JPS6337566B2 - - Google Patents

Info

Publication number
JPS6337566B2
JPS6337566B2 JP57204275A JP20427582A JPS6337566B2 JP S6337566 B2 JPS6337566 B2 JP S6337566B2 JP 57204275 A JP57204275 A JP 57204275A JP 20427582 A JP20427582 A JP 20427582A JP S6337566 B2 JPS6337566 B2 JP S6337566B2
Authority
JP
Japan
Prior art keywords
side conductor
voltage side
pressure vessel
low
grounded metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57204275A
Other languages
Japanese (ja)
Other versions
JPS5996806A (en
Inventor
Shoichi Inamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20427582A priority Critical patent/JPS5996806A/en
Publication of JPS5996806A publication Critical patent/JPS5996806A/en
Publication of JPS6337566B2 publication Critical patent/JPS6337566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)

Description

【発明の詳細な説明】 この発明は、同位相二電圧系ガス絶縁母線に関
するものであり、さらに詳しくいうと、たとえば
単巻変圧器の一次,二次回路のように、接地系が
共通で電圧の大きさは異るが、ほぼ同位相であ
り、かつ、2つの電圧系のいずれかが無電圧状態
で運転されることのない、特別な電路に供用され
る同位相二電圧系ガス絶縁母線に関するものであ
る。
[Detailed Description of the Invention] The present invention relates to a gas-insulated bus bar in the same phase two-voltage system, and more specifically, the grounding system is common and the voltage is Although the sizes of the two voltage systems are different, they are almost in phase, and one of the two voltage systems is not operated in a no-voltage state.In-phase two-voltage system gas-insulated bus used for special electrical circuits. It is related to.

従来、この種のガス絶縁母線は、二電圧系それ
ぞれの電圧回路ごとに設けていたので、相分離形
ガス絶縁母線を適用するならば、一次,二次両回
路で各三相づつの合計6本の相分離母線を設置す
る必要があり、経済性の面で問題があつた。
Conventionally, this type of gas insulated bus bar was provided for each voltage circuit of a two-voltage system, so if a phase-separated gas insulated bus bar was applied, a total of 6 It was necessary to install a phase separation bus bar, which posed an economical problem.

この発明は、以上の事情にかんがみてなされた
もので、たとえば単巻変圧器の一次,二次回路の
電圧が、大きさは互いに異るがほぼ同位相である
こと、および共通の接地系にあることに着目し、
仕上り外径がほぼ高電圧側の相分離母線と同程度
の円筒状の接地外被内に同心的に高,低両電圧系
の2つの導体を配設した併架系とすることによ
り、3本の相分離母線で二電圧系の電路を形成
し、経済性を改善した同位相二電圧系ガス絶縁母
線を提供することを目的とするものである。
This invention was made in view of the above-mentioned circumstances. For example, the voltages of the primary and secondary circuits of an autotransformer have different magnitudes but are approximately the same phase, and that the voltages of the primary and secondary circuits of an autotransformer are approximately the same phase, and that they are connected to a common grounding system. Focusing on something,
By creating a parallel system in which two conductors for both the high and low voltage systems are placed concentrically within a cylindrical grounding envelope whose finished outer diameter is approximately the same as the phase separation bus bar on the high voltage side, 3. The purpose of this invention is to form a two-voltage system electric circuit with a phase-separated bus and provide an in-phase two-voltage gas-insulated bus with improved economic efficiency.

