solid electrolyte, zirconia (z"
Stabilized zirconia in which divalent or trivalent metal oxide is dissolved in solid solution is used. Since the conductivity of stabilized zirconia is low at low temperatures, it is necessary to operate at high temperatures of approximately 1000°C. For this reason, the selection of battery constituent materials, especially the anode material (oxygen electrode material), becomes important. The conditions required for an oxygen electrode for high temperature solid electrolyte fuel cells are (1)
High electrical conductivity, (2) thermal and chemical stability (3) porosity (4)
) Adhesion with solid electrolyte (stabilized zirconia).

これらの条件を比較的良く満足しているものは白金であ
るが、価格の点及び高温での揮発性の点から除外しなく
てはならない、全屈以外の電極としては数多くの金属酸
化物、複酸化物が報告されているか、現在のところLa
l−J”J”03−: (ただし、MlはSr、 Ca
又はBa、 M”はCo、 Fe又はMn、 xはOよ
り大きく0.5よりも小さな数)で表わされるペロブス
カイト型酸化物、特にLaCoO3,La、、Sr、h
lnO,か最も優れていると言われている。これらのペ
ロブスカイト型化合物は高温酸素雰囲気中て安定で、導
電率も高く(〜103103S’)かつ、酸素還元の触
媒能も高い理想的な酸素電極材である。しかし、これら
の酸化物電極は1000℃て作動させると初期特性は良
いが、経日的な電極特性の劣化が認められる。この劣化
の主な原因は、ペロブスカイト型酸化物と安定化ジルコ
ニアとの反応により非導電性の化合物か形成されるため
であることかわかった。
Platinum satisfies these conditions relatively well, but it must be excluded from the viewpoint of price and volatility at high temperatures, and there are many metal oxides, Whether multiple oxides have been reported or currently La
l-J”J”03-: (However, Ml is Sr, Ca
or Ba, M” is Co, Fe or Mn, x is a number greater than O and smaller than 0.5), especially LaCoO3, La, Sr, h
It is said that lnO is the best. These perovskite-type compounds are stable in a high-temperature oxygen atmosphere, have high electrical conductivity (~103103S'), and have high catalytic ability for oxygen reduction, and are ideal oxygen electrode materials. However, although these oxide electrodes have good initial characteristics when operated at 1000° C., deterioration of electrode characteristics over time is observed. It was found that the main cause of this deterioration was the formation of non-conductive compounds due to the reaction between the perovskite oxide and the stabilized zirconia.

[発明か解決しようとする問題点] この発明の目的は、固体電解質として安定化ジルコニア
を用いた高温固体電解質燃料電池のための酸素極構造体
であって、長時間高温において作動させても酸素極と電
解質とが実質的に反応せず、そのため電池特性か劣化し
ない高温固体電解質燃料電池用酸素極構造体を提供する
ことである。
[Problem to be solved by the invention] An object of the present invention is to provide an oxygen electrode structure for a high-temperature solid electrolyte fuel cell using stabilized zirconia as a solid electrolyte, which eliminates oxygen even when operated at high temperatures for a long time. An object of the present invention is to provide an oxygen electrode structure for a high-temperature solid electrolyte fuel cell in which the electrode and electrolyte do not substantially react with each other, so that cell characteristics do not deteriorate.

[問題点を解決するための手段] この発明では、一般式La+−J’J20i−’ (た
だし、MlはSr、 Mg、 Ca又はBa、 M”は
Co、 Fe又はMn、Xは0より大きくlよりも小さ
な数)で表わされるペロブスカイト型化合物から成る酸
素極上にLal−、M’yM’0.4 (たたし、Pは
Sr、 Mg、 Ca又はBa、 M’はAI又はIn
、 yは0より大きくlよりも小さな数)y!1ペロブ
スカイト型化型化合金膜け、この膜によって安定化ジル
コニアと上記酸素極とを遮断するようにして上記問題点
を解決した。
[Means for Solving the Problems] In this invention, the general formula La+-J'J20i-' (where Ml is Sr, Mg, Ca or Ba, M" is Co, Fe or Mn, and X is greater than 0) Lal-, M'yM'0.4 (where P is Sr, Mg, Ca or Ba, M' is AI or In
, y is a number greater than 0 and less than l) y! The above-mentioned problem was solved by forming a perovskite-type alloy film and blocking the stabilized zirconia from the oxygen electrode.

