JPS6337501B2 - - Google Patents

Info

Publication number
JPS6337501B2
JPS6337501B2 JP15986783A JP15986783A JPS6337501B2 JP S6337501 B2 JPS6337501 B2 JP S6337501B2 JP 15986783 A JP15986783 A JP 15986783A JP 15986783 A JP15986783 A JP 15986783A JP S6337501 B2 JPS6337501 B2 JP S6337501B2
Authority
JP
Japan
Prior art keywords
crystal substrate
crystal
wavelength
compound semiconductor
composition distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15986783A
Other languages
Japanese (ja)
Other versions
JPS6050936A (en
Inventor
Masaru Koseto
Junjiro Goto
Hiroshi Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58159867A priority Critical patent/JPS6050936A/en
Publication of JPS6050936A publication Critical patent/JPS6050936A/en
Publication of JPS6337501B2 publication Critical patent/JPS6337501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は化合物半導体結晶の組成分布評価法に
係り、特に化合物半導体結晶からなる基板全面の
組成分布状態を、赤外線の透過波長によつて正
確、かつ短時間に評価し得る方法に関するもので
ある。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a method for evaluating the composition distribution of a compound semiconductor crystal, and in particular, to accurately evaluate the composition distribution state of the entire surface of a substrate made of a compound semiconductor crystal using the transmitted wavelength of infrared rays. , and a method that can be evaluated in a short time.

(b) 技術の背景 化合物半導体結晶、特に赤外線検知素子の製造
に用いられる例えば水銀―カドミウム―テルル
(Hg1xCdxTe)からなる結晶基板としては、X
値を変化させることにより任意の最大応答波長特
性を有する赤外線検知素子を製作することができ
る。しかしこの場合、問題になるのは前記結晶基
板内での各組成の均一性及び不純物分布の均一性
などである。従つてこれらの問題は結晶成長技術
の改善等によつて解消を図つているが、このよう
なことに関連して前記結晶基板の結晶組成分布を
正確に観測評価することが重要となる。
(b) Background of the technology For example, as a crystal substrate made of mercury-cadmium-tellurium (Hg 1 - x Cd x Te) used in the manufacture of compound semiconductor crystals, especially infrared sensing elements,
By changing the value, an infrared sensing element having arbitrary maximum response wavelength characteristics can be manufactured. However, in this case, problems include the uniformity of each composition and the uniformity of impurity distribution within the crystal substrate. Therefore, attempts are being made to solve these problems by improving crystal growth techniques, but in connection with this, it is important to accurately observe and evaluate the crystal composition distribution of the crystal substrate.

