JPH0253389B2 - - Google Patents

Info

Publication number
JPH0253389B2
JPH0253389B2 JP61010778A JP1077886A JPH0253389B2 JP H0253389 B2 JPH0253389 B2 JP H0253389B2 JP 61010778 A JP61010778 A JP 61010778A JP 1077886 A JP1077886 A JP 1077886A JP H0253389 B2 JPH0253389 B2 JP H0253389B2
Authority
JP
Japan
Prior art keywords
silicon carbide
rare earth
carbon
earth elements
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61010778A
Other languages
Japanese (ja)
Other versions
JPS62167252A (en
Inventor
Toshikazu Sakai
Toshihiko Aikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP61010778A priority Critical patent/JPS62167252A/en
Publication of JPS62167252A publication Critical patent/JPS62167252A/en
Publication of JPH0253389B2 publication Critical patent/JPH0253389B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高密度で且つ熱伝導性の優れた炭化け
い素焼結体の製造法に関するものである。 炭化けい素は常温及び高温において化学的に安
定であり、また機械的特性に優れているため、耐
熱構造材料、しゆう動材料として使用され始めて
いる。また熱伝導性が良い性質をいかして放熱
板、熱交換器用材料、IC基板等の熱伝導材料と
しての利用が検討されている。 従来の技術 従来、炭化けい素をこのような材料として使用
する場合、微細な炭化けい素粉末を成形して高温
で焼成して焼結体を製造している。しかし、炭化
けい素は元来難焼結性であるため、焼成に際し焼
結助剤を添加、混合している。例えば、(1)β−
SiC粉末にほう素0.03〜0.1未満重量%と炭素0.1〜
1.0重量%を混和して焼成する方法(特開昭60−
155572号公報)。(2)α−SiC粉末にBeOを添加し
てホツトプレスする高密度・高熱伝導炭化けい素
の製造法(セラミツクス、18、P217〜23、1983
年)が知られている。 しかしながら、前記(1)の方法では高密度化度お
よび焼結体の熱伝導率は十分に高いとはいえな
い。また前記(2)の方法は、焼結助剤として使用す
るBeOが毒性を有するため、作業環境の点から
好ましくない。 発明の目的 本発明は、これらの従来法の欠点を改善すべく
なされたもので、その目的は作業環境を損なうこ
となく、高密度でかつ優れた熱伝導性を有する炭
化けい素焼結体を製造する方法を提供するにあ
る。 発明の構成 本発明者らは前記目的を達成すべく、平均粒径
0.5μm以下の炭化けい素粉末に、希土類元素のう
ち1種類以上と炭素とを焼結助剤として使用し、
その使用量および種類を変えて、真空下または不
活性雰囲気下で焼成したところ、炭化けい素粉末
に対し希土類元素のうち1種類以上0.01〜20重量
%、炭素0.05〜10重量%の焼結助剤を同時に使用
することにより、高密度でかつ高い熱伝導性を持
つ焼結体が得られることを究明し得、この知見に
基いて本発明を完成したものである。 本発明の要旨は平均粒径5.0μm以下の炭化けい
素粉末に、該炭化けい素粉末の0.01〜20重量%の
希土類元素または同量の希土類元素を含む希土類
元素の化合物のうち1種類以上と該炭化けい素粉
末の0.05〜10重量%の炭素または同量の炭素を生
成する有機化合物を混合、成形した後、真空中ま
たは不活性雰囲気中で1800〜2400℃で焼成するこ
とを特徴とする高密度炭化けい素焼結体の製造
法、にある。 本発明において使用する炭化けい素粉末の粒径
は5.0μm以下、好ましくは1μm以下のものである
ことが必要である。粒径がそれより大きいものは
焼結体の密度が低下し、また強度が低下する。原
料粉末に含まれる炭化けい素の結晶形は、α形、
β形いずれでもよい。またこれらの混合物でもよ
い。 焼結助剤としては希土類元素のうち1種類以上
と炭素を使用する。なおここで希土類元素とは、
イツトリウム、ランタン、セリウム、プラセオジ
ウム、ネオジウム、サマリウム、ユーロピウム、
ガドリニウム、テルビウム、ジスプロシウム、ホ
ルミウム、エルビウム、ツリウム、イツテルビウ
ム、ルテチウムのことをいう。希土類元素源とし
ては、希土類元素または希土類元素含有化合物、
たとえば、希土類酸化物が使用される。 希土類元素のうち1種類以上(希土類元素含有
化合物では、希土類元素に換算して)の添加量
は、炭化けい素に対し0.01〜20重量%、好ましく
は0.1〜10重量%であることが必要である。 0.01重量%より少ないとち密化の進行がおそ
く、高密度の焼結体が得られない。また、20重量
%を超えると、焼結体中に多くの希土類元素が残
留し、炭化けい素焼結体の機械的強度を低下させ
る欠点が生ずる。 炭素源としては、黒鉛粉、カーボンブラツク等
の炭素、または焼成の際に炭素を生成する、たと
えば、フエノール樹脂などの有機化合物が使用さ
れる。炭素(有機化合物の場合は炭素に換算し
て)の添加量は炭化けい素に対し、0.05〜10重量
%であることが必要である。0.05重量%より少な
いと焼結が困難であり、10重量%を超えると焼結
体中に炭素が残留して炭化けい素焼結体の機械的
強度を低下させる欠点が生ずる。 焼結助剤としての希土類元素ならびに炭素の働
きについては明らかではない。希土類元素はa
族に属し、それら相互の化学的性質はよく似てお
り、希土類元素は種類に関係なく同じような作用
をすると思われるが、焼結体のX線回折を行なう
と希土類元素の炭化物によると思われるX線回折
線が見られるものがいくつか存在する。このこと
から希土類元素含有化合物と炭素および炭化けい
素が反応して希土類元素の炭化物を生成し、これ
が炭化けい素の焼結の促進に関与するものとも考
えられる。 希土類元素は炭素と同時に添加することによつ
て炭化けい素のち密化を促進する効果を示す。希
土類元素のみの添加では大きな効果は得られな
い。添加する希土類元素量と炭素量との比率は、
希土類元素の少量である領域では特に重要であ
る。この最適比率については未だ十分な説明が与
えられないが、炭素は希土類元素量に対し或る量
比以上が必要である。 炭化けい素粉末と希土類元素のうち1種類以上
及び炭素の混合は、エタノール、アセトン等の有
機溶剤または水を用いての湿式混合が適してい
る。特に炭素源として有機化合物を用いる場合に
は、その有機化合物を溶解する有機溶剤の使用が