[発明の効果] この発明の酸素極構造体を、固体電解質として安定化ジ
ルコニアを用いた高温固体電解質燃料電池に適用すると
、Lal−yM3yM’J−乙型ベロブスカイト型化合
物膜によって安定化ジルコニアとLal−J’、M”O
,−五酸素極とが遮断されるため、これらの間で反応が
起きない、また、La、−、MコVM’03−y−型ペ
ロブスカイト型化合物は高温下においても安定化ジルコ
ニアともLal−、M’J”03−x型ペロブスカイト
化合物とも実質的に反応しない、従ってこの発明の酸素
極構造体を用いると、長時間使用しても特性が劣化しな
い燃料電池が得られる。また、Lal−yM’yM’o
s−Zの酸素イオン導電率は一般的に安定化ジルコニア
の導電率に比べて約1桁低いが。
[Effects of the Invention] When the oxygen electrode structure of the present invention is applied to a high-temperature solid electrolyte fuel cell using stabilized zirconia as a solid electrolyte, stabilized zirconia and Lal-J', M”O
, -5 oxygen electrodes are blocked, so no reaction occurs between them. Also, the La, -, Mco VM'03-y-type perovskite compound does not react with stabilized zirconia or Lal- even at high temperatures. , M'J"03-x type perovskite compounds. Therefore, when the oxygen electrode structure of the present invention is used, a fuel cell whose characteristics do not deteriorate even after long-term use can be obtained. yM'yM'o
Although the oxygen ion conductivity of s-Z is generally about an order of magnitude lower than that of stabilized zirconia.

厚さか薄ければ電池の内部抵抗を有意に増大させない。If the thickness is too small, it will not significantly increase the internal resistance of the battery.

[発明の詳細な説明] この発明の酸素極構造体が用いられる燃料電池の作動原
理は従来の高温固体電解質燃料電池の作動原理と全く同
じである。第1図にその作動原理を模式的に示す、第1
図に示すように、酸素極(陽極)では酸素分子が電子を
受は取って酸素イオンとなり、水素極(陰極)では酸素
イオンが水素分子と反応して水を生成するとともに電子
を放出する。すなわち、式で表わすと以下のようになる
[Detailed Description of the Invention] The operating principle of a fuel cell using the oxygen electrode structure of the present invention is exactly the same as that of a conventional high temperature solid electrolyte fuel cell. Figure 1 schematically shows the operating principle.
As shown in the figure, at the oxygen electrode (anode), oxygen molecules accept and take electrons and become oxygen ions, and at the hydrogen electrode (cathode), oxygen ions react with hydrogen molecules to produce water and release electrons. In other words, it can be expressed as follows.

酸素極: −0□+2e−0”− 水素極:02− ◆11□ −H20◆2e全体:  
−0□◆H2← H,0 この発明の酸素極構造体が用いられる高温固体電解質燃
料電池に採用される固体電解質は、従来の高温固体電解
質燃料電池と同様、安定化ジルコニアである。安定化ジ
ルコニアは、ジルコニアに例えば酸化イツトリウム、酸
化イッチリビウム、酸化スカンジウム、酸化カルシウム
、酸、化マグネシウム等の2価又は3価の金属酸化物を
好ましくは3ないし15モル%加えたものである。
Oxygen electrode: -0□+2e-0"- Hydrogen electrode: 02- ◆11□ -H20◆2e whole:
−0□◆H2←H,0 The solid electrolyte employed in the high temperature solid electrolyte fuel cell in which the oxygen electrode structure of the present invention is used is stabilized zirconia, as in the conventional high temperature solid electrolyte fuel cell. Stabilized zirconia is obtained by adding preferably 3 to 15 mol % of a divalent or trivalent metal oxide such as yttrium oxide, yttribium oxide, scandium oxide, calcium oxide, acid, or magnesium oxide to zirconia.

