JPS6337062B2 - - Google Patents

Info

Publication number
JPS6337062B2
JPS6337062B2 JP59046766A JP4676684A JPS6337062B2 JP S6337062 B2 JPS6337062 B2 JP S6337062B2 JP 59046766 A JP59046766 A JP 59046766A JP 4676684 A JP4676684 A JP 4676684A JP S6337062 B2 JPS6337062 B2 JP S6337062B2
Authority
JP
Japan
Prior art keywords
silicon carbide
barium
sintered body
carbon
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59046766A
Other languages
Japanese (ja)
Other versions
JPS60191060A (en
Inventor
Naoto Hirosaki
Toshikazu Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP59046766A priority Critical patent/JPS60191060A/en
Publication of JPS60191060A publication Critical patent/JPS60191060A/en
Publication of JPS6337062B2 publication Critical patent/JPS6337062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高密度でかつ熱伝導性の低い炭化けい
素焼結体の製造法に関するものである。 炭化けい素は常温および高温において化学的に
安定であり、また機械的特性に優れているため、
セラミツクスエンジン用部品をはじめとする耐熱
構造材料、しゆう動材料として使用され始めてい
る。 従来、炭化けい素をこのような材料として使用
する場合、微細な炭化けい素粉末を成形して高温
で焼成して焼結体を製造している。しかし、炭化
けい素は元来難焼結性であるため、焼成に際し焼
結助剤を混合使用している。例えば、(1)β―SiC
粉末にほう素0.3〜3.0重量%と炭素0.1〜1.0重量
%を混和して焼成する方法(特開昭50−78609
号)。(2)α―SiC粉末にBeOを添加してホツトプ
レスする方法(セラミツクス,18,P217―223,
1983年)が知られている。 しかしながら、これらの方法では焼結性は良好
であり高密度の焼結体は得られるものの、焼結体
の熱伝導率が高く、炭化けい素焼結体をセラミツ
クス断熱エンジンをはじめとする断熱を必要とす
る高温構造材料として使用する際に断熱性が低下
し熱効率が低下し好ましくない。例えば(2)の焼結
体の熱伝導率は270W/mKと高い値を示してい
る。 本発明はこれらの従来の欠点を改善すべくなさ
れたもので、その目的は高密度で熱伝導率の低い
(断熱性に優れた)炭化けい素焼結体を製造する
方法を提供することにある。 本発明者らは前記目的を達成すべく、平均粒径
0.5μm以下の炭化けい素粉末に、バリウムと炭素
を焼結助剤として使用し、その使用量を変えて真
空下または不活性雰囲気下で焼成したところ、炭
化けい素粉末に対し、バリウム0.5〜20重量%,
炭素0.1〜5重量%の両焼結助剤を使用すること
により、高密度でかつ低い熱伝導率を持つ焼結体
が得られることを究明し得、この知見に基いて本
発明を完成したものである。 本発明において使用する炭化けい素の粒径は
5.0μm以下、好ましくは1μm以下のものであるこ
とが必要である。粒径がそれよりも大きいものは
焼結体の密度が低下し、また強度が低下する。原
料粉末に含まれる炭化けい素の結晶形は、α形,
β形いずれでも良い。また、これらの混合物でも
良い。 焼結助剤としては、バリウムと炭素を使用す
る。バリウム源としてはバリウムまたはバリウム
含有化合物例えば酸化バリウム,炭化バリウム,
炭酸バリウム等が使用される。 バリウム(バリウム含有化合物ではバリウムに
換算して)の添加量は炭化けい素に対し0.5〜20
重量%,好ましくは1〜10重量%であることが必
要である。0.5重量%より少ないとち密化の進行
がおそく高密度の焼結体が得られない。また、20
重量%を超えると、焼結体中に多くのバリウムが
残留し、炭化けい素焼結体の機械的強度を低下さ
せる欠点が生ずる。 炭素源としては、カーボンブラツク等の炭素ま
たは炭素を焼成の際生成する例えばフエノール樹
脂などの有機化合物が使用される。炭素(有機化
合物の場合は炭素に換算して)の添加量は炭化け
い素に対し、0.1〜5重量%であるこが必要であ
る。0.1重量%より少ないと焼結が困難であり、
5重量%を超えると焼結体中に炭素が残留して炭
化けい素焼結体の機械的強度を低下せる欠点が生
ずる。 焼結助剤としてのバリウムおよび炭素の働きに
ついては明らかではないが、バリウムと炭素が反
応しバリウムの炭化物が生成し、これと炭化けい
素が反応して液相を生成し、焼結を促進するもの
と考えられる。また、生成したこの化合物の効果
により熱伝導率が低下するものと考えられる。 炭化けい素粉末とバリウム及び炭素の混合は、
エタノール,アセトン等の有機溶剤または水を用
いての湿式混合が適している。特に炭素源として
有機化合物を用いる場合には、その有機化合物を
溶解する有機溶剤の使用が望ましい。 これらの混合物の成形は、金型成形,ラバープ
レス,射出成形等によつて行われる。また、ホツ
トプレス,熱間静水圧プレス等の成形と焼結を同
時に行う方法でもよい。 焼成は真空中または不活性雰囲気中で行う。不
活性雰囲気としては、ヘリウム,アルゴン等が挙
げられる。この雰囲気は酸素を極力低下させるこ
とが必要であり、真空度は10-4気圧以下で、また
不活性雰囲気中に含まれる酸素濃度は10-6以下で
あることが望ましい。雰囲気中に多量の酸素が含
まれると炭化けい素粉末の表面を酸化して焼結性
が低下するからである。 焼成温度は1800〜2400℃,好ましくは2000〜
2100℃で行う。1800℃より低いと焼結の進行がお
そく、ち密な焼結体が得られなく、また2400℃を
超えると、結晶の粒成長が顕著となりまた炭化け
い素の分解が起こるので好ましくない。焼結法は
常圧焼結法,ホツトプレス法,熱間静水圧プレス
法等いずれの方法でもよいが、添加量が少い場合
にはホツトプレス法,熱間静水圧プレス法を用い
る方がよい。 実施例 1 SiO2と炭素を反応させて作つた平均粒径0.3μm
のβ―SiC粉末に、酸化バリウム5重量%(バリ
ウムに換算して4.5重量%)、炭素として、レゾー
ル形フエノール樹脂1重量%(炭素に換算して)
の割合で混合した。これにエタノールを加え、ボ
ールミルで24時間混合した後、乾燥・粉砕して原
料混合粉末を得た。次に該混合粉末を黒鉛ダイス
に入れ、10-4Torrの真空中で200Kg/cm2の圧力を
加えながら、50℃/分の速度で2050℃まで昇温
し、30分間ホツトプレスすることにより、φ10厚
さ2mmの焼結体を得た。 得られた焼結体の密度は3.05g/cm3,熱伝導率
は6.4W/mKであつた。なお、熱伝導率はレーザ
フラツシユ法によつて測定した値である。 実施例 2 バリウム源として炭酸バリウムを10重量%(バ
リウムに換算して7重量%)を、炭素源としてレ
ゾール形フエノール樹脂2重量%(炭素に換算し
て)を添加した他は、実施例1と同一条件でホツ
トプレスを行い焼結体を得た。得られた焼結体の
密度は3.06g/cm3,熱伝導率は4.4W/mKであつ
た。 比較例 表1の組成の添加剤を使用し、実施例1と同様
にしてホツトプレスをして焼結体を得た。得られ
た焼結体はいずれも高密度化はしていたが、いず
れも熱伝導率が高く、断熱材料としては不適当で
あつた。
The present invention relates to a method for producing a silicon carbide sintered body having high density and low thermal conductivity. Silicon carbide is chemically stable at room and high temperatures, and has excellent mechanical properties, so
It is beginning to be used as a heat-resistant structural material and sliding material, including ceramic engine parts. Conventionally, when silicon carbide is used as such a material, a sintered body is manufactured by molding fine silicon carbide powder and firing it at a high temperature. However, since silicon carbide is inherently difficult to sinter, a sintering aid is mixed with it during firing. For example, (1) β-SiC
A method of mixing 0.3 to 3.0% by weight of boron and 0.1 to 1.0% by weight of carbon in powder and firing it (Japanese Patent Application Laid-Open No. 50-78609
issue). (2) Hot pressing method by adding BeO to α-SiC powder (Ceramics, 18, P217-223,
1983) is known. However, although these methods have good sinterability and produce a high-density sintered body, the thermal conductivity of the sintered body is high, and the silicon carbide sintered body requires insulation such as a ceramic insulation engine. When used as a high-temperature structural material, the heat insulation properties and thermal efficiency are lowered, which is not preferable. For example, the thermal conductivity of the sintered body (2) is as high as 270W/mK. The present invention was made to improve these conventional drawbacks, and its purpose is to provide a method for producing a silicon carbide sintered body with high density and low thermal conductivity (excellent heat insulation properties). . In order to achieve the above object, the present inventors have
Barium and carbon were used as sintering aids in silicon carbide powder of 0.5 μm or less, and the amounts used were varied and sintered under vacuum or in an inert atmosphere. 20% by weight,
