JPS6337264B2 - - Google Patents

Info

Publication number
JPS6337264B2
JPS6337264B2 JP54140273A JP14027379A JPS6337264B2 JP S6337264 B2 JPS6337264 B2 JP S6337264B2 JP 54140273 A JP54140273 A JP 54140273A JP 14027379 A JP14027379 A JP 14027379A JP S6337264 B2 JPS6337264 B2 JP S6337264B2
Authority
JP
Japan
Prior art keywords
fuel injection
injection valve
fuel
pressure
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54140273A
Other languages
Japanese (ja)
Other versions
JPS5664148A (en
Inventor
Giichi Shioyama
Yoshitaka Hata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14027379A priority Critical patent/JPS5664148A/en
Publication of JPS5664148A publication Critical patent/JPS5664148A/en
Publication of JPS6337264B2 publication Critical patent/JPS6337264B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、内燃機関の吸気管へ燃料を噴射する
弁において、燃料噴射弁差圧を一定とする装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for keeping a fuel injection valve differential pressure constant in a valve that injects fuel into an intake pipe of an internal combustion engine.

機関の吸入空気流量を検出しながら燃料噴射量
を増減するようにしたいわゆる電子制御式燃料噴
射エンジンにおいては、燃料噴射量の正確なコン
トロールが要求される。
In a so-called electronically controlled fuel injection engine that increases or decreases the fuel injection amount while detecting the intake air flow rate of the engine, accurate control of the fuel injection amount is required.

そこで通常は、燃料噴射弁をオンオフ型の電磁
弁で構成し、その前後圧の絶対和(つまり燃料噴
射差圧)を一定にして、開弁時には常に一定の流
量で燃料が噴射されるようにする一方、その開弁
時間を増減することにより燃料噴射量を正確にコ
ントロールしている。
Therefore, the fuel injection valve is usually configured with an on-off type solenoid valve, and the absolute sum of the pressure before and after the valve (that is, the fuel injection differential pressure) is kept constant, so that fuel is always injected at a constant flow rate when the valve is opened. At the same time, the fuel injection amount is precisely controlled by increasing or decreasing the valve opening time.

この燃料噴射差圧を一定にする装置としては、
例えば第1図に示すようなものがある。
As a device to keep this fuel injection differential pressure constant,
For example, there is one shown in FIG.

始めに、電磁燃料ポンプ1から圧送された燃料
は、燃料配管2を経て、レギユレータ3に到達す
る。
First, fuel pumped from the electromagnetic fuel pump 1 passes through the fuel pipe 2 and reaches the regulator 3.

このレギユレータ3は、その時の機関運転状態
での吸気管負圧P2を検知し、その負圧値の大小
に応じて、ダイヤフラム弁4を介しスプリング5
とのバランスに従い燃料を燃料タンクへ戻す。
This regulator 3 detects the intake pipe negative pressure P 2 in the engine operating state at that time, and depending on the magnitude of the negative pressure value, the spring 5 is activated via the diaphragm valve 4.
The fuel is returned to the fuel tank according to the balance.

例えば、燃料噴射弁6の吐出側圧力である吸気
管負圧P2が大きくなると、タンクへ戻る燃料の
流量が増加して、燃料噴射弁6の供給側圧力P1
が減少するので、その前後の差圧(つまり燃料噴
射差圧)が一定に保たれる。
For example, when the intake pipe negative pressure P2 , which is the discharge side pressure of the fuel injection valve 6, increases, the flow rate of fuel returning to the tank increases, and the supply side pressure P1 of the fuel injection valve 6 increases.
decreases, so the differential pressure before and after the fuel injection pressure (that is, the fuel injection differential pressure) is kept constant.

その際、吸気管負圧P2の変動幅(絶対圧で0
〜0.85Kg/cm2)を十分にカバーして、この前後の
差圧を一定にするために、この差圧が2〜3Kg/
cm2となる程度に燃料ポンプ1の吐出圧を比較的高
く設定している。
At that time, the fluctuation range of intake pipe negative pressure P2 (0 in absolute pressure)
~0.85Kg/cm 2 ), and in order to keep the differential pressure before and after this constant, this pressure difference should be 2 to 3Kg/cm 2 ).
The discharge pressure of the fuel pump 1 is set relatively high to the extent that cm 2 .

したがつて、燃料ポンプ1には比較的高い吐出
圧が要求され、また噴射弁6には高耐圧性が要求
されるので、それらの小型化、軽量化には限度が
ある。
Therefore, the fuel pump 1 is required to have a relatively high discharge pressure, and the injection valve 6 is required to have high pressure resistance, so there is a limit to how they can be made smaller and lighter.

本発明は上記の実状にかんがみてなされたもの
で、比較的低い吐出圧の燃料ポンプを用いても燃
料噴射弁の前後の差圧(つまり燃料噴射差圧)を
一定に保てるようにした装置を得ることを目的と
する。
The present invention was made in view of the above-mentioned circumstances, and provides a device that can maintain a constant pressure difference across a fuel injection valve (i.e., fuel injection pressure difference) even when using a fuel pump with a relatively low discharge pressure. The purpose is to obtain.

上記目的を達成するために本発明では、スロツ
トルバルブをバイパスして機関の吸気管に接続し
たバイパス通路と、該通路に介装したオリフイス
およびその下流に介装したソニツクオリフイス
と、該両オリフイスの間に開口して取り付けた電
磁燃料噴射弁と、該噴射弁に一定圧の燃料を供給
する手段と、該噴射弁の開弁時間を増減する制御
回路とを設けた。
In order to achieve the above object, the present invention includes a bypass passage that bypasses the throttle valve and connects to the intake pipe of the engine, an orifice installed in the passage, and a sonic orifice installed downstream of the bypass passage. An electromagnetic fuel injection valve opened and installed between the orifices, means for supplying fuel at a constant pressure to the injection valve, and a control circuit for increasing/decreasing the opening time of the injection valve were provided.

以下図面にもとづいて説明する。第2図は本発
明の一実施例を示す概略図である。
The following will be explained based on the drawings. FIG. 2 is a schematic diagram showing an embodiment of the present invention.

図において、11はエアクリーナ、12はエン
ジン本体、13はエアクリーナ11を経た吸入空
気をエンジン本体12に送り込む吸気管である。
In the figure, 11 is an air cleaner, 12 is an engine main body, and 13 is an intake pipe that sends intake air that has passed through the air cleaner 11 to the engine main body 12.

吸気管13には、スロツトルバルブ14と、該
バルブ14をバイパスしてバイパス通路15とが
取り付けられている。
A throttle valve 14 and a bypass passage 15 bypassing the valve 14 are attached to the intake pipe 13.

このバイパス通路15の入口側15aにはオリ
フイス16が、出口側15bにはソニツクオリフ
イス17がそれぞれ設けられている。
An orifice 16 is provided on the inlet side 15a of the bypass passage 15, and a sonic orifice 17 is provided on the outlet side 15b.

第3図に示すように、スロツトルバルブ14の
下流の吸気管負圧P2が所定値以上の負圧になる
と、ソニツクオリフイス17で空気流速が音速に
達して一定となるので、バイパス通路15を流れ
る空気の流量が一定となり、この結果オリフイス
16の上流側の圧力は一定の大気圧となつている
ので、オリフイス16とソニツクオリフイス17
とで挟まれたバイパス通路内の負圧P3も一定と
なる。
As shown in FIG. 3, when the intake pipe negative pressure P2 downstream of the throttle valve 14 reaches a predetermined value or more, the air flow velocity reaches the sonic velocity at the sonic orifice 17 and becomes constant, so the bypass passage The flow rate of air flowing through the orifice 15 is constant, and as a result, the pressure on the upstream side of the orifice 16 is constant atmospheric pressure.
The negative pressure P3 in the bypass passage sandwiched between the two also remains constant.

この負圧P3の値はオリフイス16の内径を大
きくすると小さくなるので、ソニツクオリフイス
17とオリフイス16の特性を適当に選択すれ
ば、負圧P3の値を任意(P0)に設定できる。
The value of this negative pressure P 3 decreases as the inner diameter of the orifice 16 is increased, so if the characteristics of the Sonic orifice 17 and the orifice 16 are appropriately selected, the value of the negative pressure P 3 can be set to an arbitrary value (P 0 ). .

オリフイス16とソニツクオリフイス17とで
挾まれたバイパス通路15には、オンオフ型電磁
弁の燃料噴射弁18が開口して取り付けられてい
る。図中の19〜21は前記燃料噴射弁18に一
定圧の燃料を供給する手段を構成するもので、1
9は図示しない燃料タンクからの燃料を圧送する
燃料ポンプ、20は燃料ポンプ19からの比較的
高圧の燃料を一定圧P4に調圧する圧力レギユレ
ート装置、21は圧力レギユレート装置からの燃
料を燃料噴射弁18に導入する燃料チユーブであ
る。
A fuel injection valve 18, which is an on-off type electromagnetic valve, is open and attached to a bypass passage 15 sandwiched between an orifice 16 and a sonic orifice 17. 19 to 21 in the figure constitute means for supplying fuel at a constant pressure to the fuel injection valve 18;
9 is a fuel pump that pumps fuel from a fuel tank (not shown); 20 is a pressure regulating device that regulates relatively high pressure fuel from the fuel pump 19 to a constant pressure P4 ; and 21 is a fuel injection device for injecting fuel from the pressure regulating device. This is a fuel tube that leads to valve 18.

すなわち、燃料噴射弁18の吐出側の圧力はバ
イパス通路内の負圧P3であり、また供給側の圧
力は一定圧P4である。
That is, the pressure on the discharge side of the fuel injection valve 18 is a negative pressure P3 in the bypass passage, and the pressure on the supply side is a constant pressure P4 .

したがつて、その前後の圧力差は、負圧P3
一定となる吸気管負圧P2が所定値以上(低中負
荷領域)のときには、吸気管負圧P2のいかんに
かかわらず常に一定となる。
Therefore, when the intake pipe negative pressure P 2 is equal to or higher than a predetermined value (in the low-medium load region) when the negative pressure P 3 is constant, the pressure difference before and after that is always constant regardless of the intake pipe negative pressure P 2 . becomes constant.

この場合、燃料噴射差圧は一定となるので、制
御回路22により燃料噴射弁18の開弁時間を増
減するだけで、平均値としての燃料噴射流量を正
確にコントロールすることができる。
In this case, since the fuel injection differential pressure is constant, the fuel injection flow rate as an average value can be accurately controlled simply by increasing or decreasing the opening time of the fuel injection valve 18 using the control circuit 22.

噴射燃料は、ソニツクオリフイス17で微粒化
され、さらにバイパス通路15からスロツトルバ
ルブ下流の吸気管13に入つてエンジン本体12
に吸入されるが、燃料の霧化をなお一層促進する
ため、バイパス通路15の出口側15bは流速の
大きなスロツトルバルブ14の下流側近傍にて吸
気管13に接続している。
The injected fuel is atomized by the sonic orifice 17, and further enters the intake pipe 13 downstream of the throttle valve from the bypass passage 15, and then enters the engine body 12.
However, in order to further promote atomization of the fuel, the outlet side 15b of the bypass passage 15 is connected to the intake pipe 13 near the downstream side of the throttle valve 14 where the flow velocity is high.

一方、負圧P3の変動する吸気管負圧P2が所定
値よりも低い(高負荷領域)ときには、予めテー
ブルに記憶させた信号、もしくは負圧センサ、ス
ロツトルバルブ開度センサからの信号に基づい
て、負圧P3の値に応じて(換言すると噴射差圧
の減少に伴つて)燃料噴射弁18の開弁時間を相
対的に増加(減少)補正することにより、燃料噴
射量を正確にコントロールすることができる。
On the other hand, when the intake pipe negative pressure P 2 where the negative pressure P 3 fluctuates is lower than the predetermined value (high load region), a signal stored in the table in advance, or a signal from the negative pressure sensor or throttle valve opening sensor is sent. Based on this, the fuel injection amount is adjusted by relatively increasing (decreasing) the opening time of the fuel injection valve 18 according to the value of the negative pressure P3 (in other words, as the injection differential pressure decreases). Can be controlled accurately.

ここで、燃料噴射弁18の吐出側の圧力である
負圧P3の値が常に安定しているため、燃料ポン
プ19の吐出圧も従来に比べて大幅に低下させら
れ、この結果燃料噴射弁18にはそれほどの高耐
圧性能が要求されず、燃料ポンプ19や燃料噴射
弁18などを小型化、軽量化できる。
Here, since the value of negative pressure P3 , which is the pressure on the discharge side of the fuel injection valve 18, is always stable, the discharge pressure of the fuel pump 19 is also significantly lowered compared to the conventional one, and as a result, the fuel injection valve 18 is not required to have such high pressure resistance performance, and the fuel pump 19, fuel injection valve 18, etc. can be made smaller and lighter.

第4図に示すように、本実施例における燃料噴
射弁の開弁率に対する平均値としての燃料流量特
性A1、A2は従来装置の特性A3に比べてその勾配
がずつと小さい。
As shown in FIG. 4, the fuel flow characteristics A1 and A2 as average values for the opening rate of the fuel injection valve in this embodiment have a slope that is smaller than that of the characteristic A3 of the conventional device.

したがつて、同一の開弁率の可変幅に対して本
実施例では従来に比べてずつと細かく燃料流量を
増減でき、その流量コントロールをより正確に行
うことができる。
Therefore, in this embodiment, the fuel flow rate can be increased or decreased more finely than in the past for the same variable width of the valve opening rate, and the flow rate can be controlled more accurately.

特に、燃料流量が相対的に小さくなり、しかも
従来装置では燃料噴射弁の前後差圧が相対的に大
きくなる無負荷状態では、本実施例による正確な
流量コントロールの効果は極めて大きく、従来に
比べて内燃機関をより適切に制御することができ
る。
In particular, under no-load conditions, where the fuel flow rate is relatively small and the differential pressure across the fuel injection valve is relatively large in the conventional device, the effect of accurate flow rate control by this embodiment is extremely large, compared to the conventional device. The internal combustion engine can be controlled more appropriately.

さらに、本実施例では混合気が音速流となるソ
ニツクオリフイス17を通過してエンジン本体に
吸入されるので、混合気の霧化特性が改善される
効果もある。
Furthermore, in this embodiment, since the air-fuel mixture passes through the sonic orifice 17 and is sucked into the engine body, the atomization characteristics of the air-fuel mixture are improved.

第5図は本発明の他の実施例要部を示す断面図
である。
FIG. 5 is a sectional view showing the main parts of another embodiment of the present invention.

本実施例は、燃料噴射弁31を吸気管32に直
接開口して取り付ける一方、該噴射弁31の燃料
吐出通路31aにソニツクオリフイス33を設
け、さらに該ソニツクオリフイス上流にて、この
燃料吐出通路31aをオリフイス34を介してス
ロツトルバルブの上流かつエアクリーナの下流の
吸気管に接続することにより、前述のバイパス通
路の一部を燃料噴射弁内の通路31aと一体構造
にしたものである。
In this embodiment, a fuel injection valve 31 is installed with a direct opening into an intake pipe 32, and a sonic orifice 33 is provided in a fuel discharge passage 31a of the injector 31, and further upstream of the sonic orifice, this fuel discharge By connecting the passage 31a to the intake pipe upstream of the throttle valve and downstream of the air cleaner through an orifice 34, a portion of the bypass passage described above is integrated with the passage 31a in the fuel injection valve.

前述の実施例と同様の効果の他に、本実施例で
は一体構造により装置を全体的に小型化できるの
で、装備性、コスト性に優れ、実用的な価値が高
い。
In addition to the effects similar to those of the above-mentioned embodiments, this embodiment allows the overall size of the device to be reduced due to its integrated structure, which provides excellent equipment and cost efficiency, and is of high practical value.

以上説明したように、本発明では燃料噴射弁の
前後差圧(つまり燃料噴射差圧)を一定の小さな
値に保つことができるので、比較的低吐出圧の燃
料ポンプを用いることが可能で、燃料ポンプ、燃
料噴射弁などの小型化、軽量化を図れる。
As explained above, in the present invention, the differential pressure across the fuel injection valve (that is, the fuel injection differential pressure) can be kept at a constant small value, so it is possible to use a fuel pump with a relatively low discharge pressure. Fuel pumps, fuel injection valves, etc. can be made smaller and lighter.

また従来に比べて小さな前後差圧で燃料噴射弁
を作動させるので、燃料の噴射流量をより正確に
コントロールできる。
Additionally, since the fuel injection valve is operated with a smaller differential pressure across the front and rear than in the past, the fuel injection flow rate can be controlled more accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置を示す概略図、第2図は本
発明の一実施例を示す概略図、第3図および第4
図はその各部の作用を示す特性図、第5図は本発
明の他の実施例要部を示す断面図である。 12……エンジン本体、13……吸気管、14
……スロツトルバルブ、15……バイパス通路、
16……オリフイス、17……ソニツクオリフイ
ス、18……燃料噴射弁、19……燃料ポンプ、
20……圧力レギユレート装置、22……制御回
路、31……燃料噴射弁、31a……燃料吐出通
路、32……吸気管、33……ソニツクオリフイ
ス。
FIG. 1 is a schematic diagram showing a conventional device, FIG. 2 is a schematic diagram showing an embodiment of the present invention, and FIGS.
The figure is a characteristic diagram showing the function of each part, and FIG. 5 is a sectional view showing the main parts of another embodiment of the present invention. 12...Engine body, 13...Intake pipe, 14
... Throttle valve, 15 ... Bypass passage,
16... Orifice, 17... Sonic orifice, 18... Fuel injection valve, 19... Fuel pump,
20...Pressure regulation device, 22...Control circuit, 31...Fuel injection valve, 31a...Fuel discharge passage, 32...Intake pipe, 33...Sonic orifice.

Claims (1)

【特許請求の範囲】 1 スロツトルバルブをバイパスして機関の吸気
管に接続したバイパス通路と、該通路に介装した
オリフイスおよびその下流に介装したソニツクオ
リフイスと、該両オリフイスの間に開口して取り
付けた電磁燃料噴射弁と、該噴射弁に一定圧の燃
料を供給する手段と、該噴射弁の開弁時間を増減
する制御回路とからなる燃料噴射弁供給圧の制御
装置。 2 バイパス通路は、その一部が燃料噴射弁内の
燃料吐出通路と一体的に形成されている特許請求
の範囲第1項記載の燃料噴射弁供給圧の制御装
置。 3 制御回路は、燃料噴射弁の前後差圧が吸気管
負圧に応じて変動する領域では、その開弁時間を
吸気管負圧に応じて増減補正するように構成され
ている特許請求の範囲第1項または第2項記載の
燃料噴射弁供給圧の制御装置。
[Scope of Claims] 1. A bypass passage connected to the intake pipe of the engine by bypassing the throttle valve, an orifice installed in the passage, a Sonic orifice installed downstream thereof, and between the two orifices. A fuel injection valve supply pressure control device comprising an electromagnetic fuel injection valve mounted in an open state, means for supplying fuel at a constant pressure to the injection valve, and a control circuit for increasing/decreasing the opening time of the injection valve. 2. The fuel injection valve supply pressure control device according to claim 1, wherein a portion of the bypass passage is formed integrally with a fuel discharge passage within the fuel injection valve. 3. Claims in which the control circuit is configured to increase or decrease the valve opening time according to the intake pipe negative pressure in a region where the differential pressure across the fuel injection valve fluctuates according to the intake pipe negative pressure. 2. The fuel injection valve supply pressure control device according to claim 1 or 2.
JP14027379A 1979-10-30 1979-10-30 Feed pressure controller for fuel injection valve Granted JPS5664148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14027379A JPS5664148A (en) 1979-10-30 1979-10-30 Feed pressure controller for fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14027379A JPS5664148A (en) 1979-10-30 1979-10-30 Feed pressure controller for fuel injection valve

Publications (2)

Publication Number Publication Date
JPS5664148A JPS5664148A (en) 1981-06-01
JPS6337264B2 true JPS6337264B2 (en) 1988-07-25

Family

ID=15264931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14027379A Granted JPS5664148A (en) 1979-10-30 1979-10-30 Feed pressure controller for fuel injection valve

Country Status (1)

Country Link
JP (1) JPS5664148A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141818A (en) * 1977-05-14 1978-12-11 Ntn Toyo Bearing Co Ltd Fuel atomizer for internal combustion engine
JPS5495620A (en) * 1977-12-27 1979-07-28 Libbey Owens Ford Co Hydraulic pressure apparatus for glass bending machine
JPS54132018A (en) * 1978-04-05 1979-10-13 Hitachi Ltd Single nozzle fuel injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141818A (en) * 1977-05-14 1978-12-11 Ntn Toyo Bearing Co Ltd Fuel atomizer for internal combustion engine
JPS5495620A (en) * 1977-12-27 1979-07-28 Libbey Owens Ford Co Hydraulic pressure apparatus for glass bending machine
JPS54132018A (en) * 1978-04-05 1979-10-13 Hitachi Ltd Single nozzle fuel injector

Also Published As

Publication number Publication date
JPS5664148A (en) 1981-06-01

Similar Documents

Publication Publication Date Title
US4007721A (en) Fuel metering apparatus for a carburetor
US3473523A (en) Fuel injection system
US9989016B2 (en) Electronic controlled fuel enrichment system
US4092380A (en) Carburetors for internal combustion engines
US4211201A (en) Fuel supply apparatus for internal combustion engines
US8746214B2 (en) Fuel control apparatus
US4632788A (en) Carburetor fuel feed system with bidirectional passage
US2768819A (en) Engine fuel system
JPS6337264B2 (en)
US5031596A (en) Fuel supply system for injection carburetors
DE2836215A1 (en) FUEL SUPPLY SYSTEM
US4200073A (en) Electronic throttle body fuel injection system
US4326487A (en) Fuel injection system
GB1537363A (en) Fuel supply systems for heat generators
US4002153A (en) Intake system in internal combustion engine
US3734473A (en) Air valve type carburetor
JPS5974365A (en) Fuel feed device for internal-combustion engine
US4965023A (en) Carburetor having bidirectional fuel passage
US4986240A (en) Fuel injection device for injection carburetors
US5119787A (en) Fuel supply system for injection carburetors
JPS6045774A (en) Fuel supply control device
JPS60192846A (en) Fuel supplying device of internal-combustion engine
JP3196085B2 (en) Fuel increase device for multiple carburetor
USRE30622E (en) Fuel metering apparatus for a carburetor
JP3264069B2 (en) Fuel injection device for internal combustion engine