この発明の酸素極構造体に採用される酸素極は、一般式
La+−+tM’J”03−%−(ただし、−亀はS「
、Mg、 Ca又はBa、 M”はCo、 Fe又はM
n、  xはOより大きくlよりも小さなa)で表わさ
れるペロブスカイト型化合物である。この一般式て表わ
される化合物のうち、特に好ましいものは、高温での導
電率が最も高くかつ触媒能も高いLaCo0.である。
The oxygen electrode employed in the oxygen electrode structure of the present invention has the general formula La+-+tM'J"03-%- (where - is S"
, Mg, Ca or Ba, M” is Co, Fe or M
It is a perovskite type compound represented by a), where n and x are larger than O and smaller than l. Among the compounds represented by this general formula, particularly preferred are LaCo0. It is.

この発明の酸素極構造体では、上記酸素極上に一般式L
a1−.M3.M’O,I−Z (ただし、緬3はSr
、 klg、Ca又はBa、 M’はAI又はIn、 
 yはOより大きく1よりも小さな数)で示されるペロ
ブスカイト型化合物から成る遮断膜か設けられており、
これによって安定イビジルコニアとLa+−HM’xM
”01−4とが分離され、互いに接触しないようになる
In the oxygen electrode structure of the present invention, the general formula L
a1-. M3. M'O, I-Z (However, Myanmar 3 is Sr
, klg, Ca or Ba, M' is AI or In,
A barrier film made of a perovskite compound represented by y is a number greater than O and smaller than 1 is provided,
This results in stable ividirconium and La+-HM'xM.
``01-4 are separated and do not come into contact with each other.

La+−J”yM’03−z遮断膜の厚さは、電池の内
部抵抗を小さく抑えるためにtog■以下であることが
好ましく、特に約le−程度であることが好ましい、 
La、−、M’yM’03−%の一般式で表わされるペ
ロブスカイト型化合物のうち、特に好ましいものはLa
o、 5Bao、 +Alt、 ss及びしa。、 9
srO,(lnJ、 ssである。
The thickness of the La+-J"yM'03-z barrier film is preferably tog■ or less in order to keep the internal resistance of the battery small, and is particularly preferably about le-.
Among the perovskite compounds represented by the general formula La, -, M'yM'03-%, particularly preferred are La.
o, 5Bao, +Alt, ss and a. , 9
srO, (lnJ, ss.

この発明の酸素極構造体にとって必須的なことは、上記
酸素極上に上記遮断膜か形成されていることだけであり
、酸素極の形状や大きさには特に制限はない、従って、
例えば、従来から用いられている酸素極と同様に、多孔
質の(ZrOt)。as(CaO)o、 tsから成る
基体上に積層された形状であってよく、酸素極の厚さは
例えば従来と同様約200終會である。
What is essential for the oxygen electrode structure of the present invention is that the barrier film is formed on the oxygen electrode, and there are no particular restrictions on the shape or size of the oxygen electrode.
For example, it is made of porous (ZrOt) like the conventionally used oxygen electrode. The oxygen electrode may have a structure in which it is laminated on a substrate made of as(CaO)o, ts, and the thickness of the oxygen electrode is, for example, about 200 mm as in the conventional case.

この発明の酸素極構造体は、従来と同様、例えば多孔質
の基体上に常法に従い、水素極、安定化ジルコニア、酸
素極を化学気相蒸着法又はプラズマスプレー法によって
被着、積層することによって製造することができる。
The oxygen electrode structure of the present invention can be produced by depositing and laminating a hydrogen electrode, stabilized zirconia, and an oxygen electrode on a porous substrate by a chemical vapor deposition method or a plasma spray method in accordance with a conventional method, for example, on a porous substrate. It can be manufactured by