It was discovered that a sintered body with high density and low thermal conductivity could be obtained by using both sintering aids containing 0.1 to 5% by weight of carbon, and based on this knowledge, the present invention was completed. It is something. The particle size of silicon carbide used in the present invention is
It needs to be 5.0 μm or less, preferably 1 μm or less. If the particle size is larger than this, the density of the sintered body decreases and the strength also decreases. The crystal forms of silicon carbide contained in the raw material powder are α form,
Either β-type may be used. Alternatively, a mixture of these may be used. Barium and carbon are used as sintering aids. Barium sources include barium or barium-containing compounds such as barium oxide, barium carbide,
Barium carbonate etc. are used. The amount of barium (converted to barium for barium-containing compounds) added is 0.5 to 20 to silicon carbide.
% by weight, preferably from 1 to 10% by weight. If it is less than 0.5% by weight, densification progresses slowly and a high-density sintered body cannot be obtained. Also, 20
If it exceeds % by weight, a large amount of barium remains in the sintered body, resulting in a drawback of lowering the mechanical strength of the silicon carbide sintered body. As the carbon source, carbon such as carbon black or an organic compound such as phenol resin, which produces carbon during firing, is used. The amount of carbon (in the case of an organic compound, in terms of carbon) added must be 0.1 to 5% by weight based on silicon carbide. If it is less than 0.1% by weight, sintering is difficult;
If it exceeds 5% by weight, carbon remains in the sintered body, resulting in a disadvantage that the mechanical strength of the silicon carbide sintered body is reduced. The function of barium and carbon as sintering aids is not clear, but barium and carbon react to form barium carbide, which reacts with silicon carbide to form a liquid phase and promote sintering. It is considered that Furthermore, it is thought that the thermal conductivity decreases due to the effect of this generated compound. The mixture of silicon carbide powder, barium and carbon is
Wet mixing using an organic solvent such as ethanol or acetone or water is suitable. Particularly when using an organic compound as a carbon source, it is desirable to use an organic solvent that dissolves the organic compound. Molding of these mixtures is performed by die molding, rubber press, injection molding, or the like. Alternatively, a method of simultaneously performing molding and sintering such as hot pressing or hot isostatic pressing may be used. Firing is carried out in vacuum or in an inert atmosphere. Examples of the inert atmosphere include helium, argon, and the like. It is necessary to reduce oxygen in this atmosphere as much as possible, and it is desirable that the degree of vacuum be 10 -4 atmospheres or less, and the oxygen concentration contained in the inert atmosphere be 10 -6 or less. This is because if a large amount of oxygen is contained in the atmosphere, the surface of the silicon carbide powder will be oxidized and the sinterability will be reduced. Firing temperature is 1800~2400℃, preferably 2000~
Perform at 2100℃. If the temperature is lower than 1800°C, sintering progresses slowly and a dense sintered body cannot be obtained, and if the temperature exceeds 2400°C, crystal grain growth becomes significant and silicon carbide decomposes, which is not preferable. The sintering method may be any method such as normal pressure sintering, hot pressing, hot isostatic pressing, etc., but when the amount added is small, it is better to use hot pressing or hot isostatic pressing. Example 1 Average particle size 0.3μm made by reacting SiO 2 and carbon
β-SiC powder, 5% by weight of barium oxide (4.5% by weight in terms of barium), 1% by weight of resol type phenolic resin (in terms of carbon)
mixed in the ratio of Ethanol was added to this and mixed in a ball mill for 24 hours, then dried and pulverized to obtain a raw material mixed powder. Next, the mixed powder was placed in a graphite die, heated at a rate of 50°C/min to 2050°C while applying a pressure of 200Kg/cm 2 in a vacuum of 10 -4 Torr, and hot pressed for 30 minutes. A sintered body having a diameter of 10 mm and a thickness of 2 mm was obtained. The density of the obtained sintered body was 3.05 g/cm 3 and the thermal conductivity was 6.4 W/mK. Note that the thermal conductivity is a value measured by a laser flash method. Example 2 Example 1 except that 10% by weight of barium carbonate (7% by weight in terms of barium) was added as a barium source and 2% by weight of resol type phenolic resin (in terms of carbon) was added as a carbon source. A sintered body was obtained by hot pressing under the same conditions as above. The density of the obtained sintered body was 3.06 g/cm 3 and the thermal conductivity was 4.4 W/mK. Comparative Example A sintered body was obtained by hot pressing in the same manner as in Example 1 using additives having the composition shown in Table 1. All of the obtained sintered bodies had high densities, but all had high thermal conductivity and were unsuitable as heat insulating materials.

【表】 以上のように本発明の方法によると、密度3.0
g/cm3以上で、しかも熱伝導率10W/mK以下
の、高密度・低熱伝導性の優れた炭化けい素焼結
体が得られる効果を奏し得られる。
[Table] As described above, according to the method of the present invention, density 3.0
g/cm 3 or more and a thermal conductivity of 10 W/mK or less, resulting in an excellent silicon carbide sintered body with high density and low thermal conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径5.0μm以下の炭化けい素粉末に、該
炭化けい素粉末の0.5〜20重量%のバリウムまた
は同量のバリウムを含むバリウム化合物と、該炭
化けい素粉末の0.1〜5重量%の炭素または同量
の炭素を生成する有機化合物を混合・成形した
後、真空中または不活性雰囲気中で、1800〜2400
℃で焼成することを特徴とする高密度炭化けい素
焼結体の製造法。
1 Silicon carbide powder with an average particle size of 5.0 μm or less, 0.5 to 20% by weight of barium of the silicon carbide powder, or a barium compound containing the same amount of barium, and 0.1 to 5% of the silicon carbide powder by weight. After mixing and shaping carbon or an organic compound that produces the same amount of carbon, in vacuum or in an inert atmosphere, 1800 to 2400
A method for producing a high-density silicon carbide sintered body characterized by firing at ℃.
JP59046766A 1984-03-12 1984-03-12 Manufacture of high density silicon carbide sintered body Granted JPS60191060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59046766A JPS60191060A (en) 1984-03-12 1984-03-12 Manufacture of high density silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59046766A JPS60191060A (en) 1984-03-12 1984-03-12 Manufacture of high density silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS60191060A JPS60191060A (en) 1985-09-28
JPS6337062B2 true JPS6337062B2 (en) 1988-07-22