望ましい。 これらの混合物の成形は、金型成形、ラバープ
レス、射出成形等によつて行われる。また、ホツ
トプレス、熱間静水圧プレス等の成形と焼結を同
時に行う方法でもよい。 焼成は真空中または不活性雰囲気中で行う。不
活性雰囲気としては、ヘリウム、アルゴン等が挙
げられる。この雰囲気は含有自由酸素量を極力低
下させることが必要である。減圧下では真空度
10-4気圧以下で、また不活性雰囲気中に含まれる
酸素濃度は10-6気圧以下であることが望ましい。
黒鉛炉、黒鉛ルツボの使用も有効である。雰囲気
中に多量の酸素が含まれると、炭化けい素粉末の
表面を酸化して焼結性が低下するからである。 焼成温度は1800〜2400℃、好ましくは1900
2200℃で行う。1800℃より低いと焼結の進行が遅
く、ち密な焼結体が得難く、また、2400℃を超え
ると結晶粒の粗大化が顕著となり、また炭化けい
素の分解が起こるので好ましくない。焼結法は常
圧焼結法、ホツトプレス法、熱間静水圧プレス法
等いずれの方法でもよいが、添加量が少い場合に
は、ホツトプレス法、熱間静水圧プレス法を用い
る方がよい。 実施例 実施例 1〜8 SiO2と炭素を反応させて作つた平均粒径0.3μm
のβ−SiC粉末に希土類元素の酸化物及び炭素と
してレゾール形フエノール樹脂を表1に示す割合
で混合した。ただし、この混合割合は、それぞれ
希土類元素及び炭素に換算した値である。上記混
合物にエタノールを加えボールミルで10時間混合
した後、乾燥、粉砕して原料粉末を得た。次に該
混合粉末を黒鉛ダイスに入れ、10-4Torrの真空
中で200Kg/cm2の圧力を加えながら、50℃/分の
速度で昇温し、表1に示した条件でホツトプレス
することにより、φ10、厚さ2mmの焼結体を得
た。 得られた焼結体の密度及び熱伝導率(レーザフ
ラツシユ法により測定)を表2にまとめた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a silicon carbide sintered body having high density and excellent thermal conductivity. Silicon carbide is chemically stable at room temperature and high temperature, and has excellent mechanical properties, so it is beginning to be used as a heat-resistant structural material and a sliding material. In addition, due to its good thermal conductivity, its use as a heat conductive material for heat sinks, heat exchangers, IC boards, etc. is being considered. BACKGROUND ART Conventionally, when silicon carbide is used as such a material, a sintered body is manufactured by molding fine silicon carbide powder and firing it at a high temperature. However, since silicon carbide is inherently difficult to sinter, a sintering aid is added and mixed during firing. For example, (1)β−
SiC powder with less than 0.03~0.1 wt% boron and 0.1~0.1% carbon
Method of mixing 1.0% by weight and firing
Publication No. 155572). (2) Production method of high density and high thermal conductivity silicon carbide by adding BeO to α-SiC powder and hot pressing (Ceramics, 18, P217-23, 1983
year) is known. However, in the method (1), the degree of densification and the thermal conductivity of the sintered body cannot be said to be sufficiently high. In addition, the method (2) above is not preferable from the viewpoint of the working environment because BeO used as a sintering aid is toxic. Purpose of the Invention The present invention was made to improve the drawbacks of these conventional methods, and its purpose is to produce a silicon carbide sintered body with high density and excellent thermal conductivity without impairing the working environment. This is to provide a way to do so. Structure of the Invention In order to achieve the above object, the present inventors have
One or more rare earth elements and carbon are used as sintering aids in silicon carbide powder of 0.5 μm or less,