実施例1 安定化ジルコニア(8モル%Y20.を含む)電解買上
に、常法に従い、Rf−スパッター法によりLao、 
5Bao、 +AIQ*、 9%を約IJL−の厚さに
蒸着した。 Rf−スパッター法はアルゴンガス圧2〜
5トル、電力100ないし200w″′C1時間行なっ
た。その上に同様にしてLaCo0ユを約1絡−の厚さ
に蒸着した。一方、比較のため、直接安定化ジルコニア
上にRf−スパッター法によりLaCo0ユを蒸着した
。これらの試料を1000°Cの空気中て12時間加熱
処理した。
Example 1 Stabilized zirconia (containing 8 mol% Y20.) was electrolytically purchased and Lao,
5Bao, +AIQ*, 9% was deposited to a thickness of approximately IJL-. Rf-sputtering method uses argon gas pressure of 2~
5 torr and a power of 100 to 200 w for 1 hour. On top of that, LaCo0 was similarly evaporated to a thickness of about 1 circuit. For comparison, Rf sputtering was performed directly on stabilized zirconia. LaCo0 was deposited by evaporation.These samples were heat-treated in air at 1000°C for 12 hours.

加熱処理した試料の表面をX線回折によって同定した結
果、安定化ジルコニア上に直接Laborsを蒸着した
場合にはLatZrzOyの生成が認められた。これに
対し、Lao、 5BaO,+Al0t、sを安定化ジ
ルコニアとLaC0Q3との間に介在させた場合には反
応生成物の存在は認められなかった。
As a result of identifying the surface of the heat-treated sample by X-ray diffraction, the formation of LatZrzOy was observed when Labors were directly deposited on stabilized zirconia. On the other hand, when Lao, 5BaO, +Al0t,s was interposed between the stabilized zirconia and LaC0Q3, no reaction product was observed.

実施例2 実施例1と同様に安定化ジルコニア(8モル%Y2O3
を含む)電解買上にRf−スパッター法によりLao、
 *Bao、 +AIO,,、sを約1g嘗の厚さに蒸
着し、その上にLaCo0ユを約1μ飄の厚さに蒸着し
たものを用いて800°Cての酸素還元分極特性を調べ
た、また、比較のため、直接安定化ジルコニア上にRf
−スパッター法によりLaCoO3を蒸着したものを用
いて同様に酸素還元分極特性を調べた。いずれの場合も
電極を1000℃で12時間加熱処理した後に測定を行
なった。酸素還元分極特性は、電流密度と過電圧との関
係を調べることによって行なった。測定は対極に白金ペ
ースト電極を用い、その一部を照合電極として測定極と
の電位差をインターラブター法によって抵抗成分を除い
て行なった。酸素が可逆的に還元されるならば過電圧は
0になるが一般に非可逆的反応が起きるため、過電圧か
生じる。過電圧か小さいほど電池としての特性か良好で
ある。
Example 2 Stabilized zirconia (8 mol% Y2O3) as in Example 1
Lao,
*The oxygen reduction polarization characteristics at 800°C were investigated using Bao, +AIO,,,s deposited to a thickness of approximately 1 g, and LaCoOU deposited on top of it to a thickness of approximately 1 μm. , and for comparison, Rf on directly stabilized zirconia
- Oxygen reduction polarization characteristics were similarly investigated using a sample on which LaCoO3 was deposited by sputtering. In either case, measurements were performed after the electrodes were heat-treated at 1000° C. for 12 hours. Oxygen reduction polarization characteristics were determined by examining the relationship between current density and overvoltage. The measurement was carried out by using a platinum paste electrode as a counter electrode, and using a part of the electrode as a reference electrode, the potential difference between the electrode and the measurement electrode was determined by using the interlator method to remove the resistance component. If oxygen is reversibly reduced, the overvoltage will be zero, but since an irreversible reaction generally occurs, an overvoltage will occur. The smaller the overvoltage, the better the battery characteristics.

結果を第2図に示す、第2図かられかるように、LaC
o0.単独の場合に比べ、遮断膜としてLao、 5B
ao、 +AIO□9Sを用いた場合の方が過電圧がは
るかに小さく、酸素還元特性が良好である。
The results are shown in Figure 2.As can be seen from Figure 2, LaC
o0. Lao, 5B as a barrier film compared to the case alone
When using ao, +AIO□9S, the overvoltage is much smaller and the oxygen reduction property is better.