また、この発明の目的は、円筒状の高電圧側導
体と、この高電圧側導体の外側にほぼ同心的に配
置された円筒状の低電圧側導体と、この低電圧側
導体の外側にほぼ同心的に配置され絶縁性気体が
密封された円筒状の接地金属圧力容器と、低電圧
側導体を接地金属圧力容器に絶縁支持する絶縁体
と、高電圧側導体を低電圧側導体および接地金属
圧力容器の少くとも一方に絶縁支持する絶縁体を
備えてなり、もつて、接地金属圧力容器の半径を
高電圧側導体のみがある場合の半径とほとんど同
じくして、二電圧系の導体を収納することがで
き、接地金属圧力容器を従来よりも1個節約でき
るうえに、電路布設ルートの所要空間を大幅に縮
小できる併架式の同位相二電圧系ガス絶縁母線を
提供することである。
Further, an object of the present invention is to provide a cylindrical high-voltage side conductor, a cylindrical low-voltage side conductor arranged approximately concentrically on the outside of the high-voltage side conductor, and a cylindrical low-voltage side conductor arranged approximately on the outside of the low-voltage side conductor. A cylindrical grounded metal pressure vessel arranged concentrically and sealed with an insulating gas, an insulator that insulates and supports the low voltage side conductor to the grounded metal pressure vessel, and a high voltage side conductor connected to the low voltage side conductor and the grounded metal. At least one side of the pressure vessel is equipped with an insulator for insulating support, and the radius of the grounded metal pressure vessel is almost the same as the radius when only the high voltage side conductor is present, and the conductor of the dual voltage system is accommodated. To provide a co-mounted in-phase dual-voltage gas insulated bus which can reduce the number of grounded metal pressure vessels by one compared to the conventional one and greatly reduce the space required for an electric circuit installation route.

以下、この発明の一実施例について図面を参照
して説明する。第1図および第2図において、円
筒状の高電圧側導体1の外側に、高電圧側導体1
を中心として、これとほぼ同心的に順次に円筒状
の低電圧側導体2、円筒状の接地金属圧力容器3
が配設されている。低電圧側導体2は絶縁支持体
4により接地金属圧力容器3に支持され、高電圧
側導体1は絶縁支持体5,6によりそれぞれ低電
圧側導体2と接地金属圧力容器3に支持されてい
る。低電圧側導体2には絶縁支持体6が貫通する
穴7が穿設されている。絶縁支持体4,5および
6はエポキシ注形絶縁物などの絶縁体でなるもの
である。実際的には、絶縁支持体5,6は、その
いずれか一方を用いることが多い。接地金属圧力
容器3内には数気圧のSF6ガスのごとき絶縁ガス
が密封される。
An embodiment of the present invention will be described below with reference to the drawings. 1 and 2, a high voltage side conductor 1 is placed on the outside of the cylindrical high voltage side conductor 1.
A cylindrical low-voltage side conductor 2 and a cylindrical grounded metal pressure vessel 3 are installed approximately concentrically around the center.
is installed. The low voltage side conductor 2 is supported by the grounded metal pressure vessel 3 by an insulating support 4, and the high voltage side conductor 1 is supported by the low voltage side conductor 2 and the grounded metal pressure vessel 3 by insulating supports 5 and 6, respectively. . The low voltage side conductor 2 is provided with a hole 7 through which the insulating support 6 passes. The insulating supports 4, 5 and 6 are made of an insulator such as an epoxy cast insulator. Practically, either one of the insulating supports 5 and 6 is often used. The grounded metal pressure vessel 3 is sealed with an insulating gas such as SF 6 gas at several atmospheres.