(c) 従来技術と問題点 従来、赤外線検知素子の製造に用いられる例え
ば水銀―カドミウム―テルル(Hg1xCdxTe)
からなる結晶基板等の組成分布評価法としては、
第1図に示すように、結晶の組成分布状態を評価
すべきHg1xCdxTeからなる結晶基板1の前面
に、スリツト3が穿設され、かつ基板前面に沿つ
てX,Y方向に移動可能なスリツト板2を配置
し、所定波長範囲の赤外光を赤外用分光器4より
前記スリツト3を通して、結晶基板1上にスポツ
ト状にその波長を順次変化させて照射する。そし
て該結晶基板1を透過した波長の赤外光は、ホト
カプラ等からなる赤外線検出器5にて受光され、
かつ光電変換され、その電気信号は例えば測定記
録装置6に送られて第2図に示すように記録され
る。この第2図に示す記録曲線Aより前記結晶基
板1を透過し始めた波長、即ちその波長のピーク
を過ぎて、該ピークでの感度が半分となる感度の
カツトオフ波長Bを測定する。しかる後、各カツ
トオフ波長と結晶組成との関係表により前記カツ
トオフ波長Bと対応する結晶組成を前記結晶基板
1の赤外光透過部分の結晶組成とする。以下前記
結晶基板1の全面にスリツト板2のスリツト3を
所定間隔をもつて移動操作して上記と同様のプロ
セスによつて各部分の結晶組成を検出し、該結晶
基板1全面の結晶組成分布図を作成してその評価
を行う方法がとられている。
(c) Prior art and problems Conventionally, for example, mercury-cadmium-tellurium (Hg 1 - x Cd x Te) is used to manufacture infrared sensing elements.
As a method for evaluating the composition distribution of crystalline substrates, etc.,
As shown in Fig. 1, a slit 3 is bored in the front surface of a crystal substrate 1 made of Hg 1 - x Cd x Te whose compositional distribution state is to be evaluated, and a slit 3 is formed along the front surface of the substrate in the X and Y directions. A movable slit plate 2 is disposed, and infrared light in a predetermined wavelength range is irradiated onto the crystal substrate 1 in a spot-like manner through the slit 3 from an infrared spectrometer 4 while sequentially changing the wavelength. The infrared light having the wavelength transmitted through the crystal substrate 1 is received by an infrared detector 5 made of a photocoupler or the like.
The photoelectric signal is then photoelectrically converted, and the electrical signal is sent to, for example, a measuring and recording device 6 and recorded as shown in FIG. From the recording curve A shown in FIG. 2, the wavelength that begins to transmit through the crystal substrate 1, that is, the cutoff wavelength B at which the sensitivity at the peak becomes half is measured after passing the peak of that wavelength. Thereafter, based on the relationship table between each cutoff wavelength and crystal composition, the crystal composition corresponding to the cutoff wavelength B is determined as the crystal composition of the infrared light transmitting portion of the crystal substrate 1. Thereafter, the slits 3 of the slit plate 2 are moved over the entire surface of the crystal substrate 1 at predetermined intervals, and the crystal composition of each portion is detected by the same process as above, and the crystal composition distribution on the entire surface of the crystal substrate 1 is detected. The method used is to create a diagram and evaluate it.

しかしこの方法においては、所定波長範囲の赤
外ビーム・スポツトを照射操作し、その時の透過
波長によつて結晶基板1全面の結晶組成分布状態
図を作成し、評価しているため、その評価過程に
長時間が費やされると共に、前記組成分布状態図
が大まかになり、結晶基板1全面の結晶組成分布
の評価に正確性が欠ける欠点があつた。
However, in this method, an infrared beam spot in a predetermined wavelength range is irradiated, and a crystal composition distribution phase diagram of the entire surface of the crystal substrate 1 is created and evaluated based on the transmitted wavelength at that time, so the evaluation process In addition, a long time is spent on the process, and the composition distribution phase diagram becomes rough, resulting in a drawback that the evaluation of the crystal composition distribution over the entire surface of the crystal substrate 1 lacks accuracy.

(d) 発明の目的 本発明は上記従来の実情に鑑み、評価すべき化
合物半導体結晶基板の全面に、所定波長範囲の赤
外ビームを、その波長を順次変化させて照射し、
透過した波長の赤外光を赤外線画像装置によつて
二次元的にサーモグラフイツク化して前記結晶基
板全面の結晶組成分布を短時間で、かつ正確に評
価し得る新規な化合物半導体結晶の組成分布評価
法を提供することを目的とするものである。
(d) Purpose of the Invention In view of the above-mentioned conventional situation, the present invention provides a method for irradiating the entire surface of a compound semiconductor crystal substrate to be evaluated with an infrared beam in a predetermined wavelength range while sequentially changing the wavelength.
A composition distribution of a novel compound semiconductor crystal in which the crystal composition distribution over the entire surface of the crystal substrate can be evaluated accurately in a short time by two-dimensionally thermographicing the transmitted infrared light of the wavelength using an infrared imaging device. The purpose is to provide an evaluation method.