LaCoO3単独の場合の高い過電圧は上述の安定化ジ
ルコニアとLaCoO3との反応により非導電性のLa
、Zr、O,が生成したためであると考えられる。
The high overvoltage in the case of LaCoO3 alone is due to the reaction between the stabilized zirconia and LaCoO3, which is non-conductive.
, Zr, and O, were generated.

実施例3 実施例1と同様に安定化ジルコニア(8モル%Y2O3
を含む)電解買上にRf−スパッター法によりLao、
 gSro、 l 1noi、 llsを1.40gm
の厚さに蒸着し、その上にLaCo0.を約1.77μ
■の厚さに蒸着したものを用いて、実施例2と同様にし
て酸素還元分極特性を調べた。結果を第3図に示す、第
3図及び第2図の比較例から、LaCo0.単独の場合
に比べ、遮断膜としてLao、 5srollnoz、
 llsを用いた場合の方が過電圧が小さく、酸素還元
特性が良好であることがわ、かる、また、Lao、 5
Sro、 l 1not、 ssは長期にわたる安定性
及び高温作動性が優れていることがわかった。
Example 3 Stabilized zirconia (8 mol% Y2O3) as in Example 1
Lao,
gSro, l 1noi, lls 1.40gm
LaCo0. about 1.77μ
Oxygen reduction polarization characteristics were investigated in the same manner as in Example 2 using the material deposited to a thickness of (2). The results are shown in FIG. 3. From the comparative examples in FIGS. 3 and 2, LaCo0. Compared to the case alone, Lao, 5srollnoz,
It was found that the overvoltage was smaller and the oxygen reduction properties were better when using LLs, and also Lao, 5
Sro, l1not, and ss were found to have excellent long-term stability and high temperature operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の酸素極構造体が用いられる燃料電池
の作動原理を模式的に示す図、第2図及び第3図はこの
発明の酸素極構造体及び従来の燃料電池の酸素極の酸素
還元分極特性を示すグラフである。 矛 I S ′誦 l ロ
FIG. 1 is a diagram schematically showing the operating principle of a fuel cell in which the oxygen electrode structure of the present invention is used, and FIGS. 2 and 3 are diagrams showing the oxygen electrode structure of the present invention and the oxygen electrode of a conventional fuel cell. It is a graph showing oxygen reduction polarization characteristics. Spear I S ′ Recitation l Ro

Claims (2)

【特許請求の範囲】[Claims] (1)固体電解質として安定化ジルコニアを用いた高温
固体電解質燃料電池のための酸素極構造体であって、一
般式La_1_−_xM^1_xM^2O_3_−_x
_/_2(ただし、M^1はSr、Mg、Ca又はBa
、M^2はCo、Fe又はMn、xは0より大きく1よ
りも小さな数)で表わされるペロブスカイト型化合物か
ら成る酸素極と、該酸素極上に設けられ、一般式La_
1_−_yM^3_yM^4O_3_−_y_/_2(
ただし、M^3はSr、Mg、Ca又はBa、M^4は
Al又はIn、yは0より大きく1よりも小さな数)で
表わされるペロブスカイト型化合物から成る遮断膜とを
有する高温固体電解質燃料電池用酸素極構造体。
(1) An oxygen electrode structure for a high-temperature solid electrolyte fuel cell using stabilized zirconia as a solid electrolyte, which has the general formula La_1_-_xM^1_xM^2O_3_-_x
_/_2(However, M^1 is Sr, Mg, Ca or Ba
, M^2 is Co, Fe, or Mn;
1_-_yM^3_yM^4O_3_-_y_/_2(
However, M^3 is Sr, Mg, Ca or Ba, M^4 is Al or In, and y is a number greater than 0 and less than 1. Oxygen electrode structure for batteries.
(2)上記膜はLa_0_._9Ba_0_._1Al
O_2_._9_5又はLa_0_._9Sr_0_.
_1InO_2_._9_5である特許請求の範囲第1
項記載の酸素極構造体。
(2) The above film has La_0_. _9Ba_0_. _1Al
O_2_. _9_5 or La_0_. _9Sr_0_.
_1InO_2_. Claim 1 which is _9_5
The oxygen electrode structure described in Section 1.
JP61180010A 1986-08-01 1986-08-01 Oxygen electrode structure for high-temperature solid electrolyte fuel cell Pending JPS6337569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180010A JPS6337569A (en) 1986-08-01 1986-08-01 Oxygen electrode structure for high-temperature solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180010A JPS6337569A (en) 1986-08-01 1986-08-01 Oxygen electrode structure for high-temperature solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPS6337569A true JPS6337569A (en) 1988-02-18