次に、以上の構成による作用効果について説明
する。一例として550kv/300kvの二電圧系併架
の場合、高電圧側導体1と低電圧側導体2の大地
に対する所要雷インパルス絶縁強度をそれぞれ
V1=1550kv,V2=1050kvとする。説明を簡単に
するため、低電圧側導体2の厚みを無視し、内外
径を同じ値として扱う。絶縁支持体5,5あるい
は6の影響により絶縁のための離隔距離が、ガス
絶縁のみの場合と若干異なるのが普通であるが、
これは絶縁支持体の形状によりガス絶縁のみの場
合と等価とすることも可能であるので、ここでは
絶縁支持体4,5あるいは6の影響を無視する。
周知のように、ガス絶縁機器の絶縁設計は、最大
許容電界を設定し、各部の電界強度がこの最大許
容電界を上回らないようにすることが基本であ
る。説明を具体的に進めるため、最大許容電界
Enaxを18kv/mmと仮定すると、第2図において、
高電圧側導体1の半径r1の最小値は、下式で求め
られる。
Next, the effects of the above configuration will be explained. As an example, in the case of a 550kv/300kv dual voltage system, the required lightning impulse insulation strength with respect to the ground for the high voltage side conductor 1 and the low voltage side conductor 2, respectively.
Let V 1 = 1550kv, V 2 = 1050kv. To simplify the explanation, the thickness of the low voltage side conductor 2 is ignored, and the inner and outer diameters are treated as having the same value. Due to the influence of the insulating support 5, 5 or 6, the separation distance for insulation is usually slightly different from that in the case of gas insulation only.
Since this can be made equivalent to the case of only gas insulation depending on the shape of the insulating support, the influence of the insulating supports 4, 5, or 6 is ignored here.
As is well known, the basic principle of insulation design for gas-insulated equipment is to set a maximum allowable electric field and to ensure that the electric field strength at each part does not exceed this maximum allowable electric field. To make the explanation more concrete, the maximum allowable electric field
Assuming that E nax is 18kv/mm, in Figure 2,
The minimum value of the radius r 1 of the high voltage side conductor 1 is determined by the following formula.

r1=V1/Enax=1550kvpeak/18kvpeak/mm=86mm (1) このr1の最小値に対応する接地金属圧力容器3
の半径r3の最小値は、eを自然対数の底として次
の式で与えられる。
r 1 = V 1 /E nax = 1550kv peak /18kv peak /mm = 86mm (1) Grounded metal pressure vessel 3 corresponding to the minimum value of this r 1
The minimum value of the radius r 3 of is given by the following formula, where e is the base of the natural logarithm.

r3=r1e=234mm (2) いま、低電圧側導体2にV2=1050kvpeakの雷イ
ンパルスが侵入したとき、これが高電圧側導体1
に閃絡しないための条件は、次の式を満足するよ
う低電圧側導体2の半径r2を決めればよい。
r 3 = r 1 e = 234mm (2) Now, when a lightning impulse of V 2 = 1050kv peak enters the low voltage side conductor 2, this will be the high voltage side conductor 1.
The condition for preventing flashover is to determine the radius r2 of the low voltage side conductor 2 so that it satisfies the following equation.

V2/r1・lor2/r1=1050kvpeak/86・lor2/8618kv
peak/mm(3) この(3)式を数値的に解いてr2の最小値を求める
と、r2≒169.5mmとなる。次に、低電圧側導体2
にV2=1050kvpeakの雷インパルスが侵入した場
合、接地金属圧力容器3へ閃絡しないための条件
は、周知のように次式を満足するように、接地金
属圧力容器3の半径r3′を求めればよい。
V 2 /r 1・l o r 2 /r 1 =1050kv peak /86・l o r 2 /8618kv
peak /mm(3) When solving this equation (3) numerically to find the minimum value of r 2 , it becomes r 2 ≒ 169.5 mm. Next, low voltage side conductor 2
When a lightning impulse of V 2 = 1050 kv peak enters the grounded metal pressure vessel 3, the conditions for not flashing it to the grounded metal pressure vessel 3 are, as is well known, the radius r 3 ' of the grounded metal pressure vessel 3 such that the following equation is satisfied. All you have to do is ask for.

V2/r2・lor3′/r2=1050/169.5・lor3′/169.518
peak/mm(4) この(4)式を数値的に解いてr3′の最小値を求め
ると、r3′=239mmとなる。そこで、(2)式で得たr3
と(4)式で求めたr3′の大きい方を採用すべきであ
るので、接地金属圧力容器3の半径は239mmとす
る。次に、高電圧側導体1に侵入した雷インパル
ス電圧V1=1550kvpeakは、高電圧側導体1と低電
圧側導体2間の静電容量C1と、低電圧側導体2
と接地金属圧力容器3との間の静電容量C2とで
静電容量分圧される。いま、各導体の長さが十分
長く、かつ、互いに等しいとすれば、単位長さ当
りの静電容量は周知のように次式で与えられる。
V 2 /r 2・l o r 3 ′/r 2 =1050/169.5・l o r 3 ′/169.518
peak /mm(4) When solving this equation (4) numerically to find the minimum value of r 3 ′, it becomes r 3 ′=239mm. Therefore, r 3 obtained from equation (2)
The radius of the grounded metal pressure vessel 3 is set to 239 mm because the larger one of r 3 ′ obtained from equation (4) should be used. Next, the lightning impulse voltage V 1 = 1550 kv peak that entered the high voltage side conductor 1 is the capacitance C 1 between the high voltage side conductor 1 and the low voltage side conductor 2, and the low voltage side conductor 2
and the capacitance C 2 between the ground metal pressure vessel 3 and the grounded metal pressure vessel 3. Now, assuming that the lengths of each conductor are sufficiently long and equal to each other, the capacitance per unit length is given by the following equation, as is well known.

