JPH0112893Y2 - - Google Patents
Info
- Publication number
- JPH0112893Y2 JPH0112893Y2 JP1983136099U JP13609983U JPH0112893Y2 JP H0112893 Y2 JPH0112893 Y2 JP H0112893Y2 JP 1983136099 U JP1983136099 U JP 1983136099U JP 13609983 U JP13609983 U JP 13609983U JP H0112893 Y2 JPH0112893 Y2 JP H0112893Y2
- Authority
- JP
- Japan
- Prior art keywords
- cutting edge
- tool
- arcuate
- cutting
- rake face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000694 effects Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 101100295776 Drosophila melanogaster onecut gene Proteins 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Milling Processes (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、ボールエンドミルの改良に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of a ball end mill.
〔従来の技術〕
従来、最も一般的に用いられているいわゆるワ
ンカツトエンドミルでは、先端切刃が、工具軸方
向先端視において、工具回転中心から半径方向外
方に直線的に延長して形成されていた。この場
合、先端切刃の工具回転中心における切削速度が
0であるため、とくに軸方向の突つ込み切削時の
切削抵抗が大きく、工具回転中心付近の切刃の焼
付き、摩耗が著しく、工具寿命が短いという問題
があつた。[Prior Art] Conventionally, in the most commonly used so-called one-cut end mill, the tip cutting edge is formed to extend linearly outward in the radial direction from the tool rotation center when viewed from the tip in the axial direction of the tool. was. In this case, since the cutting speed of the tip cutting edge at the tool rotation center is 0, the cutting resistance is particularly large during axial plunge cutting, and the cutting edge near the tool rotation center is severely seized and worn. There was a problem with the short lifespan.
これを防止するために、最近、先端切刃を工具
軸方向先端視において工具回転中心から外周に向
つて渦巻き状に延長して形成したいわゆる渦巻き
刃ボールエンドミルが開発されている。 In order to prevent this, a so-called spiral-blade ball end mill has recently been developed in which the tip cutting edge is spirally extended from the center of rotation of the tool toward the outer periphery when viewed from the tip in the axial direction of the tool.
上記渦巻き刃ボールエンドミルによれば、工具
回転中心付近の先端切刃の寿命を向上できるが、
その先端切刃は、底面形状が渦巻き状で、かつ、
側面形状が円弧状の曲線であるため、切刃の形成
すなわち研削ならびに再研削が困難であり、それ
専用の特殊な研削機が必要であるという問題があ
つた。
According to the above-mentioned spiral blade ball end mill, the life of the cutting edge near the center of rotation of the tool can be improved; however,
The tip of the cutting edge has a spiral bottom shape, and
Since the side surface shape is an arcuate curve, it is difficult to form the cutting edge, that is, grind and re-grind, and a special grinding machine dedicated for this purpose is required.
本考案は、このような問題を解決するためにな
されたもので、工具回転中心付近の切刃の焼付
き、摩耗、損傷を極力少なくして工具寿命を向上
させ、かつ、その切刃の研削ならびに再研削を容
易にして量産性の向上を図り得るボールエンドミ
ルを提供することを目的としている。 The present invention was developed to solve these problems, and it improves tool life by minimizing seizure, wear, and damage to the cutting edge near the center of rotation of the tool. Another object of the present invention is to provide a ball end mill that facilitates re-grinding and improves mass productivity.
上記目的達成のために、本考案のボールエンド
ミルは、一対の切刃を有し、一方の切刃は切刃始
端が工具回転中心付近にあり、他方の切刃は切刃
始端が工具回転中心より離れた位置にあり、か
つ、両切刃は、工具軸方向先端視において切刃始
端から工具回転前方に直線状に傾斜延長した直線
状切刃と、該直線状切刃の終端から工具外周に延
長して回転投影面が球状をなす円弧状切刃とを備
え、各円弧状切刃はそれぞれ円弧状逃げ面と工具
軸方向に所定の捩れ角で傾斜したフラツトなすく
い面とにより形成され、各直線状切刃はそれぞれ
上記円弧状切刃のすくい面に対して径方向に所定
の傾斜角で交差するフラツトな傾斜すくい面と、
上記円弧状逃げ面に連続した逃げ面とにより形成
されていることを特徴とするものである。
In order to achieve the above object, the ball end mill of the present invention has a pair of cutting blades, one cutting blade has its starting end near the tool rotation center, and the other cutting blade has its cutting edge starting point near the tool rotation center. The two cutting edges are located at a farther apart position and include a linear cutting edge that extends obliquely from the starting end of the cutting edge toward the front of the tool rotation when viewed from the tip in the axial direction of the tool, and a linear cutting edge that extends from the end of the linear cutting edge to the outer periphery of the tool. The cutting edge is provided with an arcuate cutting edge whose rotation projection surface is spherical, and each arcuate cutting edge is formed by an arcuate flank face and a flat rake face inclined at a predetermined helix angle in the direction of the tool axis. , each linear cutting edge has a flat inclined rake face that intersects at a predetermined angle of inclination in the radial direction with respect to the rake face of the arcuate cutting edge;
It is characterized in that it is formed by a flank continuous to the arcuate flank.