(e) 発明の構成 そしてこの目的は本発明によれば、所定波長範
囲の赤外線を化合物半導体結晶基板に該波長を可
変にして照射し、該結晶基板を透過する赤外線の
波長によつてその結晶組成分布を評価する方法に
おいて、上記結晶基板表面全面に波長を変化させ
た赤外線を照射し、上記結晶基板を透過した波長
の赤外線から赤外線画像作成手段により前記結晶
基板表面の全面に於けるカツトオフ波長を求め、
前記各カツトオフ波長に対応する結晶組成値を色
表示により二次元的にパターン表示し、該二次元
的パターンから該結晶基板の組成分布を評価する
ようにしたことを特徴とする化合物半導体結晶の
組成分布評価法を提供することによつて達成され
る。
(e) Structure of the Invention According to the present invention, this object is to irradiate a compound semiconductor crystal substrate with infrared rays in a predetermined wavelength range while making the wavelength variable, and to transform the crystal by the wavelength of the infrared rays transmitted through the crystal substrate. In the method of evaluating the composition distribution, the entire surface of the crystal substrate is irradiated with infrared rays of varying wavelengths, and the cut-off wavelength on the entire surface of the crystal substrate is determined by infrared image creation means from the infrared rays of the wavelength that has passed through the crystal substrate. seek,
A composition of a compound semiconductor crystal, characterized in that the crystal composition values corresponding to each cutoff wavelength are displayed in a two-dimensional pattern by color display, and the composition distribution of the crystal substrate is evaluated from the two-dimensional pattern. This is achieved by providing a distribution evaluation method.

(f) 発明の実施例 以下図面を用いて本発明の実施例について詳細
に説明する。
(f) Embodiments of the invention Examples of the invention will be described in detail below with reference to the drawings.

第3図は本発明に係る化合物半導体結晶の組成
分布評価法に適用する装置構成の一実施例を概念
的に示す説明図である。
FIG. 3 is an explanatory diagram conceptually showing an example of an apparatus configuration applied to the composition distribution evaluation method of a compound semiconductor crystal according to the present invention.

本発明においては、図示のようにまず所定波長
範囲の赤外光を赤外用分光器32より結晶組成分
布3を評価すべきHg1xCdxTeからなる化合物
半導体結晶基板31上の全面に、光波長切換制御
装置33によつて光波長を順次変化させて照射す
る。そして該結晶基板31を透過した各波長の赤
外光は集光レンズ34によつて集束され、更に赤
外線画像作成装置35において透過波長別に色透
過パターン化処理を行う。そしてこれら各透過波
長別の色透過パターンを、例えばモニターTV3
6の画面に重ねて図示のように表示することによ
り、前記結晶基板31全面に対する各透過波長分
布が明確となり、此の表示パターン37を結晶組
成分布に画像処理すれば、前記結晶基板31全面
の結晶組成分布を短時間に、しかも正確に得るこ
とが可能となる。その結果二次元的に上記結晶組
成分布状態を正確、且つ容易に評価することが可
能となる。
In the present invention, as shown in the figure, first, infrared light in a predetermined wavelength range is applied to the entire surface of a compound semiconductor crystal substrate 31 made of Hg 1 - x Cd x Te whose crystal composition distribution 3 is to be evaluated using an infrared spectrometer 32. , the light wavelength is sequentially changed by the light wavelength switching control device 33 for irradiation. The infrared light of each wavelength transmitted through the crystal substrate 31 is focused by a condenser lens 34, and further subjected to color transmission patterning processing for each transmitted wavelength in an infrared image creation device 35. Then, the color transmission pattern for each of these transmission wavelengths is determined by, for example, the monitor TV3.
By superimposing the display on the screen of 6 as shown in the figure, the distribution of each transmission wavelength over the entire surface of the crystal substrate 31 becomes clear.If this display pattern 37 is image-processed into a crystal composition distribution, the distribution of each transmission wavelength over the entire surface of the crystal substrate 31 can be clearly seen. It becomes possible to obtain the crystal composition distribution quickly and accurately. As a result, it becomes possible to accurately and easily evaluate the crystal composition distribution state in a two-dimensional manner.