C1=2πε0/lo(r2/r1)=2πε0/lo(169.5/86
)=2πε0×1.474(F/m)(5a) C2=2πε0/lo(r3′/r1)=2πε0/lo(239/169
.5)=2πε0×2.910(F/m)(5b) 以上により、高電圧側導体1に侵入した雷イン
パルス電圧V1=1550kvpeakが高電圧側導体1と低
電圧側導体2との間で分担される電圧V2′は次式
で求められる。
C 1 = 2πε 0 / l o (r 2 / r 1 ) = 2πε 0 / l o (169.5/86
)=2πε 0 ×1.474 (F/m) (5a) C 2 =2πε 0 /l o (r 3 ′/r 1 )=2πε 0 /l o (239/169
.5) = 2πε 0 ×2.910 (F/m) (5b) From the above, the lightning impulse voltage V 1 that entered the high voltage side conductor 1 = 1550kv peak is between the high voltage side conductor 1 and the low voltage side conductor 2. The voltage V 2 ′ shared by

V2′=C2/C1+C2V1=2.910×1550/1.474+2.910=1
029kv(6) V2′は低電圧側導体2の絶縁強度V2
1050kvpeakよりも高くないので、高電圧側導体1
と低電圧側導体2との間で閃絡は生じないことが
わかる。
V 2 ′=C 2 /C 1 +C 2 V 1 =2.910×1550/1.474+2.910=1
029kv(6) V 2 ′ is the insulation strength of low voltage side conductor 2 V 2 =
Since it is not higher than 1050kv peak , high voltage side conductor 1
It can be seen that no flashover occurs between the conductor 2 and the low voltage side conductor 2.

次に、他の例として、550kv/204kvの二電圧
系併架の場合について説明する。両電圧系の所要
雷パルス絶縁強度を大地に対してそれぞれV1
1550kv,V2=750kvとする。前例と同様の計算
を進めると、(1)式よりr1=86mm,(2)式よりr3
234mmとなる。(3)式で低電圧側導体2の半径を求
めると、 V2/r1・lor2/r1=750kvpeak/86・lor2/8618kvp
eak
/mm よりr2の最小値は140mmとなり、これより(4)式で
接地金属圧力容器3の半径r3′を求めると、 V2/r2・lor3′/r2=750kvpeak/140・lor3′/140
18kvpeak/mm より、r3′の最小値は189mmとなり、r3よりも小さ
い。したがつて接地金属圧力容器の半径として
は、r3=234mmを採用すべきである。このような
場合は、低電圧側導体2の半径r2は、r3が与えら
れたものとして低電圧側導体2にV2=750kvpeak
の雷インパルスが侵入しても、接地金属圧力容器
3へ閃絡しない条件、すなわち次式を満足する最
大のr2を求めればよい。
Next, as another example, a case where a 550kv/204kv two-voltage system is installed in parallel will be described. The required lightning pulse insulation strength of both voltage systems with respect to the ground is V 1 =
1550kv, V 2 = 750kv. Proceeding with the same calculation as in the previous example, from equation (1), r 1 = 86mm, and from equation (2), r 3 =
It becomes 234mm. Calculating the radius of the low voltage side conductor 2 using equation (3), V 2 /r 1・l o r 2 /r 1 =750kv peak /86・l o r 2 /8618kv p
From eak /mm, the minimum value of r 2 is 140 mm. From this, calculate the radius r 3 ' of the grounded metal pressure vessel 3 using equation (4): V 2 / r 2・l o r 3 '/r 2 = 750 kv peak /140・l o r 3 ′/140
From 18kv peak /mm, the minimum value of r 3 ' is 189mm, which is smaller than r 3 . Therefore, r 3 =234 mm should be adopted as the radius of the grounded metal pressure vessel. In such a case, the radius r 2 of the low voltage side conductor 2 is V 2 = 750 kv peak , assuming that r 3 is given.
What is necessary is to find the maximum r 2 that satisfies the condition that the grounded metal pressure vessel 3 will not be flashed even if a lightning impulse of .

V2/r2・lor3/r2=750kvpeak/r2・lo224/r218kv
peak/mm(7) よつてr2=187.3mmが得られる。ここで、前述
の(5a),(5b)式によりC1,C2を求める。
V 2 /r 2・l o r 3 /r 2 =750kv peak /r 2・l o 224/r 2 18kv
peak /mm(7) Therefore, r 2 = 187.3mm is obtained. Here, C 1 and C 2 are determined using equations (5a) and (5b) described above.

C1=2πε0/lor2/r1 =2πε0×1.285(F/m) C2=2πε0/lor3/r2 =2πε0×4.492(F/m) 高電圧側導体1に侵入した雷インパルス電圧
V1=1550kvpeakが、高電圧側導体1と低電圧側導
体2との間で分担される電圧V1′は、(6)式と同様
にして、 V1′=C2V1/C1+C2=4.492×1550/1.285+4.492=1
205kv この電圧V1による高電圧側導体1の電界強度
は、次式で求められる。
C 1 =2πε 0 /l o r 2 /r 1 =2πε 0 ×1.285 (F/m) C 2 =2πε 0 /l o r 3 /r 2 =2πε 0 ×4.492 (F/m) High voltage side conductor Lightning impulse voltage that penetrates into 1
The voltage V 1 ′ at which V 1 = 1550 kv peak is shared between the high voltage side conductor 1 and the low voltage side conductor 2 is calculated as V 1 ′=C 2 V 1 /C in the same manner as equation (6). 1 +C 2 =4.492×1550/1.285+4.492=1
205kv The electric field strength of the high voltage side conductor 1 due to this voltage V 1 is obtained by the following formula.

V1′/r1・lor2/r1=1205/86・lo187.3/86=18.00
kv/mm(8) これによつて低電圧側導体1の電界強度は許容
電界強度となることがわかる。
V 1 ′/r 1・l o r 2 /r 1 =1205/86・l o 187.3/86=18.00
kv/mm(8) This shows that the electric field strength of the low voltage side conductor 1 is within the allowable electric field strength.

次に、550kv/204kvの二電圧系に、550kv/
300kv系の同位相二電圧併架式ガス絶縁母線をそ
のまま適用することも可能である。しかし、常規
の交流運転電圧の差は、550kv/204kv系の方が
大きいので、高電圧側導体1と低電圧側導体2と
の離隔距離は550kv/300kv系の場合より大きい
方が望ましいので、各電圧の組合せごとに上記二
つの構成のいずれかを適用して最適寸法を求める
のが望ましい。
Next, add 550kv/204kv to the 550kv/204kv dual voltage system.
It is also possible to directly apply a 300 kv system dual-voltage, same-phase gas-insulated bus. However, since the difference in normal AC operating voltage is larger in the 550kv/204kv system, it is desirable that the separation distance between the high voltage side conductor 1 and the low voltage side conductor 2 be larger than in the 550kv/300kv system. It is desirable to find the optimum dimensions by applying one of the above two configurations to each voltage combination.

