JPS6336976A - Load state monitoring method for high-frequency welding equipment - Google Patents

Load state monitoring method for high-frequency welding equipment

Info

Publication number
JPS6336976A
JPS6336976A JP18163486A JP18163486A JPS6336976A JP S6336976 A JPS6336976 A JP S6336976A JP 18163486 A JP18163486 A JP 18163486A JP 18163486 A JP18163486 A JP 18163486A JP S6336976 A JPS6336976 A JP S6336976A
Authority
JP
Japan
Prior art keywords
plate
frequency
voltage
transfer function
load state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18163486A
Other languages
Japanese (ja)
Inventor
Tadaaki Ogino
荻野 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18163486A priority Critical patent/JPS6336976A/en
Publication of JPS6336976A publication Critical patent/JPS6336976A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To properly monitor a load state of high-frequency welding equipment by measuring the plate AC voltage and a plate AC of a vacuum tube oscillating high frequency and calculating a transfer function by a prescribed computing element. CONSTITUTION:A plate AC voltage measuring instrument 7, a plate AC measuring instrument 8 and the transfer function computing element 9 are connected with a resonance circuit 2 of the vacuum tube 1 oscillating the high frequency. Then, ep (f) which is component of the frequency (f) of the plate AC voltage e1 is measured by the voltage measuring instrument 7 and in the same way, ip (f) which is the component of the frequency (f) of the plate AC ip is measured by the AC measuring instrument 8 and these values are inputted to the computing element 9 to calculate the transfer function from ep (f)/ip (f). A necessary index value for monitoring a load circuit is obtained from said transfer function to monitor the load state. Accordingly, the proper load state can be always monitored.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波誘導溶接における溶接装置の負荷状態の
監視方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for monitoring the load condition of a welding device in high-frequency induction welding.

(従来技術〕 電縫管の製造は連続送給される金属板を所定径寸法に曲
成して端縁を互いに対向させたオープンパイプを形成し
、高周波誘導コイル内に挿通させるとともに、スクイズ
ロールにて側圧を加えて端縁同士を高周波溶着する。と
ころで、この高周波を発振させる発振器に真空管を用い
て高周波誘4溶接を行う場合には、作業者は真空管の陽
極直流電圧、陽極直流電流を指標とするとともに、溶接
火色、ビード形状を見て被溶接材の材質、寸法等に適合
した大熱量を得るよう制御している。
(Prior art) ERW pipes are manufactured by bending a continuously fed metal plate to a predetermined diameter to form an open pipe with ends facing each other, and inserting the pipe into a high-frequency induction coil. By the way, when performing high-frequency induction welding using a vacuum tube as an oscillator that oscillates high-frequency waves, the operator must control the anode DC voltage and anode DC current of the vacuum tube. In addition to using it as an indicator, welding flame color and bead shape are also used to control the amount of heat that is appropriate for the material, size, etc. of the workpiece to be welded.

また、このような大熱量又は溶接条件の制御方法とは別
に、高周波溶接装置の負荷状態を監視する近似的な方法
として、特開昭53−79746号、特開昭54−22
40号、特開昭54−11054号、特開昭54−90
037号等により、発振周波数又は電圧、電流等の高周
波特性値を測定して、その変動の状態を定量的に表して
負荷状態を監視する方法が知られている。
In addition to such a method of controlling large amounts of heat or welding conditions, approximate methods for monitoring the load condition of high-frequency welding equipment are disclosed in Japanese Patent Application Laid-Open No. 53-79746 and Japanese Patent Application Laid-Open No. 54-22.
No. 40, JP-A-54-11054, JP-A-54-90
No. 037 and the like, a method is known in which high frequency characteristic values such as oscillation frequency, voltage, and current are measured, and the state of fluctuation thereof is quantitatively expressed to monitor the load state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、発振器に真空管を使用しているこの種の溶接
装置は、効率が低く、例えば真空管効率が60〜80%
程度であり、溶接装置としての総合効率は50%程度で
ある。そして、この効率は電縫管製造ラインに設けてい
るインビーダコアの性能、羽口の突き合せ角度、被加熱
材の肉厚、外径の大小等の負荷状態によって大きく変化
する。これを補うのが作業者の熟練及び勘による調節で
あるが、安定した溶接が行えないという問題がある。
By the way, this type of welding equipment that uses a vacuum tube as an oscillator has low efficiency, for example, the vacuum tube efficiency is 60 to 80%.
The overall efficiency of the welding device is about 50%. This efficiency varies greatly depending on load conditions such as the performance of the invider core provided in the electric resistance welded tube production line, the butting angle of the tuyeres, the thickness of the material to be heated, and the size of the outer diameter. This can be compensated for by adjustment based on the operator's skill and intuition, but there is a problem that stable welding cannot be performed.

また、前述の如く発振周波数、電圧、電流等の高周波特
性を測定して、その変動状態を監視の指標にする前記の
特開昭53−79746号等に示されている方法は、被
加熱材への入熱量を一定とすることを目的としたもので
あって、負荷状態を適正に示す指標となるものではない
In addition, as mentioned above, the method shown in the above-mentioned Japanese Patent Application Laid-Open No. 79746/1983, which measures high frequency characteristics such as oscillation frequency, voltage, and current, and uses the fluctuation state as an indicator for monitoring, The purpose is to keep the amount of heat input constant, and it is not an indicator that properly indicates the load state.

これらとは別に一般には、溶接時の負荷状態の監視に当
って(被加熱材の板厚t)×(被加熱材の速度■)、即
ち処理量v−tと所要電力pとの比からなる入熱係数U
=p/(v−t)を指標としているが、この指標には溶
接装置の効率による変動分を含み、適正な負荷状態を表
す指標が得られず、結局、前述したように作業者の勘又
は熟練によっており、効率の高い安定した溶接が行えな
い問題がある。
Apart from these, in general, when monitoring the load condition during welding, it is calculated from (plate thickness t of heated material) x (velocity of heated material ■), that is, the ratio of throughput v-t and required power p. The heat input coefficient U
=p/(v-t) is used as an index, but this index includes fluctuations due to the efficiency of the welding equipment, so it is not possible to obtain an index that represents the appropriate load condition, and as mentioned above, the operator's intuition Otherwise, there is a problem that highly efficient and stable welding cannot be performed due to skill.

本発明は前述した問題に漏み、高周波溶接装置の負荷状
態を常に最適の状態となす監視方法を提供するものであ
る。
The present invention addresses the above-mentioned problems and provides a monitoring method that always keeps the load condition of a high-frequency welding device in an optimal condition.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の高周波溶接装置の負荷状態監視方法は、発振器
に真空管を使用して高周波発振させることにより高周波
溶接を行う溶接装置の負荷状態監視方法において、前記
真空管のプレート交流電圧e。
A load state monitoring method for a high frequency welding device according to the present invention is a method for monitoring a load state of a welding device that performs high frequency welding by using a vacuum tube as an oscillator to generate high frequency oscillation.

の周波数fの成分であるe、(f)とプレート交流電流
ipの周波数fの成分であるip(f)とを計測し1 
p  ([1 から伝達関数を得、これにより負荷状態を監視すること
を特徴とする。
Measure e, (f), which is the frequency f component of the plate AC current ip, and ip(f), which is the frequency f component of the plate AC current ip.
A transfer function is obtained from p ([1), and the load state is monitored using this.

〔実施例〕〔Example〕

まず、本発明の溶接状態監視方法を実施するための溶接
装置を図面によって詳述する。第1図は高周波溶接装置
の概略図であり、第2図は溶接装置各部の電圧、電流波
形を示したものである。
First, a welding apparatus for carrying out the welding condition monitoring method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of a high frequency welding device, and FIG. 2 shows voltage and current waveforms at various parts of the welding device.

第1図において、発振器である真空管1はC級増幅動作
を行うものであって、10〜15kV程度の直流高電圧
からなるプレート直流電圧Epを真空管1のプレートP
に与えている。
In FIG. 1, a vacuum tube 1, which is an oscillator, performs class C amplification operation, and a plate DC voltage Ep consisting of a high DC voltage of about 10 to 15 kV is applied to a plate P of the vacuum tube 1.
is giving to

また真空管1のプレートPとカソードにとの間には、結
合コンデンサ6を介して共振コイルLと共振コンデンサ
Cとが並列接続された共振回路(タンク回路)2が接続
されていて、この共振回路2と並列にコンデンサ3,4
を直列接続してなる分圧回路が接続されている。コンデ
ンサ3,4の接続点を真空管1のグリッドGに接続して
いて、共振回路2から分圧コンデンサ3.4によって帰
還される信号をグリッドGに与えている。またグリッド
Gはグリッド抵抗5で第2図(b)に示す如きバイアス
電圧−E9が加えられている。これにより真空管1はグ
リッド交流電圧e、(第2図(b)参照〕に同期するス
イッチング動作をする。即ち、第2図(blに示すよう
にグリッド交流電圧egがグリッドGに加わるプレート
交流電圧e3の寄与分−ep/μ(μは真空管1の増幅
率)より上回った期間だけプレート交流電流ipが流れ
て〔第2図(C)参照〕、共振回路2にエネルギーを供
給する。
Furthermore, a resonant circuit (tank circuit) 2 in which a resonant coil L and a resonant capacitor C are connected in parallel is connected between the plate P and the cathode of the vacuum tube 1 via a coupling capacitor 6. Capacitors 3 and 4 in parallel with 2
A voltage divider circuit formed by connecting the two in series is connected. The connection point of the capacitors 3 and 4 is connected to the grid G of the vacuum tube 1, and a signal fed back from the resonant circuit 2 by the voltage dividing capacitor 3.4 is given to the grid G. Further, the grid G has a grid resistor 5 applied with a bias voltage -E9 as shown in FIG. 2(b). As a result, the vacuum tube 1 performs a switching operation in synchronization with the grid AC voltage e, (see FIG. 2(b)). That is, as shown in FIG. The plate alternating current ip flows for a period exceeding the contribution of e3 -ep/μ (μ is the amplification factor of the vacuum tube 1) [see FIG. 2(C)], and supplies energy to the resonant circuit 2.

共振コイルしには1ターンの2次コイルLaがリンクし
ていてその両端は図示しない前述した高周波誘導コイル
に接続されており、共振回路2の電力エネルギーは溶接
電力として溶接部に与えられるようになっている。そし
て、このときのプレート交流電流ipは一種の脈流とな
っており、種々の周波数成分を含有している。プレート
交流電流ipに含まれている周波数成分のうち共振回路
2の共振周波数成分以外は共振回路2内で減衰して第2
図(C1に破線で示す波形の共振周波数成分(基本波成
分)のみが残って溶接電力として有効に作用する。そし
てこのプレート交流電流ipの流通角ψ、は、プレート
交流電圧の位相0点、即ちφ=0の時点とプレート交流
電流ipの通電開始時点又は通電終了時点との夫々の期
間〔第2図(C1参照しである。このプレート交流電流
ipの流通角φ9は真空管1のグリッドGに加わるグリ
ッド交流電圧e9で制御されるものであり、グリッドG
のバイアス電圧−E9は第2図(d)に示したグリッド
直流電流■9とグリッド抵抗5の抵抗値R,との積の電
圧により与えられる。
A one-turn secondary coil La is linked to the resonant coil, and both ends thereof are connected to the aforementioned high-frequency induction coil (not shown), so that the power energy of the resonant circuit 2 is given to the welding part as welding power. It has become. The plate alternating current ip at this time is a kind of pulsating current and contains various frequency components. Among the frequency components included in the plate alternating current ip, the components other than the resonance frequency components of the resonance circuit 2 are attenuated within the resonance circuit 2 and are
Only the resonant frequency component (fundamental wave component) of the waveform shown by the broken line in Figure (C1) remains and acts effectively as welding power.The flow angle ψ of this plate AC current ip is the phase 0 point of the plate AC voltage, That is, the period between the time φ=0 and the time when the plate AC current ip starts passing or ends the current passing (see FIG. 2 (C1). The flow angle φ9 of the plate AC current ip is determined by the grid G It is controlled by the grid AC voltage e9 applied to the grid G
The bias voltage -E9 is given by the voltage that is the product of the grid DC current 9 and the resistance value R of the grid resistor 5 shown in FIG. 2(d).

ところで、プレート交流電圧epは負荷インピーダンス
によって変化するから、プレート交流電流ipの流通角
φ2も負荷状態によって変わる。
By the way, since the plate AC voltage ep changes depending on the load impedance, the flow angle φ2 of the plate AC current ip also changes depending on the load state.

即ち、負荷状態の変化により、溶接装置の効率が大きく
変化するのはこの真空管1のグリッドバイアス電圧が変
化することに起因するからである。
That is, the reason why the efficiency of the welding apparatus changes greatly due to changes in the load condition is because the grid bias voltage of the vacuum tube 1 changes.

しかして、この高周波溶接装置における動作の基本式は ep = Ep  6 p CO3φ     ・fl
)e、=−E、+ ε9cos φ    −(2)i
p=G、’  (e、+ (ep/μ))−〇II′(
(ε9−εp/μ)cos φ(E9  Ep/μ))
  ・・・(3)但し、Ep ニブレート直流電圧 E9 ニゲリッド直流電圧 ε、ニブレート交流電圧振幅 ε9 ニゲリッド交流電圧振幅 G、′:真空管の相互コンダクタンス φ:位相角 で表わされる。
Therefore, the basic equation of operation in this high-frequency welding device is ep = Ep 6 p CO3φ ・fl
)e, = −E, + ε9cos φ −(2)i
p=G,' (e, + (ep/μ))−〇II'(
(ε9−εp/μ) cos φ(E9 Ep/μ))
...(3) However, Ep nibrate DC voltage E9 nigerid DC voltage ε, nibrate AC voltage amplitude ε9 nigerid AC voltage amplitude G, ': Mutual conductance of vacuum tube φ: Represented by phase angle.

そして、真空管1のプレートPとカソードにとの間には
第2図(a)に示すプレート交流電圧e2を計測するプ
レート交流電圧計測装置7が接続されている。また結合
コンデンサ6と共振コイルLとの間の回路に設けた変流
器CTには第2図(C)に示すプレート交流電流ipを
計測するプレート交流電流計測装置8が接続されている
。そして計測したプレート交流電圧e2及びプレート交
流電流ipを伝達関数演算器9に与えている。伝達関数
演算器9は後述する演算を行い指標値を出力するように
なっている。
A plate AC voltage measuring device 7 for measuring a plate AC voltage e2 shown in FIG. 2(a) is connected between the plate P and the cathode of the vacuum tube 1. Further, a plate alternating current measuring device 8 for measuring the plate alternating current ip shown in FIG. 2(C) is connected to the current transformer CT provided in the circuit between the coupling capacitor 6 and the resonant coil L. Then, the measured plate AC voltage e2 and plate AC current ip are provided to the transfer function calculator 9. The transfer function calculator 9 performs calculations to be described later and outputs an index value.

しかして、真空管1のプレー1〜交流電流ipとプレー
ト交流電圧epとの関係は、真空管1のプレートPとカ
ソードにとの間に接続された負荷のインピーダンスZに
よって定まる。つまり、プレート交流電圧epは、負荷
のインピーダンスZを含んだ共振回路インピーダンスZ
tとプレート交流電流i pとの積である。
Therefore, the relationship between the AC current ip and the plate AC voltage ep of the vacuum tube 1 is determined by the impedance Z of the load connected between the plate P and the cathode of the vacuum tube 1. In other words, the plate AC voltage ep is the resonant circuit impedance Z including the load impedance Z.
It is the product of t and the plate alternating current i p.

そして、周波数fにおけるインピーダンスZf(f)は
、プレート交流電流ipの周波数fの成分ip(f)と
、プレート交流電圧eI、の周波数fの成分ep(f)
との関係から として表すことができる。そして、全周波数域に対する
共振回路のインピーダンスZ、を示す周波数特性つまり
インピーダンスの分布特性は一般に伝達関数と呼ばれて
いる。
The impedance Zf(f) at the frequency f is the component ip(f) of the frequency f of the plate AC current ip, and the component ep(f) of the frequency f of the plate AC voltage eI.
It can be expressed as from the relationship with . The frequency characteristic, that is, the impedance distribution characteristic indicating the impedance Z of the resonant circuit over the entire frequency range is generally called a transfer function.

この共振回路インピーダンスZf(f)は共振周波数f
0で最大となり、そのインピーダンス値Zr(fo)は
負荷の高周波抵抗Rに等しく第3図に示すような周波数
特性を示す。
This resonant circuit impedance Zf(f) is the resonant frequency f
The impedance value Zr(fo) is the maximum at 0, and the impedance value Zr(fo) is equal to the high frequency resistance R of the load, and exhibits a frequency characteristic as shown in FIG.

第3図は横軸を周波数とし、縦軸を共振インピーダンス
Zt(r)の絶対値及び共振回路の位相乙Z(ir’r
として、共振インピーダンス及び位相の周波数特性を示
したものである。
In Figure 3, the horizontal axis represents the frequency, and the vertical axis represents the absolute value of the resonant impedance Zt(r) and the phase Z(ir'r) of the resonant circuit.
, which shows the frequency characteristics of resonance impedance and phase.

なお、fTIは共振回路以外の高周波回路に潜在する回
路定数(L、  C)によって発振する寄生共振周波数
であり、R?+はその共振時の寄生共振インピーダンス
値である。
Note that fTI is a parasitic resonance frequency that oscillates due to circuit constants (L, C) latent in a high-frequency circuit other than the resonant circuit, and R? + is the parasitic resonance impedance value at the time of resonance.

これにより、前記共振インピーダンスの周波数特性から
、 (八)共振周波数r0 (B)寄生共振周波数fア、・・・fl、。
Accordingly, from the frequency characteristics of the resonant impedance, (8) Resonant frequency r0 (B) Parasitic resonant frequency fa, . . . fl,

(C)共振周波数における共振インピーダンスZr(f
o) =R (D)共振インピーダンスがR7々で−となる周波数「
。 ±Δ r (E)寄生共振周波数における共振インピーダンスZr
(fTI) を求めて、共振の良否は、 A 但し、Q、、Sよは管理値である。
(C) Resonant impedance Zr(f
o) = R (D) Frequency at which the resonant impedance becomes - at R7.
. ±Δ r (E) Resonant impedance Zr at parasitic resonant frequency
(fTI) is determined, and the quality of resonance is determined by A. However, Q, S and Q are control values.

負荷回路定数は、 (al  負荷抵抗R: R= Zr(fo ) R,
ip、< R< R,,2πf0 L□、 < L < L IIax 但し、Rwin +  R+++ax及びL win 
l  LIllaXは夫々管理値である。
The load circuit constant is (al load resistance R: R= Zr(fo) R,
ip, < R < R,, 2πf0 L□, < L < L IIax However, Rwin + R+++ax and L win
l LIllaX are respective management values.

として指標値を算出でき、この指標値が管理値範囲から
逸脱しないように監視を行えばよいことになる。
An index value can be calculated as follows, and it is only necessary to monitor this index value so that it does not deviate from the control value range.

このようにして、発振器である真空管のプレート交流電
圧とプレート交流電流とを測定して、その測定値を夫々
伝達関数演算器9に与えて、伝達関数を求めて指標値を
算出して負荷状態を監視するので、負荷の変動、つまり
溶接状態を安定させることができる。
In this way, the plate AC voltage and plate AC current of the vacuum tube, which is an oscillator, are measured, and the measured values are respectively fed to the transfer function calculator 9 to determine the transfer function and calculate the index value to determine the load condition. Since the welding condition is monitored, load fluctuations, that is, welding conditions, can be stabilized.

また、従来は故障するまで見つけ得なかった不良部分を
前述した指標値によって早期に見つけることができる。
Further, defective parts that could not be found until the failure occurred can be found early by using the above-mentioned index value.

〔効果〕〔effect〕

以上詳述した如く、本発明方法は高周波発振している真
空管のプレート交流電圧とプレート交流電流とを計測し
、その計測値を伝達関数演算器に与えて伝達関数を求め
ることにより、高周波溶接装置の負荷回路及び発振回路
の監視に必要な指標値を得ることができる。したがって
、この指標値に注目して負荷状態を監視すれば、負荷イ
ンピーダンスを常に適正値に保持することができ、高周
波溶接装置の効率による変動分を含まず負荷を効率よく
制御することができる。また高周波溶接における省電力
化を図ることができる効果を奏する。
As described in detail above, the method of the present invention measures the plate AC voltage and plate AC current of a vacuum tube that is oscillating at high frequency, and provides the measured values to a transfer function calculator to determine the transfer function. It is possible to obtain index values necessary for monitoring load circuits and oscillation circuits. Therefore, by monitoring the load state with attention to this index value, the load impedance can always be maintained at an appropriate value, and the load can be efficiently controlled without including fluctuations due to the efficiency of the high frequency welding device. It also has the effect of reducing power consumption in high frequency welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための溶接装置の概略回
路図、第2図は第1図における各部の電圧、電流波形図
、第3図は共振回路のインピーダンス及び位相の周波数
特性図である。 1・・・真空管 2・・・共振回路 7・・・プレート
交流電圧計測装置 8・・・プレート交流電流計測装置
9・・・伝達関数演算器 代理人 弁理士  河  野  登  夫第 2.図
Fig. 1 is a schematic circuit diagram of a welding device for carrying out the method of the present invention, Fig. 2 is a voltage and current waveform diagram of each part in Fig. 1, and Fig. 3 is a frequency characteristic diagram of impedance and phase of a resonant circuit. be. 1... Vacuum tube 2... Resonant circuit 7... Plate AC voltage measuring device 8... Plate AC current measuring device 9... Transfer function calculator agent Patent attorney Noboru Kono 2nd. figure

Claims (1)

【特許請求の範囲】 1、発振器に真空管を使用して高周波発振させることに
より高周波溶接を行う溶接装置の負荷状態監視方法にお
いて、 前記真空管のプレート交流電圧e_pの周波数fの成分
であるe_p(f)とプレート交流電流i_pの周波数
fの成分であるi_p(f)とを計測して、その計測値
を伝達関数演算器に与えてe_p(f)/i_p(f) から伝達関数を得、これにより負 荷状態を監視することを特徴とする高周波溶接装置の負
荷状態監視方法。
[Scope of Claims] 1. In a method for monitoring the load condition of a welding device that performs high-frequency welding by using a vacuum tube as an oscillator to generate high-frequency oscillation, e_p (f ) and i_p(f), which is the frequency f component of the plate AC current i_p, and feed the measured values to a transfer function calculator to obtain a transfer function from e_p(f)/i_p(f). A method for monitoring a load condition of a high-frequency welding device, the method comprising monitoring a load condition by:
JP18163486A 1986-07-31 1986-07-31 Load state monitoring method for high-frequency welding equipment Pending JPS6336976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18163486A JPS6336976A (en) 1986-07-31 1986-07-31 Load state monitoring method for high-frequency welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18163486A JPS6336976A (en) 1986-07-31 1986-07-31 Load state monitoring method for high-frequency welding equipment

Publications (1)

Publication Number Publication Date
JPS6336976A true JPS6336976A (en) 1988-02-17

Family

ID=16104192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18163486A Pending JPS6336976A (en) 1986-07-31 1986-07-31 Load state monitoring method for high-frequency welding equipment

Country Status (1)

Country Link
JP (1) JPS6336976A (en)

Similar Documents

Publication Publication Date Title
US7262606B2 (en) Method of arc detection
JP2019145513A (en) Plasma controller
TW201233252A (en) Measuring and controlling parameters of a plasma generator
JPS63161878A (en) Radio frequency oscillator
WO2009060764A1 (en) Apparatus for heating the welded portion of steel pipe material, and method for the apparatus
CN105717831A (en) Impedance matching system and method and control system of supersonic power supply
JPH08264297A (en) Electrically tuned matching network using inductance variance element
CN205563167U (en) Ultrasonic power supply impedance match system and control system
CN101802229B (en) High-frequency hardening monitor device
JPS6336976A (en) Load state monitoring method for high-frequency welding equipment
Di et al. Parallel resonant frequency tracking based on the static capacitance online measuring for a piezoelectric transducer
JPS6343778A (en) Loaded condition monitoring method for high-frequency welding equipment
JPH0761550B2 (en) Welding power control method for high-frequency welding equipment
JPH02165876A (en) Welding electric power control method for high-frequency welding equipment
JP3413785B2 (en) AC high-voltage power supply for discharge plasma generation
JPS6352778A (en) High-frequency voltage measuring method for high-frequency welding equipment
JPS62118981A (en) Welding power measuring method for high frequency welding equipment
JPS63183785A (en) Method for detecting vacuum-tube deterioration of high-frequency welding machine
JPS62104688A (en) Measuring method for welding electric power of high frequency welding equipment
JPH01130887A (en) Method for measuring welding electric power of high-frequency welding equipment
JPH0571357B2 (en)
WO2016038756A1 (en) Welding current measuring device, resistance welding monitoring device, and resistance welding control device
JP2000084484A (en) Apparatus for driving ultrasonic vibrator
Johnson et al. Effect of bandwidth on uniformity of energy distribution in a multi-mode cavity
JPH10183326A (en) Control method for induction heating device