JPS6336584B2 - - Google Patents

Info

Publication number
JPS6336584B2
JPS6336584B2 JP55149800A JP14980080A JPS6336584B2 JP S6336584 B2 JPS6336584 B2 JP S6336584B2 JP 55149800 A JP55149800 A JP 55149800A JP 14980080 A JP14980080 A JP 14980080A JP S6336584 B2 JPS6336584 B2 JP S6336584B2
Authority
JP
Japan
Prior art keywords
input
output
signal
level
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55149800A
Other languages
Japanese (ja)
Other versions
JPS5773543A (en
Inventor
Katsushi Yoshihara
Goro Ooshima
Tatsuro Shomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55149800A priority Critical patent/JPS5773543A/en
Publication of JPS5773543A publication Critical patent/JPS5773543A/en
Publication of JPS6336584B2 publication Critical patent/JPS6336584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 本発明は、スプレツド・スペクトラム通信方式
の中の直接拡散方式における復調装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a demodulator in a direct sequence method among spread spectrum communication methods.

スプレツド・スペクトラム方式の復調装置内に
は、自局に必要な1信号(希望信号)が受信され
ているかどうか判定するために、相関検出判定器
が設けられている。この相関検出判定器は所定の
スレシホールド(閾値)電圧を基準にして希望信
号の受信を判定するので、このスレシホールド電
圧は一義的にしかも最適値に設定されることが望
まれる。
A spread spectrum demodulator is provided with a correlation detection/determination device to determine whether one signal (desired signal) necessary for the own station is being received. Since this correlation detection/determination device determines reception of a desired signal based on a predetermined threshold voltage, it is desirable that this threshold voltage be uniquely set to an optimal value.

また、スプレツド・スペクトラム通信方式は符
号分割による多元接続であるため、同一周波数帯
域内に多数の信号が存在しており、従つて希望信
号以外は雑音となる。直接拡散方式の場合、この
雑音電圧レベルは呼の発生数によつて変動するの
で、相関検出判定器への入力雑音レベルも変動す
ることとなり、そのスレシホールド電圧を一義的
に最適な値に設定することは必ずしも容易ではな
い。
Furthermore, since the spread spectrum communication system uses multiple access using code division, there are many signals within the same frequency band, and therefore signals other than the desired signal become noise. In the case of the direct diffusion method, this noise voltage level varies depending on the number of calls, so the input noise level to the correlation detection/judgment device also varies, and the threshold voltage must be set to the uniquely optimal value. Setting it up is not always easy.

本発明の目的は、変動のある受信入力レベルに
対して相関検出判定器のスレシホールド電圧を一
義的に最適な値に設定可能としたスプレツド・ス
ペクトラム復調装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spread spectrum demodulator that can uniquely set the threshold voltage of a correlation detection/judgment device to an optimum value for a receiving input level that varies.

本発明によれば、伝送路雑音と干渉波信号の混
在するスプレツド・スペクトラム信号を受信しこ
のスプレツド・スペクトラム信号のレベルが一定
となるよう制御する第1の手段と、この第1の手
段の出力を復調する第2の手段と、この第2の手
段の出力に希望信号が含まれているかどうかを所
定のスレシホールド電圧を基準にして判定する第
3の手段と、第2の手段の復調出力レベルが一定
となるよう制御する第4の手段とを含むスプレツ
ド・スペクトラム復調装置が得られる。
According to the present invention, there is provided a first means for receiving a spread spectrum signal in which transmission line noise and interference wave signals are mixed, and controlling the level of the spread spectrum signal to be constant; and an output of the first means. a second means for demodulating the signal; a third means for determining whether the output of the second means includes a desired signal based on a predetermined threshold voltage; and demodulating the second means. and fourth means for controlling the output level to be constant.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る直接拡散方式によるスプ
レツド・スペクトラム復調装置の例を示すブロツ
ク図である。中間周波(IF)信号に周波数変換
された入力スプレツド・スペクトラム信号は、入
力端子101から電力分配器1に入力され、ここ
で3分配され各分配出力は逆拡散復調器2,3及
び4に供給される。逆拡散復調器2,3及び4は
処理利得を得るために、それ相当分の帯域幅をも
つ帯域通過波器をそれぞれ含んでいる。また、
これら復調器2,3及び4には、入力信号を逆拡
散するために擬似雑音(PN)発生器8より、そ
れぞれ任意のビツト間隔でずれを有するPNパタ
ーンが供給されている。
FIG. 1 is a block diagram showing an example of a spread spectrum demodulation device using a direct sequence method according to the present invention. The input spread spectrum signal whose frequency has been converted into an intermediate frequency (IF) signal is input to the power divider 1 from the input terminal 101, where it is divided into three parts, and each divided output is supplied to the despreading demodulators 2, 3, and 4. be done. The despreading demodulators 2, 3 and 4 each include a bandpass waver with a corresponding bandwidth in order to obtain processing gain. Also,
These demodulators 2, 3 and 4 are each supplied with a PN pattern having a shift at an arbitrary bit interval from a pseudo noise (PN) generator 8 in order to despread the input signal.

逆拡散復調器2の出力は相関検出判定器5に逆
拡散復調器3及び4の出力は遅延ロツクループ相
関器6にそれぞれ入り、ここでそれぞれ入力信号
とPNパターンとの間の相関をとる。遅延ロツク
ループ相関器6の出力電圧は電圧制御発振器
(VCO)7にその制御電圧として供給され、
VCO7の発振出力はPN発生器8の信号源として
その入力に結合されている。逆拡散復調器3及び
4、相関器6、VCO7及びPN発生器8で遅延ロ
ツクループが形成されている。同期制御器9は相
関検出判定器5の出力に応答して、PN発生器8
の出力ビツトをN(自然数)ビツトずつ掃引させ
ており、相関がとれるとその掃引を停止する。同
期制御器9は例えば、多数決回路等で構成され
る。なお、逆拡散復調器2の出力は出力端子10
2にも導びかれている。
The output of the despread demodulator 2 is input to a correlation detection/judgment unit 5, and the outputs of the despread demodulators 3 and 4 are input to a delay lock loop correlator 6, where the correlation between the input signal and the PN pattern is determined. The output voltage of the delay lock loop correlator 6 is supplied to a voltage controlled oscillator (VCO) 7 as its control voltage,
The oscillating output of VCO 7 is coupled to the input of PN generator 8 as a signal source. Despread demodulators 3 and 4, correlator 6, VCO 7 and PN generator 8 form a delay lock loop. The synchronization controller 9 responds to the output of the correlation detection/judgment unit 5 to generate a PN generator 8.
The output bits are swept by N (natural number) bits at a time, and when a correlation is established, the sweep is stopped. The synchronous controller 9 is composed of, for example, a majority voting circuit. Note that the output of the despreading demodulator 2 is output from the output terminal 10.
It is also guided by 2.

相関検出判定器5は2乗検波器501、低域
波器502及びあるスレシホールド電圧で入力信
号をレベル判定する判定器503を含んでいる。
入力信号の搬送波対雑音レベル比(C/N)とこ
の相関検出判定器5への入力電圧との関係を第2
図に示す。入力雑音電圧VNは接続チヤンネル数
によつて図の如く変動しており、このためこの雑
音電圧と希望信号の電圧との和VDNも同じ様に変
動する。いま、判定器503のスレシホールド電
圧VTHを第2図の如くM点で最適となるように設
定したとすると、入力C/NがB点より左の領域
とG点より右の領域では、このスレシホールド電
圧VTHは最適値より大きくずれることとなる。通
常、スプレツド・スペクトラム方式の受信信号の
雑音電圧VNと希望信号電圧と雑音電圧との和VDN
との関係は、第2図の如くなつているため、判定
器503のスレシホールド電圧VTHを使用入力
C/Nの全領域に亘つて最適な値に設定すること
は困難なことである。
The correlation detection/judgment device 5 includes a square law detector 501, a low frequency filter 502, and a decision device 503 that determines the level of the input signal using a certain threshold voltage.
The relationship between the carrier-to-noise level ratio (C/N) of the input signal and the input voltage to the correlation detection/judgment device 5 is expressed as a second
As shown in the figure. The input noise voltage V N varies as shown in the figure depending on the number of connected channels, and therefore the sum V DN of this noise voltage and the voltage of the desired signal also varies in the same way. Now, assuming that the threshold voltage V TH of the determiner 503 is set to be optimal at point M as shown in Fig. 2, the input C/N will be , this threshold voltage V TH will deviate significantly from the optimum value. Normally, the noise voltage V N of the received signal in the spread spectrum method, the sum of the desired signal voltage and the noise voltage V DN
Since the relationship between .