以下、本考案の実施例を図によつて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1はシヤンクで、先端部11が球状に形成さ
れ、その先端部周面に一対の切屑排出溝12,1
3がほぼ対称に設けられている。2,3は超硬チ
ツプで、その先端部外周に円弧状逃げ面26,3
6が形成され、前記各切屑排出溝12,13の工
具回転後方の側面に所定の捩れ角αをもつてロー
付けにて固着されている。該チツプ2,3はシヤ
ンク1にクランプボルト等により取替え自在に取
付けてもよく、また、ソリツドタイプでもよい。 1 is a shank with a tip 11 formed in a spherical shape, and a pair of chip discharge grooves 12, 1 on the circumferential surface of the tip.
3 are provided almost symmetrically. 2 and 3 are carbide tips, and arcuate flanks 26 and 3 are provided on the outer periphery of the tips.
6 is formed and is fixed by brazing at a predetermined twist angle α to the side surface of each of the chip discharge grooves 12 and 13 on the rear side of the rotation of the tool. The chips 2 and 3 may be replaceably attached to the shank 1 using clamp bolts or the like, or may be of a solid type.
両チツプ2,3の先端部および外側辺部には、
それぞれ底面切削用の直線状切刃21,31およ
び円弧状切刃22,32と、周面切削用の直線状
切刃23,33が設けられている。 At the tips and outer sides of both chips 2 and 3,
Linear cutting edges 21, 31 and arcuate cutting edges 22, 32 for cutting the bottom surface, and linear cutting edges 23, 33 for cutting the circumferential surface are provided, respectively.
ただし、一方のチツプ先端の直線状切刃21は
すくい面24と逃げ面26とによつて形成される
もので、工具軸方向先端視(以下、底面視とい
う)において、その切刃始端20が工具回転中心
0付近にあり、この切刃始端20から工具回転前
方に傾斜角βで直線状に傾斜延長するように形成
されている。この場合、切削時に工具回転中心付
近の非切削部(コア)ができるだけ少なく(小さ
く)なるように、前記切刃始端20と工具回転中
心0との間隔lを0〜2.5mmとする。また、前記
直線状切刃21の傾斜角βは、小さすぎると切屑
の排出効率が悪くなり、大きすぎると切削抵抗が
大きくなるため、β=0〜50゜とする。さらに、
該直線状切刃21のすくい面24は、チツプ2の
正面側において底面視で前記傾斜角βで傾斜し、
軸方向に対して所定のアキシヤルレーキ角γで傾
斜したフラツト面とし、かつ、その切刃始端にお
いてある程度の高さhを確保しながら、切刃終端
に至る程高さh′が大きくなるように形成する。 However, the linear cutting edge 21 at the tip of one chip is formed by a rake face 24 and a flank face 26, and when viewed from the tip in the tool axis direction (hereinafter referred to as bottom view), the starting edge 20 of the cutting edge is It is located near the tool rotation center 0, and is formed so as to extend in a straight line at an inclination angle β from the cutting edge starting end 20 toward the front of the tool rotation. In this case, the distance l between the cutting edge starting end 20 and the tool rotation center 0 is set to 0 to 2.5 mm so that the non-cutting part (core) near the tool rotation center during cutting is as small as possible. Further, if the inclination angle β of the linear cutting edge 21 is too small, the chip discharge efficiency will be poor, and if it is too large, the cutting resistance will increase, so β = 0 to 50°. moreover,
The rake face 24 of the linear cutting edge 21 is inclined at the inclination angle β when viewed from the bottom on the front side of the chip 2,
The flat surface is inclined at a predetermined axial rake angle γ with respect to the axial direction, and while ensuring a certain level of height h at the starting end of the cutting edge, the height h' increases toward the end of the cutting edge. do.