Family

ID=16075875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180010A Pending JPS6337569A (en) 1986-08-01 1986-08-01 Oxygen electrode structure for high-temperature solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS6337569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133265A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
JPH04133266A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
DE4104838A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh CERAMIC MATERIAL FOR PRODUCING A REINFORCING LAYER FOR THE AIR ELECTRODE OF A FUEL CELL WITH SOLID ELECTROLYTE
JP2016091857A (en) * 2014-11-06 2016-05-23 新日鐵住金株式会社 Air electrode of solid oxide type fuel cell, solid oxide type fuel cell, and method for manufacturing air electrode of solid oxide type fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133265A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
JPH04133266A (en) * 1990-09-25 1992-05-07 Agency Of Ind Science & Technol Air electrode structure of solid electrolyte fuel cell
JPH07109768B2 (en) * 1990-09-25 1995-11-22 工業技術院長 Air electrode structure of solid electrolyte fuel cell
JPH07109767B2 (en) * 1990-09-25 1995-11-22 工業技術院長 Air electrode structure of solid electrolyte fuel cell
DE4104838A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh CERAMIC MATERIAL FOR PRODUCING A REINFORCING LAYER FOR THE AIR ELECTRODE OF A FUEL CELL WITH SOLID ELECTROLYTE
JP2016091857A (en) * 2014-11-06 2016-05-23 新日鐵住金株式会社 Air electrode of solid oxide type fuel cell, solid oxide type fuel cell, and method for manufacturing air electrode of solid oxide type fuel cell

Similar Documents

Publication Publication Date Title
Ralph et al. Cathode materials for reduced-temperature SOFCs
EP2276094B1 (en) Cell for solid oxide fuel battery
Simner et al. SOFC performance with Fe-Cr-Mn alloy interconnect
EP0275356B1 (en) Solid electrolyte fuel cell and method for preparing it
Sun et al. Electrochemical behaviors for Ag, LSCF and BSCF as oxygen electrodes for proton conducting IT-SOFC
KR100352096B1 (en) Mixed ions containing conductor and device using the same
KR100575329B1 (en) Solid electrolyte and all-solid battery using the same
US7514181B2 (en) Solid electrolyte and all solid state battery containing same
US20080299417A1 (en) Fuel Cell Component
Jeon et al. Characterization of all-solid-state thin-film batteries with V 2 O 5 thin-film cathodes using ex situ and in situ processes
US20110262839A1 (en) Proton conducting electrolyte membranes having nano-grain ysz as protective layers, and membrane electrode assemblies and ceramic fuel cells comprising same
EP0188868A1 (en) Ceramic compound and air electrode materials for high-temperature electrochemical cells
EP0291528A1 (en) Solid compositions for fuel cells, sensors and catalysts
KR20020029813A (en) Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity
JP3677508B2 (en) Solid electrolyte and all solid state battery using the same
Filippin et al. Ni–Al–Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries
US20080032172A1 (en) Conductive coating for solid oxide fuel cell
JP5481611B2 (en) High temperature steam electrolysis cell
JP2011086555A (en) Nonaqueous electrolyte battery, and manufacturing method thereof
KR20100062456A (en) Dense complex oxides films comprising conductive oxides and non-conductive oxides, method for preparing the same, and metallic interconnector using the same
JPS6337569A (en) Oxygen electrode structure for high-temperature solid electrolyte fuel cell
Huan et al. Systematic effect of contaminations on IT-SOFCs cathode stability: a quantifiable correlation versus cathode-side poisoning and protection
JP2007134133A (en) Solid electrolyte fuel cell
JPS6358766A (en) Oxygen electrode structure for high temperature solid electrolyte fuel cell
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells