JPS6336882B2 - - Google Patents

Info

Publication number
JPS6336882B2
JPS6336882B2 JP55120463A JP12046380A JPS6336882B2 JP S6336882 B2 JPS6336882 B2 JP S6336882B2 JP 55120463 A JP55120463 A JP 55120463A JP 12046380 A JP12046380 A JP 12046380A JP S6336882 B2 JPS6336882 B2 JP S6336882B2
Authority
JP
Japan
Prior art keywords
cutting edge
chips
shank
groove
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55120463A
Other languages
Japanese (ja)
Other versions
JPS5748411A (en
Inventor
Toshiaki Hosoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55120463A priority Critical patent/JPS5748411A/en
Priority to DE3131794A priority patent/DE3131794C2/en
Priority to KR1019810002968A priority patent/KR840001088B1/en
Priority to IT49149/81A priority patent/IT1171479B/en
Priority to AU74427/81A priority patent/AU542465B2/en
Priority to FR8116144A priority patent/FR2489191B1/en
Priority to GB8125768A priority patent/GB2083767B/en
Priority to MX188944A priority patent/MX152969A/en
Priority to SE8105094A priority patent/SE451241B/en
Priority to CA000384826A priority patent/CA1166485A/en
Publication of JPS5748411A publication Critical patent/JPS5748411A/en
Priority to US06/579,289 priority patent/US4565473A/en
Publication of JPS6336882B2 publication Critical patent/JPS6336882B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/18Configuration of the drill point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves
    • B23B2251/406Flutes, i.e. chip conveying grooves of special form not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/48Chip breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/50Drilling tools comprising cutting inserts

Description

【発明の詳細な説明】 この発明は、ドリルの剛性を向上させて、とく
に深穴加工の切削性の向上を図つたドリルに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drill that has improved rigidity and improved machinability, particularly for deep hole machining.

従来のドリルはシヤンクに切屑排出用のねじれ
溝を形成しているが、この溝幅は溝幅比を1程度
に大きく設定しているためにねじれ剛性および曲
げ剛性が低下し、このためとくに深穴加工の切削
性を向上させるための制約となつていた。
Conventional drills have a torsional groove formed in the shank for discharging chips, but this groove width is set at a large groove width ratio of approximately 1, resulting in a decrease in torsional and bending rigidity. This has been a constraint for improving the machinability of hole machining.

この発明はこのような従来の欠点の解決のため
になされたものであり、ドリルの剛性を高め、こ
れによつてとくに深孔加工における切削性能の向
上を図つたものである。すなわち、この発明は、
切屑排出溝の溝幅比が0.3〜0.1の範囲内になるよ
うに設定し、かつ切刃を中心側切刃と外周側切刃
とで形成し、それらの間に凹部を形成したもので
ある。このように溝幅比を小さく設定すると、後
述のような種々の効果が発生する。なお、溝幅比
が0.5より大きくなるとドリルの剛性が低下し、
0.02より小さくなると切屑の排出に支障をきたす
ことになる。
The present invention has been made to solve these conventional drawbacks, and aims to increase the rigidity of the drill, thereby improving the cutting performance particularly in deep hole machining. That is, this invention:
The groove width ratio of the chip discharge groove is set within the range of 0.3 to 0.1, and the cutting edge is formed by a center cutting edge and an outer peripheral cutting edge, with a recess formed between them. . When the groove width ratio is set small in this way, various effects as described below occur. Note that when the groove width ratio is greater than 0.5, the rigidity of the drill decreases.
If it is smaller than 0.02, it will cause problems in evacuation of chips.

以下、この発明の実施例を図面によつて説明す
る。1はドリルのシヤンクであり、その先端部に
は一対のチツプ2,2がろう付け等の手段によつ
て取付けられている。このチツプ2にはそれぞれ
切刃8が形成され、この切刃8の形状は底面視に
おいて中心部で大きな曲率をなし、外周部では
ほゞ直線になつている。そして切刃8の曲線部と
直線部との接線部附近にはチツプ2のにげ面21
に沿う凹部4が形成され、これによつて切刃8が
曲線部と直線部とに分離されている。一対の凹部
4,4は同一円周上にあつてもよく、また異なる
円周上にあつてもよい。
Embodiments of the present invention will be described below with reference to the drawings. Reference numeral 1 denotes a shank of a drill, and a pair of chips 2, 2 are attached to the tip of the shank by means such as brazing. A cutting edge 8 is formed on each of the chips 2, and the shape of the cutting edge 8 is a large curvature at the center when viewed from the bottom, and a substantially straight line at the outer periphery. And, near the tangent between the curved part and the straight part of the cutting edge 8, there is a curved surface 21 of the chip 2.
A concave portion 4 is formed along the curve, and the cutting edge 8 is separated into a curved portion and a straight portion. The pair of recesses 4, 4 may be located on the same circumference or may be located on different circumferences.

切刃8は切削性の向上のために中心部を大きな
曲率の曲線に形成させているが、外周部は図示の
ような直線の代りに曲率の小さな曲線としてもよ
い。また切刃8を中心部切刃と外周部切刃とに分
離するための凹部4はチツプ2のすくい面22に
沿うように形成させてもよい。
The cutting edge 8 has a central portion formed into a curved line with a large curvature in order to improve cutting performance, but the outer peripheral portion may be formed into a curved line with a small curvature instead of a straight line as shown. Further, the recess 4 for separating the cutting edge 8 into a central cutting edge and an outer peripheral cutting edge may be formed along the rake surface 22 of the chip 2.

切刃8およびすくい面22に対向する部分には
切屑ポケツト5が形成され、これに連続してシヤ
ンクにはその軸方向に切屑排出溝3が形成されて
いる。切屑排出溝3の底部30はシヤンクの基部
で徐々に浅くなるように形成されている。切屑排
出溝3は第3,4図に仮想線で示すように形成し
てもよい。なお、シヤンク1の頂面6には、シヤ
ンク中の貫通する穴を開口させ、冷却用液を切削
中に供給してローの熱による溶け外れを防止する
ようにしてもよい。
A chip pocket 5 is formed in a portion facing the cutting edge 8 and the rake face 22, and a chip discharge groove 3 is formed in the shank in the axial direction continuously from this pocket. The bottom portion 30 of the chip discharge groove 3 is formed to become gradually shallower at the base of the shank. The chip discharge groove 3 may be formed as shown in phantom lines in FIGS. 3 and 4. Note that the top surface 6 of the shank 1 may be provided with a hole that passes through the shank to supply a cooling liquid during cutting to prevent melting away due to the heat of the raw material.

上記の構成においては、切屑排出溝3はとくに
外周の開口面積が狭く形成されている。すなわ
ち、従来は第4図破線9で示すように切屑排出溝
は大きく形成されていたが、この発明では実線で
示すようにとくに外周部が狭くなるように形成し
ている。このように構成すると、シヤンクのねじ
り剛性および曲げ剛性に大きく影響する外周附近
で切屑排出溝による断面積の減少が少ないため
に、シヤンクのねじり剛性および曲げ剛性が著し
く向上することになる。その結果、とくに深穴加
工用のシヤンクの長いドリルにおいて、ねじれ剛
性および曲げ剛性が上昇したことによつてドリル
の芯振れがなくなり、ビビリが防止されることに
よつて加工面の真円度と面粗度などの精度がよく
なつた。
In the above configuration, the chip discharge groove 3 is formed to have a particularly narrow opening area on the outer periphery. That is, conventionally, the chip discharge groove was formed to be large as shown by the broken line 9 in FIG. 4, but in the present invention, it is formed to be particularly narrow at the outer periphery as shown by the solid line. With this configuration, the reduction in cross-sectional area due to the chip discharge grooves near the outer periphery, which greatly affects the torsional rigidity and bending rigidity of the shank, is reduced, so the torsional rigidity and bending rigidity of the shank are significantly improved. As a result, the increased torsional and bending rigidity of drills with long shank, especially for deep hole drilling, eliminates run-out of the drill core, prevents chatter, and improves the roundness of the machined surface. The accuracy of surface roughness etc. has improved.

シヤンクの軸中心0から切屑排出溝の開口端に
向う放射線のなす角αが溝のない部分の角度θに
対する割合(α/θ)を溝幅比として示すと、従
来のドリルではこの値が約1であつた。これに対
して、この発明ではこの値を0.3〜0.1に設定す
る。図示の例ではα/θは約0.236である。
If the ratio (α/θ) of the angle α formed by the ray from the shaft center 0 of the shank toward the open end of the chip evacuation groove to the angle θ of the non-grooved portion is expressed as the groove width ratio, in a conventional drill, this value is approximately It was 1. On the other hand, in the present invention, this value is set to 0.3 to 0.1. In the illustrated example, α/θ is approximately 0.236.

なお、溝幅比を0.3以下にするとシヤンクのね
じり剛性および曲げ剛性が著しく向上し、これに
よつてドリルの芯振れがなくなり、ビビリが防止
されることによつて加工面の真円度と面粗度な、
どの精度が向上する。また溝幅比が0.1以上であ
れば切屑の排出は良好に行なわれる。これは以下
の理由による。すなわち、切刃を中心側切刃と外
周側切刃とで形成するとともにそれらの間に凹部
を形成することにより、切屑を中心側と外周側と
に分割し、中心側は小さくカールさせ、外周側は
帯状にして排出させるようにしている。中心側の
切屑が小さくカールするのは、上記実施例のよう
な大きな曲率の切刃の場合に限らず、直線状の切
刃においてもほぼ同様であり、したがつて切刃の
形状には関係なく上記のような切屑が生成され
る。
Note that when the groove width ratio is set to 0.3 or less, the torsional and bending rigidity of the shank is significantly improved, which eliminates the center runout of the drill and prevents chatter, thereby improving the roundness and surface of the machined surface. rough,
Which accuracy will be improved. Further, if the groove width ratio is 0.1 or more, chips can be discharged well. This is due to the following reasons. That is, by forming the cutting edge with a center side cutting edge and an outer peripheral side cutting edge and forming a recess between them, the chips are divided into the center side and the outer peripheral side, the center side is curled small, and the chip is curled on the outer peripheral side. The side is made into a band shape so that it can be discharged. The fact that the chips on the center side curl slightly is not limited to cutting edges with a large curvature as in the above example, but is also almost the same with straight cutting edges; therefore, it has nothing to do with the shape of the cutting edge. The above-mentioned chips are generated instead.

また切刃の中心側は外周側に比較して切削量が
小さい(このことは1回転当りの切刃移動軌跡が
回転中心側ほど短かいことから明らかである)。
したがつて中心側切刃により生成される切屑は小
さくカールするとともに、切屑が薄いために、こ
れが狭い排出溝に送り込まれることにより容易に
破断し、小片となつて排出されることになる。ま
た外周側切刃によつて生成される切屑は外周側ほ
ど厚さの厚い帯状体になり、これが狭い排出溝に
送り込まれることにより切屑がカールしようとす
るのが防止され、直線状態の切屑として排出され
る。したがつて従来のドリルのように、連続して
カールされた切屑(機械部品に巻きついて危険)
が排出されるのが防止される。
Further, the amount of cutting is smaller on the center side of the cutting edge than on the outer circumferential side (this is clear from the fact that the cutting edge movement locus per revolution is shorter closer to the center of rotation).
Therefore, the chips generated by the central cutting edge are curled into small pieces, and since the chips are thin, they are easily broken when fed into the narrow discharge groove and are discharged as small pieces. In addition, the chips generated by the outer peripheral cutting edge become a band-like body that gets thicker toward the outer peripheral side, and this is fed into the narrow discharge groove, preventing the chips from curling and forming straight chips. It is discharged. Therefore, unlike conventional drills, continuously curled chips (hazardous to wrap around machine parts)
is prevented from being discharged.

なお、溝幅比が0.1の場合は切屑排出溝3の幅
は、直径10mmのドリルでは1.4mm、直径30mmのド
リルでは4.2mmであり、この幅の切屑排出溝を帯
状の外周側の切屑および中心側の小さくカールし
た切屑が同時に容易に通過することが実際に確認
されている。
When the groove width ratio is 0.1, the width of the chip discharge groove 3 is 1.4 mm for a 10 mm diameter drill and 4.2 mm for a 30 mm diameter drill. It has actually been confirmed that small, curled chips on the center side easily pass through at the same time.

上記ドリルによつて穴あけ加工を行なうと、凹
部4より中心側の切刃によつて小さな切屑が生成
されると共に、凹部4より外周側の切刃によつて
その切刃の幅に相当する幅の帯状の直線的な切屑
が生成され、これらが切屑排出溝3中を上昇して
排出される。
When drilling with the above-mentioned drill, the cutting edge on the center side of the recess 4 generates small chips, and the cutting edge on the outer peripheral side of the recess 4 generates a width corresponding to the width of the cutting edge. Band-shaped linear chips are generated, which rise in the chip discharge groove 3 and are discharged.

従来、ドリル加工をした場合、生成される切屑
はドリルの捩れ溝に沿つてカールされた連続した
切屑が生成される。このため該切屑がドリルやも
の他工作機械の回転部分に巻き付いて非常に危険
であつた。
Conventionally, when drilling is performed, continuous chips are generated that are curled along the twisted groove of the drill. As a result, the chips become wrapped around rotating parts of drills and other machine tools, which is very dangerous.

ところが本発明の如く凹部4より中心側の切刃
によつて生成される小さくカールされた切屑と凹
部4より外周側の切刃によつてその切刃の幅に相
当する幅の帯状の切屑を切屑排出溝3中に通過さ
せることによつて該切屑がカールしようとするの
を帯状の直線的な切屑に矯正することによつて該
切屑を破断し易いものとしたために切屑の排出は
非常に滑らかにスムースにおこなわれる。
However, according to the present invention, small curled chips are generated by the cutting edge on the center side of the recess 4, and belt-shaped chips with a width corresponding to the width of the cutting edge are generated by the cutting edge on the outer peripheral side of the recess 4. By passing the chips through the chip discharge groove 3, the tendency of the chips to curl is corrected into band-shaped straight chips, which makes the chips easy to break. Therefore, the discharge of chips is extremely difficult. It is done smoothly and smoothly.

このように中心部の切刃によつては非常に小さ
な切屑が生成され、また外周の切刃によつては帯
状の直線的な切屑が生成されるので、切屑排出溝
3は幅の狭いものであつても切屑の排出はスムー
スに行なわれる。
In this way, the cutting edge at the center generates very small chips, and the cutting edge at the outer periphery generates band-shaped linear chips, so the chip evacuation groove 3 should be narrow. Chips can be discharged smoothly even under such conditions.

なお、切屑排出溝3を図示のようにシヤンクの
軸方向に直線状に形成した場合、ドリルに回転を
与えると穿孔時該切屑排出溝を通過中の切屑を適
当に分断することになる。また溝が直線状のばあ
いはその加工費が従来に比べ大巾に低減されるの
で特に好ましい。加工はドリルを回転させて行な
つてもよく、あるいは加工物を回転させて行なつ
てもよい。
In addition, when the chip discharge groove 3 is formed linearly in the axial direction of the shank as shown in the figure, when the drill is rotated, the chips passing through the chip discharge groove during drilling are appropriately divided. Further, it is particularly preferable if the groove is straight because the processing cost is greatly reduced compared to the conventional method. Machining may be performed by rotating the drill or by rotating the workpiece.

また切屑排出溝はシヤンクに沿つて螺旋状に形
成させてもよい。さらに凹部4は各切刃に対して
2個所以上形成させることによつて切屑の幅がさ
らに狭くなるようにしてもよい。また溝断面積を
大きく設定したばあいは凹部4は全く形成させな
くてもよい。
Further, the chip discharge groove may be formed in a spiral shape along the shank. Furthermore, the width of the chips may be further narrowed by forming two or more recesses 4 for each cutting edge. Furthermore, if the groove cross-sectional area is set large, the recess 4 may not be formed at all.

上記実施例では切刃8は中心0で連続している
例を示しているが、中心0では0.5〜1mm程度、
互いに離れていてもよい。また切刃8の形状も中
心附近で大きな曲率の曲線となつていれば、かな
らずしも対称に形成されていなくてもよく、いず
れか一方の切刃を補助切刃としての作用を果させ
るようにしてもよい。また第5図に示すように切
刃として直線切刃80を採用してもよい。このば
あいも溝幅比は上記の範囲内に設定する。81は
チゼルである。
In the above embodiment, the cutting edge 8 is continuous at the center 0, but at the center 0 it is approximately 0.5 to 1 mm.
They can be far apart from each other. Also, the shape of the cutting edge 8 does not necessarily have to be symmetrical as long as it is a curve with a large curvature near the center. Good too. Further, as shown in FIG. 5, a straight cutting edge 80 may be employed as the cutting edge. In this case, the groove width ratio is also set within the above range. 81 is a chisel.

なお、切刃8,81はシヤンクに一体に形成さ
せてもよく、あるいはシヤンクにロー付け等の手
段で取付けたチツプに形成させてもよい。またチ
ツプまたはシヤンクの材質も特に限定はなく、超
硬合金、ハイスその他の合金鋼などが採用可能で
ある。さらに切屑排出溝はシヤンクの軸方向また
は螺旋状に、従来の溝より小さな溝幅比に形成さ
せることがこの発明の特徴であるがシヤンクの軸
方向に沿つて均一な断面形状にする必要はなく、
必要に応じて溝幅比および溝断面積を変化させる
ようにしてもよい。
Note that the cutting edges 8 and 81 may be formed integrally with the shank, or may be formed on a chip attached to the shank by means such as brazing. Furthermore, the material of the chip or shank is not particularly limited, and cemented carbide, high speed steel, and other alloy steels can be used. Furthermore, a feature of this invention is that the chip evacuation groove is formed in the axial direction of the shank or in a spiral shape with a groove width ratio smaller than that of conventional grooves, but it is not necessary to have a uniform cross-sectional shape along the axial direction of the shank. ,
The groove width ratio and the groove cross-sectional area may be changed as necessary.

以上説明したように、この発明は切屑排出溝を
従来より大幅に減少させたものであり、このため
ドリルの曲げおよびねじり剛性が向上し、とくに
深穴の切削性が向上したものである。
As explained above, the present invention significantly reduces the number of chip evacuation grooves compared to the conventional drill, thereby improving the bending and torsional rigidity of the drill, and particularly improving the machinability of deep holes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すドリルの側面
図、第2図はその底面図、第3図は第1図の側面
図、第4図は第1図の−線断面図、第5図は
他の実施例を示す底面図である。 1……シヤンク、2……チツプ、3……切屑排
出溝、4……凹部、8,80……切刃。
Fig. 1 is a side view of a drill showing an embodiment of the present invention, Fig. 2 is a bottom view thereof, Fig. 3 is a side view of Fig. 1, Fig. 4 is a sectional view taken along the - line in Fig. The figure is a bottom view showing another embodiment. 1... Shank, 2... Chip, 3... Chip discharge groove, 4... Recess, 8, 80... Cutting blade.

Claims (1)

【特許請求の範囲】[Claims] 1 切屑排出溝の溝幅比が0.3〜0.1の範囲内にな
るように設定し、かつ切刃を中心側切刃と外周側
切刃とで形成し、それらの間に凹部を形成したこ
とを特徴とするドリル。
1 The groove width ratio of the chip discharge groove is set within the range of 0.3 to 0.1, and the cutting edge is formed by a center cutting edge and an outer cutting edge, and a recess is formed between them. Featured drill.
JP55120463A 1980-08-29 1980-08-29 Drill Granted JPS5748411A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP55120463A JPS5748411A (en) 1980-08-29 1980-08-29 Drill
DE3131794A DE3131794C2 (en) 1980-08-29 1981-08-12 drill
KR1019810002968A KR840001088B1 (en) 1980-08-29 1981-08-17 Drill
IT49149/81A IT1171479B (en) 1980-08-29 1981-08-21 DRILL WITH STRAWS UNLOADING THROATS ON THE STEM
AU74427/81A AU542465B2 (en) 1980-08-29 1981-08-21 Drill
FR8116144A FR2489191B1 (en) 1980-08-29 1981-08-24 IMPROVED DRILL, PARTICULARLY FOR DRILLING DEEP HOLES
GB8125768A GB2083767B (en) 1980-08-29 1981-08-24 Fluted drill
MX188944A MX152969A (en) 1980-08-29 1981-08-28 IMPROVEMENTS TO A REINFORCED TORSIONAL RIGIDITY DRILL
SE8105094A SE451241B (en) 1980-08-29 1981-08-28 DRILL
CA000384826A CA1166485A (en) 1980-08-29 1981-08-28 Drill
US06/579,289 US4565473A (en) 1980-08-29 1984-02-14 Drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55120463A JPS5748411A (en) 1980-08-29 1980-08-29 Drill

Publications (2)

Publication Number Publication Date
JPS5748411A JPS5748411A (en) 1982-03-19
JPS6336882B2 true JPS6336882B2 (en) 1988-07-22

Family

ID=14786782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55120463A Granted JPS5748411A (en) 1980-08-29 1980-08-29 Drill

Country Status (2)

Country Link
JP (1) JPS5748411A (en)
KR (1) KR840001088B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL105758A (en) * 1993-05-20 1996-01-31 Iscar Ltd Indexable-insert drill
EP3401042B1 (en) * 2017-05-11 2020-07-22 Sandvik Intellectual Property AB Drill body and drill
CN110877115B (en) * 2019-12-11 2021-02-26 株洲钻石切削刀具股份有限公司 Drilling tool

Also Published As

Publication number Publication date
KR830005949A (en) 1983-09-14
KR840001088B1 (en) 1984-08-01
JPS5748411A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
JP5406721B2 (en) Bit for drill tool
US5947649A (en) Reusable type end mill
US6923602B2 (en) Drill having construction for reducing thrust load in drilling operation, and method of manufacturing the drill
EP1908543B1 (en) Radius end mill and cutting method
JP5823316B2 (en) Drill tool for cutting cast material
US4565473A (en) Drill
EP1820589B1 (en) Ball end mill
JPS62188616A (en) Rotary cutting tool
JP6879668B2 (en) Cutting method
JP4125909B2 (en) Square end mill
JPH0871831A (en) End mill
JP3162309B2 (en) Tomoe type thinning drill with chisel for high-speed heavy cutting
JPS6336882B2 (en)
JP3022002B2 (en) Indexable inserts and indexable drilling tools
JPS5835366Y2 (en) rotary cutting tool
JPH0615512A (en) Drill and formation of cutting blade of drill
JPH05245711A (en) Drill
JPS63278711A (en) Brazed reamer
JPH05345212A (en) End mill
JPH0112893Y2 (en)
JPH04146015A (en) Throw-away tip and end mill
JPH05228714A (en) Ball end mill
JP2003205414A (en) Covering member having center hole, and its covering method
JPH05293708A (en) Drilling tool
JP2001129715A (en) End mill