Family

ID=12756451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59046766A Granted JPS60191060A (en) 1984-03-12 1984-03-12 Manufacture of high density silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS60191060A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187198B (en) * 2016-07-14 2018-08-07 范瑶飞 Resistance to thermal shock base material and its purposes as solar energy thermal-power-generating heat-absorption material

Also Published As

Publication number Publication date
JPS60191060A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
US4179299A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
US4701427A (en) Sintered silicon carbide ceramic body of high electrical resistivity
US4346049A (en) Sintered alpha silicon carbide ceramic body having equiaxed microstructure
JPS5934147B2 (en) Silicon carbide sintered ceramic body and its manufacturing method
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
JPH02175660A (en) Silicon-penetrated silicon carbide member with porous surface and preparation of said silicone carbide
US5525555A (en) High density titanium carbide ceramics
US5449646A (en) Preparation of high density zirconium diboride ceramics with preceramic polymer binders
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
Semen et al. Structural ceramics derived from a preceramic polymer
JPH0228539B2 (en)
JPS6337062B2 (en)
JPS6331433B2 (en)
AU689270B2 (en) Preparation of high density zirconium carbide ceramics with preceramic polymer binders
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JPS638069B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
SAKAI et al. Hot‐Pressing of Sic with Additions of BaO and C
JPS6328873B2 (en)
JPS6344713B2 (en)
JPH09268062A (en) Silicon carbide sintered compact and its production
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term