このように、すくい面24をフラツト面にする
ことにより、工具回転中心附近におけるすくい面
24の研削ならびに直線状切刃21の形成を容易
に行うことができ、かつ、該すくい面24の高さ
h〜h′をその切刃始端から終端に至る程次第に大
きくすることにより、再研削時にチツプ2にオー
バハングがなくなつても、直線状切刃21および
円弧状切刃22の研削加工を容易に行うことがで
きる。また、このフラツトなすくい面24によつ
て、直線状切刃21のアキシヤルレーキ角αを被
削材に応じて−15〜20゜と広範囲に任意に設定で
きる。 In this way, by making the rake face 24 a flat surface, it is possible to easily grind the rake face 24 near the center of rotation of the tool and to form the linear cutting edge 21, and the height of the rake face 24 can be easily By gradually increasing h to h' from the starting end to the end of the cutting edge, even if there is no overhang on the chip 2 during re-grinding, it is possible to easily grind the linear cutting edge 21 and the arcuate cutting edge 22. It can be carried out. Furthermore, the flat rake face 24 allows the axial rake angle α of the linear cutting edge 21 to be arbitrarily set within a wide range of -15 to 20 degrees depending on the workpiece material.
なお、他方のチツプ先端の直線状切刃31は、
すくい面34と逃げ面36とによつて形成される
もので、底面視において、その切刃始端30が工
具回転中心0から離れた位置にあり、この切刃始
端30から工具回転前方に前記傾斜角βと同程度
の傾斜角β′で直線状に傾斜延長している。この場
合、該切刃31のすくい面34も前記すくい面2
4と同様の形状に形成する。ただし、その切刃始
端30と工具回転中心0との間隔l′は前記直線状
切刃21による切削時に工具回転中心附近にコア
が生じた場合にそのコアの排出を容易にし、か
つ、各直線状切刃21,31の研削が一層容易と
なるように、前記間隔lよりも大きく、l′=0.5〜
8.0mmとする。 Note that the linear cutting edge 31 at the tip of the other tip is
It is formed by a rake face 34 and a flank face 36, and when viewed from the bottom, its cutting edge starting end 30 is located at a position away from the tool rotation center 0, and the cutting edge starts from the cutting edge starting end 30 toward the front of the tool rotation. It extends in a straight line with an inclination angle β' that is approximately the same as the angle β. In this case, the rake face 34 of the cutting edge 31 is also
Form into the same shape as 4. However, the distance l' between the cutting edge starting end 30 and the tool rotation center 0 is such that when a core is generated near the tool rotation center during cutting with the linear cutting edge 21, the core can be easily ejected, and each straight line In order to make the grinding of the shaped cutting edges 21 and 31 easier, the distance is larger than the above-mentioned interval l, and l'=0.5 to 0.5.
Set to 8.0mm.
なお、各円弧状切刃22,32は、チツプ正面
に形成されたすくい面25,35とチツプ先端部
に形成された円弧状逃げ面26,36とによつて
形成され、前記各直線状切刃21,31の切刃終
端から工具外周に延長して工具軸線C上の点0′
を中心に半径Rで湾曲し、その回転投影面が球状
となる曲線に形成されている。この場合、該円弧
状切刃22,32が工具回転中心から大きく離れ
た直線状切刃21,31の終端から始まる球状で
あるから、従来のボールエンドミルと同様もしく
はそれ以上に容易に形成できる。また、前記直線
状切刃21,31を長くすることにより、この円
弧状切刃22,32のアキシヤルレーキ角を大き
くでき、切削時における切込み時点での機械的シ
ヨツクを減少して、工具一回転中で切刃が被削材
に切込んでいる回転角度の割合を大きくとること
ができ、熱的シヨツクを少なくできる。 Each of the arcuate cutting edges 22, 32 is formed by a rake face 25, 35 formed on the front surface of the chip and an arcuate relief surface 26, 36 formed at the tip end of the chip, and each of the linear cutting edges 22, 32 is Point 0' on the tool axis C extending from the end of the cutting edge of the blades 21 and 31 to the outer circumference of the tool
It is curved with a radius R around , and its rotational projection surface is formed into a spherical curve. In this case, since the arcuate cutting edges 22, 32 are spherical starting from the ends of the linear cutting edges 21, 31 that are far away from the tool rotation center, they can be formed as easily as or more easily than conventional ball end mills. Furthermore, by making the linear cutting edges 21, 31 longer, the axial rake angle of the arcuate cutting edges 22, 32 can be increased, reducing the mechanical shock at the point of cutting during cutting, and reducing the mechanical impact during one rotation of the tool. This increases the rotational angle at which the cutting edge cuts into the workpiece, reducing thermal shock.
また、各直線状切刃23,33は、前記曲線切
刃22,32の終端から前記捩れ角αでもつて上
方に直線状に延長されている。この切刃23,3
3の加工についてはとくに問題はない。 Further, each linear cutting edge 23, 33 is linearly extended upward from the terminal end of the curved cutting edge 22, 32 at the twist angle α. This cutting blade 23,3
There are no particular problems with the processing in step 3.
以上説明したように、本考案のボールエンドミ
ルによれば、工具先端に、2種のフラツトなすく
い面によつて工具回転中心附近を切刃始端として
工具回転前方に傾斜延長した直線状切刃と、工具
回転中心から離れた点を切刃始端として工具回転
前方に傾斜延長した直線状切刃とを形成してある
ので、従来の渦巻き刃ボールエンドミルのよう
に、特殊な研削機を必要とせず、通常の研削機で
各すくい面を容易に研削加工できるとともに、各
直線状切刃を容易に形成でき、量産性を向上さ
せ、大幅なコストダウンを図ることができる。ま
た、再研削も容易であり、再研削使用回数を増大
させ、非常に経済的である。しかも、この工具に
よる切削加工時には、工具回転中心にいわゆるコ
アが生じ難く、たとえコアが生じても、前記両直
線状切刃の工具回転中心からの間隔を不等間隔に
してあるので、該コアが折れ易く、かつ排出され
易くなつており、工具回転中心附近における切屑
の焼付き、かみ込み等を防止できると共に、切刃
の摩耗、損傷を防止して、工具寿命を長くでき
る。さらに、前記の如く傾斜した直線状切刃によ
り、工具回転中心附近の切削効率ならびに切屑の
排出効率を高めることができ、軸方向の突つ込み
切削に対して切削能力が低下することなく、ま
た、横送り切削に対しても仕上げ面粗度を改善し
て、常に高精度の切削が可能である。等の実用性
大なる効果がある。
As explained above, according to the ball end mill of the present invention, the tool tip has two types of flat rake faces with a straight cutting edge that extends obliquely toward the front of the tool rotation with the cutting edge starting point near the tool rotation center. Since the cutting edge starts at a point far from the tool rotation center and has a linear cutting edge that extends obliquely toward the front of the tool rotation, there is no need for a special grinder like with conventional spiral-blade ball end mills. , each rake face can be easily ground with a normal grinding machine, and each linear cutting edge can be easily formed, improving mass productivity and significantly reducing costs. In addition, regrinding is easy, increasing the number of times regrinding is used, and is very economical. Moreover, during cutting with this tool, it is difficult to form a so-called core at the center of rotation of the tool, and even if a core does form, the distances between the linear cutting edges from the center of rotation of the tool are unequal, so that the core is difficult to form. It is easy to break and be ejected, and it is possible to prevent chips from seizing or getting caught near the center of rotation of the tool, and also to prevent wear and damage to the cutting edge, thereby extending the tool life. Furthermore, the inclined linear cutting edge as described above can improve the cutting efficiency near the tool rotation center and the evacuation efficiency of chips, and the cutting ability is not reduced in axial thrust cutting. , the finished surface roughness is improved even in cross-feed cutting, and high-precision cutting is always possible. It has great practical effects.
第1図は本考案にかかるボールエンドミルの一
例を示す要部の正面図、第2図はその底面図、第
3図はその部分側面図、第4図は工具回転中心附
近の切刃形状を示す拡大底面図、第5図は同部分
斜視図である。
1……シヤンク、2,3……超硬チツプ、0…
…工具回転中心、20,30……切刃始端、2
1,31……直線状切刃、22,32……円弧状
切刃、24,34……フラツトなすくい面、2
5,35……フラツトなすくい面、26,36…
…円弧状逃げ面。
Fig. 1 is a front view of essential parts showing an example of a ball end mill according to the present invention, Fig. 2 is a bottom view thereof, Fig. 3 is a partial side view thereof, and Fig. 4 shows the shape of the cutting edge near the center of rotation of the tool. The enlarged bottom view shown in FIG. 5 is a perspective view of the same portion. 1...shank, 2, 3...carbide tip, 0...
... Tool rotation center, 20, 30 ... Cutting edge starting end, 2
1, 31... linear cutting edge, 22, 32... arcuate cutting edge, 24, 34... flat rake face, 2
5, 35...Flat rake face, 26, 36...
...Arc-shaped relief surface.
Claims (1)
具回転中心付近にあり、他方の切刃は切刃始端が
工具回転中心より離れた位置にあり、かつ、両切
刃は、工具軸方向先端視において切刃始端から工
具回転前方に直線状に傾斜延長した直線状切刃
と、該直線状切刃の終端から工具外周に延長して
回転投影面が球状をなす円弧状切刃とを備え、各
円弧状切刃はそれぞれ円弧状逃げ面と工具軸方向
に所定の捩れ角で傾斜したフラツトなすくい面と
により形成され、各直線状切刃はそれぞれ上記円
弧状切刃のすくい面に対して径方向に所定の傾斜
角で交差するフラツトな傾斜すくい面と、上記円
弧状逃げ面に連続した逃げ面とにより形成されて
いることを特徴とするボールエンドミル。 It has a pair of cutting edges, one cutting edge has its starting edge near the tool rotation center, the other cutting edge has its cutting edge starting edge located away from the tool rotation center, and both cutting edges are When viewed from the tip in the tool axis direction, there is a linear cutting edge that extends obliquely from the starting end of the cutting edge toward the front of the tool rotation, and an arcuate cutting edge that extends from the end of the linear cutting edge to the outer periphery of the tool and has a rotational projection surface that is spherical. Each arcuate cutting edge is formed by an arcuate flank and a flat rake face inclined at a predetermined helix angle in the direction of the tool axis, and each linear cutting edge is formed by the arcuate cutting edge. A ball end mill characterized in that it is formed by a flat inclined rake face that intersects the rake face in the radial direction at a predetermined angle of inclination, and a flank face that is continuous with the arcuate flank face.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13609983U JPS6042510U (en) | 1983-08-31 | 1983-08-31 | ball end mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13609983U JPS6042510U (en) | 1983-08-31 | 1983-08-31 | ball end mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6042510U JPS6042510U (en) | 1985-03-26 |
JPH0112893Y2 true JPH0112893Y2 (en) | 1989-04-14 |
Family
ID=30306114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13609983U Granted JPS6042510U (en) | 1983-08-31 | 1983-08-31 | ball end mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6042510U (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0522984Y2 (en) * | 1988-10-05 | 1993-06-14 | ||
JP2549162Y2 (en) * | 1991-06-24 | 1997-09-30 | 日立ツール株式会社 | Ball end mill |
JP5402412B2 (en) * | 2009-08-31 | 2014-01-29 | 三菱マテリアル株式会社 | Ball end mill and insert for ball end mill |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340794U (en) * | 1976-09-10 | 1978-04-08 |
-
1983
- 1983-08-31 JP JP13609983U patent/JPS6042510U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340794U (en) * | 1976-09-10 | 1978-04-08 |
Also Published As
Publication number | Publication date |
---|---|
JPS6042510U (en) | 1985-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7997834B2 (en) | Radius end mill and cutting method | |
JP2587549B2 (en) | Milling cutting inserts | |
JPH0715686Y2 (en) | Ball end mill | |
JPS6040328B2 (en) | Cutting tools | |
JP2024023943A (en) | ball end mill | |
JPH0319002B2 (en) | ||
JPH0112893Y2 (en) | ||
JP2002018629A (en) | Cutting tool | |
JP3957230B2 (en) | Ball end mill | |
JPS6157126B2 (en) | ||
JPH04304918A (en) | End mill | |
JP2557189Y2 (en) | End mill | |
JP2552395Y2 (en) | End mill | |
JP3795278B2 (en) | End mill | |
JPS59166405A (en) | Drill | |
JPS6212503Y2 (en) | ||
JP3318020B2 (en) | Ball end mill | |
JP2005066701A (en) | Ball end mill | |
JPS6144734Y2 (en) | ||
JP3335401B2 (en) | End mill | |
JPS6246491Y2 (en) | ||
JPH05228714A (en) | Ball end mill | |
JPS5852011Y2 (en) | ball end mill | |
JPH0542410A (en) | Ball end mill | |
JPS6236571Y2 (en) |