By varying the amount and type of sintering agents used and sintering under vacuum or inert atmosphere, it was found that 0.01 to 20% by weight of one or more rare earth elements and 0.05 to 10% by weight of carbon were added to the silicon carbide powder. It was discovered that a sintered body with high density and high thermal conductivity can be obtained by using both agents at the same time, and the present invention was completed based on this knowledge. The gist of the present invention is to combine silicon carbide powder with an average particle size of 5.0 μm or less with a rare earth element in an amount of 0.01 to 20% by weight of the silicon carbide powder, or one or more rare earth element compounds containing the same amount of rare earth element. It is characterized by mixing and molding 0.05 to 10% by weight of carbon in the silicon carbide powder or an organic compound that produces the same amount of carbon, and then firing at 1800 to 2400°C in a vacuum or an inert atmosphere. A method for producing a high-density silicon carbide sintered body. The particle size of the silicon carbide powder used in the present invention must be 5.0 μm or less, preferably 1 μm or less. If the particle size is larger than this, the density of the sintered body decreases and the strength also decreases. The crystal forms of silicon carbide contained in the raw material powder are α form,
Either β-form may be used. A mixture of these may also be used. As the sintering aid, one or more rare earth elements and carbon are used. Note that the rare earth elements here are
Yztrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium,
Refers to gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Rare earth element sources include rare earth elements or rare earth element-containing compounds;
For example, rare earth oxides are used. The amount of one or more rare earth elements added (in rare earth element-containing compounds, in terms of rare earth elements) must be 0.01 to 20% by weight, preferably 0.1 to 10% by weight, based on silicon carbide. be. If it is less than 0.01% by weight, densification progresses slowly and a high-density sintered body cannot be obtained. Moreover, if it exceeds 20% by weight, a large amount of rare earth elements will remain in the sintered body, resulting in the disadvantage of lowering the mechanical strength of the silicon carbide sintered body. As the carbon source, carbon such as graphite powder or carbon black, or an organic compound such as phenolic resin that generates carbon during firing is used. The amount of carbon (in the case of an organic compound, in terms of carbon) added must be 0.05 to 10% by weight based on silicon carbide. If it is less than 0.05% by weight, sintering will be difficult, and if it exceeds 10% by weight, carbon will remain in the sintered body, resulting in a disadvantage of lowering the mechanical strength of the silicon carbide sintered body. The role of rare earth elements and carbon as sintering aids is not clear. Rare earth elements are a
The chemical properties of these elements are very similar, and it is thought that rare earth elements act in the same way regardless of the type. There are some types of X-ray diffraction lines that can be seen. From this, it is thought that the rare earth element-containing compound reacts with carbon and silicon carbide to produce rare earth element carbide, which is involved in promoting the sintering of silicon carbide. Rare earth elements exhibit the effect of promoting densification of silicon carbide when added at the same time as carbon. Addition of rare earth elements alone does not produce a significant effect. The ratio between the amount of rare earth elements added and the amount of carbon is:
This is particularly important in areas where rare earth elements are present in small amounts. Although a sufficient explanation has not yet been given regarding this optimal ratio, it is necessary that the amount of carbon be greater than a certain amount relative to the amount of rare earth elements. Wet mixing using an organic solvent such as ethanol or acetone or water is suitable for mixing the silicon carbide powder, one or more rare earth elements, and carbon. Particularly when using an organic compound as a carbon source, it is desirable to use an organic solvent that dissolves the organic compound. Molding of these mixtures is performed by die molding, rubber press, injection molding, or the like. Alternatively, a method of simultaneously performing molding and sintering such as hot pressing or hot isostatic pressing may be used. Firing is carried out in vacuum or in an inert atmosphere. Inert atmospheres include helium, argon, and the like. It is necessary for this atmosphere to reduce the amount of free oxygen contained as much as possible. Under reduced pressure, the degree of vacuum
It is desirable that the pressure be 10 -4 atmospheres or less, and the oxygen concentration contained in the inert atmosphere be 10 -6 atmospheres or less.
The use of graphite furnaces and graphite crucibles is also effective. This is because if the atmosphere contains a large amount of oxygen, the surface of the silicon carbide powder will be oxidized and the sinterability will deteriorate. Firing temperature is 1800-2400℃, preferably 1900℃
Perform at 2200℃. If the temperature is lower than 1800°C, sintering progresses slowly and it is difficult to obtain a dense sintered body, and if the temperature exceeds 2400°C, coarsening of crystal grains becomes noticeable and decomposition of silicon carbide occurs, which is not preferable. The sintering method may be any method such as normal pressure sintering, hot pressing, hot isostatic pressing, etc., but if the amount added is small, it is better to use hot pressing or hot isostatic pressing. . Examples Examples 1 to 8 Average particle size 0.3 μm made by reacting SiO 2 and carbon
A rare earth element oxide and a resol type phenolic resin as carbon were mixed into the β-SiC powder in the proportions shown in Table 1. However, this mixing ratio is a value converted to rare earth elements and carbon, respectively. Ethanol was added to the above mixture and mixed in a ball mill for 10 hours, followed by drying and pulverization to obtain a raw material powder. Next, the mixed powder is placed in a graphite die, heated at a rate of 50°C/min while applying a pressure of 200Kg/cm 2 in a vacuum of 10 -4 Torr, and hot pressed under the conditions shown in Table 1. As a result, a sintered body having a diameter of 10 mm and a thickness of 2 mm was obtained. The density and thermal conductivity (measured by the laser flash method) of the obtained sintered body are summarized in Table 2.

【表】 * 希土類元素に換算した。
[Table] * Converted to rare earth elements.

【表】 表2の密度、熱伝導率を特開昭60−155572号の
熱伝導性の優れた炭化けい素焼結体と比べると、
密度、熱伝導率ともに実施例の方が同等または優
れている。炭化けい素セラミツクスの場合、密度
が3.1g/cm3を超えると機械的強度は著しく向上
するといわれているので、実施例のように高密度
焼結体の得られた意義は非常に大きい。 発明の効果 以上のように本発明の方法によると、密度3.1
g/cm3以上で、しかも熱伝導率100W/mk以上で
ある高密度、熱伝導性の優れた炭化けい素焼結体
が得られる効果を奏し得られる。
[Table] Comparing the density and thermal conductivity in Table 2 with the silicon carbide sintered body with excellent thermal conductivity disclosed in JP-A-60-155572,
Both the density and thermal conductivity of the examples are equivalent or superior. In the case of silicon carbide ceramics, it is said that the mechanical strength is significantly improved when the density exceeds 3.1 g/cm 3 , so the achievement of the high-density sintered body as in the example is of great significance. Effects of the Invention As described above, according to the method of the present invention, density 3.1
g/cm 3 or more and a thermal conductivity of 100 W/mk or more, resulting in a silicon carbide sintered body with high density and excellent thermal conductivity.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径5.0μm以下の炭化けい素粉末に、該
炭化けい素粉末の0.01〜20重量%の希土類元素ま
たは同量の希土類元素を含む希土類元素の化合物
のうち1種類以上と該炭化けい素粉末の0.05〜10
重量%の炭素または同量の炭素を生成する有機化
合物を混合、成形した後、真空中または不活性雰
囲気中で1800〜2400℃で焼成することを特徴とす
る高密度炭化けい素焼結体の製造法。
1 Silicon carbide powder with an average particle size of 5.0 μm or less, one or more of rare earth elements in an amount of 0.01 to 20% by weight of the silicon carbide powder, or one or more compounds of rare earth elements containing the same amount of rare earth elements, and the silicon carbide. 0.05~10 of powder
Production of a high-density silicon carbide sintered body characterized by mixing and shaping organic compounds that produce % by weight of carbon or the same amount of carbon, and then firing at 1800 to 2400°C in a vacuum or in an inert atmosphere. Law.
JP61010778A 1986-01-21 1986-01-21 Manufacture of high density silicon carbide sintered body Granted JPS62167252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010778A JPS62167252A (en) 1986-01-21 1986-01-21 Manufacture of high density silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010778A JPS62167252A (en) 1986-01-21 1986-01-21 Manufacture of high density silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS62167252A JPS62167252A (en) 1987-07-23
JPH0253389B2 true JPH0253389B2 (en) 1990-11-16

Family

ID=11759789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010778A Granted JPS62167252A (en) 1986-01-21 1986-01-21 Manufacture of high density silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS62167252A (en)

Also Published As

Publication number Publication date
JPS62167252A (en) 1987-07-23

Similar Documents

Publication Publication Date Title
US4564490A (en) Method of preparing sintered shapes of silicon carbide
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
CA2000822A1 (en) Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders
JPH0251863B2 (en)
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JPH0253389B2 (en)
JPS6331433B2 (en)
JPS638069B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JPS60131862A (en) High strength silicon carbide base sintered body
JPS60137873A (en) Silicon nitride sintered body
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPS6328873B2 (en)
SAKAI et al. Hot‐Pressing of Sic with Additions of BaO and C
JPS60191060A (en) Manufacture of high density silicon carbide sintered body
JPS6346029B2 (en)
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPH0345034B2 (en)
JPH01219062A (en) Production of silicon nitride sintered body
KR20230037070A (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPS58125666A (en) Carborundum sintered body and its manufacture
JPS6163571A (en) Manufacture of aluminum nitride sintered body
JPS62283871A (en) Manufacture of silicon carbide sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term