尚、以上の実施例では、水銀―カドミウム―テ
ルル(Hg1xCdxTe)からなる化合物半導体結
晶基板を用いた場合の例について説明したが、本
発明はこの例に限定されるものではなく、例えば
鉛―錫―テルル(Pb1xSexTe)、鉛―硫黄―セ
レン(PbS1xSex)等からなる化合物半導体結
晶基板の結晶組成分布状態の評価にも適用可能な
ことは言うまでもない。
In the above embodiment, an example was explained in which a compound semiconductor crystal substrate made of mercury-cadmium-tellurium (Hg 1 - x Cd x Te) was used, but the present invention is not limited to this example. For example, it can also be applied to the evaluation of the crystal composition distribution state of compound semiconductor crystal substrates made of lead-tin-tellurium (Pb 1 - x Se x Te), lead-sulfur-selenium (PbS 1 - x Se x ), etc. Needless to say.

(g) 発明の効果 以上の説明から明らかなように、本発明に係る
化合物半導体結晶全体の組成分布評価法によれ
ば、各種化合物半導体結晶の組成分布状態を短時
間で、かつ正確に評価することが可能となる優れ
た利点を有し、各種化合物半導体結晶の成長工程
へ、形成された各種化合物半導体結晶の組成分布
状態を短時間にフイードバツクすることができ
る。又所望とする最大応答波長特性を有する化合
物半導体結晶基板を短時間で選別し次の素子製造
工程に提供することができる等、実用上優れた効
果を有する。
(g) Effects of the invention As is clear from the above explanation, according to the composition distribution evaluation method of the entire compound semiconductor crystal according to the present invention, the composition distribution state of various compound semiconductor crystals can be evaluated accurately in a short time. This method has an excellent advantage of being able to quickly feed back the compositional distribution state of formed various compound semiconductor crystals to the growth process of various compound semiconductor crystals. Further, it has excellent practical effects, such as being able to select a compound semiconductor crystal substrate having a desired maximum response wavelength characteristic in a short time and provide it to the next device manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化合物半導体結晶の組成分布評
価法を説明する概念図、第2図は結晶基板を透過
するカツトオフ波長を説明する図、第3図は本発
明に係る化合物半導体結晶の組成分布評価法に適
用する装置構成の一実施例を概念的に示す説明図
である。 図面において、31は化合物半導体結晶基板、
32は赤外用分光器、33は光波長切換制御装
置、34は集光レンズ、35は赤外線画像作成装
置、36はモニターTV、37は表示パターンを
示す。
Figure 1 is a conceptual diagram explaining a conventional method for evaluating the composition distribution of a compound semiconductor crystal, Figure 2 is a diagram explaining the cut-off wavelength that transmits through a crystal substrate, and Figure 3 is a diagram illustrating the composition distribution of the compound semiconductor crystal according to the present invention. FIG. 2 is an explanatory diagram conceptually showing an example of a device configuration applied to an evaluation method. In the drawings, 31 is a compound semiconductor crystal substrate;
32 is an infrared spectrometer, 33 is an optical wavelength switching control device, 34 is a condensing lens, 35 is an infrared image creation device, 36 is a monitor TV, and 37 is a display pattern.

Claims (1)

【特許請求の範囲】 1 所定波長範囲の赤外線を化合物半導体結晶基
板に該波長を可変にして照射し、該結晶基板を透
過する赤外線の波長によつてその結晶組成分布を
評価する方法において、 上記結晶基板表面全面に波長を変化させた赤外
線を照射し、上記結晶基板を透過した波長の赤外
線から赤外線画像作成手段により前記結晶基板表
面の全面に於けるカツトオフ波長を求め、前記各
カツトオフ波長に対応する結晶組成値を色表示に
より二次元的にパターン表示し、該二次元的パタ
ーンから該結晶基板の組成分布を評価するように
したことを特徴とする化合物半導体結晶の組成分
布評価法。
[Scope of Claims] 1. A method of irradiating a compound semiconductor crystal substrate with infrared rays in a predetermined wavelength range while making the wavelength variable, and evaluating the crystal composition distribution of the compound semiconductor crystal substrate based on the wavelength of the infrared rays transmitted through the crystal substrate, comprising: The entire surface of the crystal substrate is irradiated with infrared rays of varying wavelengths, and the cut-off wavelengths on the entire surface of the crystal substrate are determined by an infrared image creation means from the infrared rays of wavelengths that have passed through the crystal substrate, and the cut-off wavelengths corresponding to each of the cut-off wavelengths are determined. A method for evaluating the composition distribution of a compound semiconductor crystal, characterized in that the crystal composition values of the crystal substrate are displayed in a two-dimensional pattern using color display, and the composition distribution of the crystal substrate is evaluated from the two-dimensional pattern.
JP58159867A 1983-08-30 1983-08-30 Method of evaluating composition distribution of compound semiconductor crystal Granted JPS6050936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58159867A JPS6050936A (en) 1983-08-30 1983-08-30 Method of evaluating composition distribution of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159867A JPS6050936A (en) 1983-08-30 1983-08-30 Method of evaluating composition distribution of compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS6050936A JPS6050936A (en) 1985-03-22
JPS6337501B2 true JPS6337501B2 (en) 1988-07-26

Family

ID=15702944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159867A Granted JPS6050936A (en) 1983-08-30 1983-08-30 Method of evaluating composition distribution of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS6050936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114701U (en) * 1990-03-07 1991-11-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2741932B2 (en) * 1989-12-15 1998-04-22 松下電工株式会社 Toilet flushing equipment
JP2742459B2 (en) * 1989-12-15 1998-04-22 松下電工株式会社 Toilet flushing equipment
JP4043660B2 (en) * 1999-09-10 2008-02-06 日鉱金属株式会社 Mapping device for composition ratio of specific elements contained in compound semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193665A (en) * 1975-02-14 1976-08-17
JPS57206045A (en) * 1981-06-12 1982-12-17 Fujitsu Ltd Method for checking silicon wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193665A (en) * 1975-02-14 1976-08-17
JPS57206045A (en) * 1981-06-12 1982-12-17 Fujitsu Ltd Method for checking silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114701U (en) * 1990-03-07 1991-11-26

Also Published As

Publication number Publication date
JPS6050936A (en) 1985-03-22

Similar Documents

Publication Publication Date Title
JP3636651B2 (en) Radiation inspection system and inspection method
US3610934A (en) Automatic focusing system utilizing means for alternately directing light over two paths having slightly different lengths
CA2304500A1 (en) Sensor apparatus
US4061578A (en) Infrared detection and imaging, method and apparatus
US4526468A (en) Method for determining the phase of phase transformable light scattering material
US3856407A (en) Automatic focusing device
JPS6337501B2 (en)
JPS636520A (en) Electro-optical image unit
US3495518A (en) Photographic camera device
US5008542A (en) Method and system for automated measurement of whole-wafer etch pit density in GaAs
JPS6245965B2 (en)
US4798947A (en) Focusing technique for an optical sensing system
JPS5838910A (en) Automatically focusing apparatus and method
USRE30099E (en) Distance detecting device
Scholiers et al. Stokes-spectro-polarimetry with a two-dimensional diode array
US2794361A (en) Electric photometer
Monro Performance Evaluation of CCD Imagers
JPH0528949B2 (en)
JPS62501935A (en) color enlarger or copier
US20240063240A1 (en) Light state imaging pixel
JPS59144268A (en) Color reader
JPH0554621B2 (en)
Niles et al. Radiometric calibration of a video fluorescence microscope for the quantitative imaging of resonance energy transfer
JPH0123051B2 (en)
JPS6345219B2 (en)