以上の説明から明らかなように、接地系が共通
で、電圧の大きさは異なるが、ほぼ同位相であつ
て、かつ、2つの電圧系のいずれかが無電圧状態
で運転されることのない特別な電路には、この発
明によるガス絶縁母線を適用することにより、接
地金属圧力容器3の半径を高電圧側導体1のみが
ある場合の寸法とほとんど同じ値として、二電圧
系の導体を収納でき、接地金属圧力容器が1個節
約できるばかりでなく、電路布設ルートの所要空
間を著しく縮小することができる。
As is clear from the above explanation, the grounding system is common, the voltages are different in magnitude but almost in phase, and neither of the two voltage systems is operated in a no-voltage state. By applying the gas-insulated busbar according to the present invention to special electrical circuits, the radius of the grounded metal pressure vessel 3 can be set to almost the same value as the dimension when there is only the high-voltage side conductor 1, and the conductor of the two-voltage system can be accommodated. This not only saves one grounded metal pressure vessel, but also significantly reduces the space required for the electrical circuit installation route.

この発明を単巻変圧器の一次,二次回路に適用
すると、三次回路の容量にもよるが、一次,二次
回路で電流が逆向きとなり、外部漏れ磁束は両電
流の差によつて定まるので、低圧側である二次側
回路単独のガス絶縁母線の場合よりも外部漏れ磁
束が少なくなるので、接地金属圧力容器を安価な
磁性鋼で製作できる電流範囲を増大しうる効果が
ある。
When this invention is applied to the primary and secondary circuits of an autotransformer, the current flows in opposite directions in the primary and secondary circuits, depending on the capacity of the tertiary circuit, and the external leakage flux is determined by the difference between the two currents. Therefore, the external leakage magnetic flux is smaller than in the case of a gas insulated bus bar with only a secondary circuit on the low voltage side, which has the effect of increasing the current range in which a grounded metal pressure vessel can be manufactured from inexpensive magnetic steel.

また、この発明は、同位相二電圧系に用いるこ
とを主眼としているが、現状のように運転電圧値
に比べて雷インパルス絶縁強度の規定値が高い場
合は、接地系の共通性が維持される条件下で、逆
位相二電圧系にも適用可能である。
Furthermore, although this invention is primarily intended for use in in-phase two-voltage systems, if the specified value of lightning impulse insulation strength is higher than the operating voltage value, as is currently the case, the commonality of the grounding system will not be maintained. It can also be applied to an anti-phase two-voltage system under certain conditions.

さらに、低電圧側導体が接地されずに中間浮き
電極として運転されるならば、高電圧側導体のみ
の運転が可能であるのはもちろんのこと、低電圧
側導体のみを運転する場合は、高電圧側導体は接
地されていても、何ら差支えない。
Furthermore, if the low voltage side conductor is not grounded and is operated as an intermediate floating electrode, it is of course possible to operate only the high voltage side conductor. There is no problem even if the voltage side conductor is grounded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の縦断面略図、第
2図は同じく横断面略図である。 1…高電圧側導体、2…低電圧側導体、3…接
地金属圧力容器、4,5,6…絶縁支持体。
FIG. 1 is a schematic vertical cross-sectional view of an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the same. 1... High voltage side conductor, 2... Low voltage side conductor, 3... Grounded metal pressure vessel, 4, 5, 6... Insulating support.

Claims (1)

【特許請求の範囲】 1 円筒状の高電圧側導体と、この高電圧側導体
の外側に同心的に配置され前記高電圧側導体と同
相の円筒状の低電圧側導体と、この低電圧側導体
の外側にほぼ同心的に配置され絶縁ガスが密封さ
れた円筒状の接地金属圧力容器と、前記高電圧側
導体を前記低電圧側導体および前記接地金属圧力
容器の少くとも一方に支持する第1の絶縁支持体
と、前記低電圧側導体を前記接地金属圧力容器に
支持する第2の絶縁支持体とを備えてなる同位相
二電圧系ガス絶縁母線。 2 高電圧側導体および低電圧側導体の大地に対
する雷インパルス絶縁強度の設定値をそれぞれ
V1およびV2、ガス絶縁母線各部の最大許容電界
の設定値をEnaxとし 前記高電圧側導体の半径r1を r1≒V1/Enax 前記低電圧側導体の半径r2を V2/r1・lor2/r1≦Enax 接地金属圧力容器の半径r3を V2/r2・lor3/r2≦Enax なる条件式によりそれぞれ決定してなる特許請求
の範囲第1項記載の同位相二電圧系ガス絶縁母
線。
[Claims] 1. A cylindrical high-voltage side conductor, a cylindrical low-voltage side conductor that is arranged concentrically outside the high-voltage side conductor and has the same phase as the high-voltage side conductor, and this low-voltage side conductor. a cylindrical grounded metal pressure vessel arranged substantially concentrically outside the conductor and sealed with an insulating gas; An in-phase two-voltage gas insulated bus bar comprising one insulating support and a second insulating support supporting the low voltage side conductor on the grounded metal pressure vessel. 2 Set the lightning impulse insulation strength settings for the high-voltage side conductor and low-voltage side conductor to the ground, respectively.
V 1 and V 2 , the setting value of the maximum allowable electric field of each part of the gas-insulated bus bar is E nax , and the radius r 1 of the high voltage side conductor is r 1 ≒V 1 /E nax The radius r 2 of the low voltage side conductor is V 2 /r 1・l o r 2 /r 1 ≦E nax A patent in which the radius r 3 of a grounded metal pressure vessel is determined by the conditional expression V 2 /r 2・l o r 3 /r 2 ≦E nax . An in-phase two-voltage gas insulated bus according to claim 1.
JP20427582A 1982-11-19 1982-11-19 In-phase 2-voltage system gas insulated bus Granted JPS5996806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20427582A JPS5996806A (en) 1982-11-19 1982-11-19 In-phase 2-voltage system gas insulated bus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20427582A JPS5996806A (en) 1982-11-19 1982-11-19 In-phase 2-voltage system gas insulated bus

Publications (2)

Publication Number Publication Date
JPS5996806A JPS5996806A (en) 1984-06-04
JPS6337566B2 true JPS6337566B2 (en) 1988-07-26

Family

ID=16487776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20427582A Granted JPS5996806A (en) 1982-11-19 1982-11-19 In-phase 2-voltage system gas insulated bus

Country Status (1)

Country Link
JP (1) JPS5996806A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843569B2 (en) * 2007-06-28 2011-12-21 株式会社ダイヘン Inductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768613A (en) * 1980-10-16 1982-04-27 Masami Fujii Gas insualted core conductor electric path

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768613A (en) * 1980-10-16 1982-04-27 Masami Fujii Gas insualted core conductor electric path

Also Published As

Publication number Publication date
JPS5996806A (en) 1984-06-04

Similar Documents

Publication Publication Date Title
JPS6337566B2 (en)
JP3550962B2 (en) Gas insulated busbar and gas insulated switchgear
US4403104A (en) Gas-insulated bushing having minimized throat diameter
JPH09162041A (en) Gas-insulated transformer
JPH03222621A (en) Gas-insulated spacer
CA1067593A (en) Interface for high voltage oil-filled and gas-filled apparatus
JPH06162854A (en) Insulative supporting tool
JPH0622420A (en) Switchgear
JPH0210725Y2 (en)
RU1820972C (en) Span of aerial transmission line
JPS6243411B2 (en)
JPH0213525B2 (en)
SU1042090A1 (en) Transformer for high-voltage plants with gas insulation
JPH0447947Y2 (en)
JPH0537611Y2 (en)
JP4908132B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JPH0733178Y2 (en) Testing equipment for electrical equipment
JPS6013220Y2 (en) Multi-phase bulk electrical equipment
JP2000295725A (en) Gas-insulated conductor supporter
JPH0847123A (en) Insulating spacer and gas-insulated switchgear as well as connection part of high-voltage electric apparatus
JPS6038850B2 (en) transformer
JPH11262121A (en) Gas-insulated electric apparatus
JPH10285728A (en) Gas-insulated switchgear
JPS6130484B2 (en)
JPH0828926B2 (en) Gas insulated switchgear