第3図は、このような困難を克服するためにな
された本発明の実施例のブロツク図である。参照
数字12は第1図に示したスプレツド・スペクト
ラム逆拡散復調装置である。この復調装置12の
前にその入力レベルを一定とするために、自動利
得制御(AGC)増幅回路11(AGC増幅器11
1とAGC電圧制御器112を含む)が設けられ
ている。このAGC増幅回路11によつて復調器
2,3及び4(第1図)の出力雑音レベルは、あ
る一定値以下に抑圧され、逆に希望信号レベルは
ある値以上になる。この様子を第4図に示す。横
軸に入力C/Nを、縦軸にAGC増幅回路11の
相対入出力レベルを示し、図中Siは入力信号レベ
ル、Niは入力雑音レベル、Soは出力信号レベル、
Noは出力雑音レベル、及びSo+Noは出力信号
レベルと出力雑音レベルとの和をそれぞれ示して
いる。通常、入力C/Nは広帯域伝送のために
0dB以下になつているのが普通である。前述の如
く、図から明らかなようにAGC増幅回路11の
出力である信号レベルと雑音レベルの和So+No
は一定に保たれ、入力雑音レベルNiが減少する
と出力信号レベルSoは増大している。
FIG. 3 is a block diagram of an embodiment of the present invention designed to overcome these difficulties. Reference numeral 12 is the spread spectrum despread demodulator shown in FIG. Before the demodulator 12, an automatic gain control (AGC) amplifier circuit 11 (AGC amplifier 11
1 and an AGC voltage controller 112). This AGC amplifier circuit 11 suppresses the output noise level of the demodulators 2, 3, and 4 (FIG. 1) to below a certain value, and conversely, the desired signal level becomes above a certain value. This situation is shown in FIG. The horizontal axis shows the input C/N, and the vertical axis shows the relative input/output level of the AGC amplifier circuit 11. In the figure, Si is the input signal level, Ni is the input noise level, So is the output signal level,
No indicates the output noise level, and So+No indicates the sum of the output signal level and the output noise level, respectively. Normally, the input C/N is
It is normal for it to be below 0dB. As mentioned above, as is clear from the figure, the sum of the signal level and the noise level, which is the output of the AGC amplifier circuit 11, is So+No.
is kept constant, and as the input noise level Ni decreases, the output signal level So increases.

第5図は、第3図の如くAGC増幅回路11を
設けた場合の逆拡散復調器2内の帯域通過波器
によつて処理利得を得られた後の信号に対する判
定器503の入力電圧特性を示す。判定器503
のスレシホールド電圧VTHを入力C/Nの最悪値
(第5図中MB点)で最適となるよう設定すると、
MB点以外の入力C/Nに対する判定器の誤り確
率はMB点のそれより劣化することはなく、かつ
入力C/Nが良くなるにしたがつて改善される。
逆拡散復調装置12の希望信号は第5図の特性
VDNの如く変動しているため、この復調装置12
の出力にAGC増幅回路13(AGC増幅器131
及びAGC電圧制御器132を含む)または振幅
制御回路が挿入されており、これにより出力希望
信号レベルは一定に保たれる。
FIG. 5 shows the input voltage characteristics of the determiner 503 for the signal after the processing gain has been obtained by the bandpass waveform in the despreading demodulator 2 when the AGC amplifier circuit 11 is provided as shown in FIG. 3. shows. Judgment device 503
If the threshold voltage V TH is set to be optimal at the worst value of input C/N (point MB in Figure 5),
The error probability of the determiner for input C/Ns other than the MB point does not deteriorate compared to that for the MB point, and improves as the input C/N improves.
The desired signal of the despreading demodulator 12 has the characteristics shown in FIG.
V DN fluctuates, so this demodulator 12
AGC amplifier circuit 13 (AGC amplifier 131
and an AGC voltage controller 132) or an amplitude control circuit is inserted, thereby keeping the output desired signal level constant.

以上説明したように本発明によれば、逆拡散復
調装置の前にその入力レベルを一定とするAGC
増幅回路を備えることにより、相関検出判定器の
スレシホールド電圧を一義的に最適の値に設定す
ることができる。
As explained above, according to the present invention, the AGC that keeps the input level constant is installed before the despreading demodulator.
By providing the amplifier circuit, the threshold voltage of the correlation detection/judgment device can be uniquely set to an optimal value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るスプレツド・スペクトラ
ム復調装置のブロツク図、第2図は第1図装置へ
の入力C/Nに対する判定器入力電圧の関係を示
す図、第3図は本発明の実施例のブロツク図、第
4図は第3図装置への入力C/Nに対するAGC
増幅回路11の各相対入出力レベルの関係を示す
図、第5図は第3図装置への入力C/Nに対する
判定器入力電圧の関係を示す図である。なお図に
おいて、101及び103…入力端子、102及
び104…出力端子、1…電力分配器、2〜4…
逆拡散復調器、5…相関検出判定器、6…遅延ロ
ツクループ相関器、7…電圧制御発振器、8…
PN発生器、9…同期制御器、11及び13…
AGC増幅回路、12…逆拡散復調装置である。
FIG. 1 is a block diagram of a spread spectrum demodulator according to the present invention, FIG. 2 is a diagram showing the relationship between the input C/N of the device in FIG. 1 and the determiner input voltage, and FIG. 3 is an implementation of the present invention. Example block diagram, Fig. 4 shows AGC for input C/N to the device shown in Fig. 3.
FIG. 5 is a diagram showing the relationship between relative input and output levels of the amplifier circuit 11, and FIG. 5 is a diagram showing the relationship of the determiner input voltage with respect to the input C/N to the device shown in FIG. In the figure, 101 and 103...input terminals, 102 and 104...output terminals, 1...power divider, 2-4...
Despreading demodulator, 5... Correlation detection determiner, 6... Delay lock loop correlator, 7... Voltage controlled oscillator, 8...
PN generator, 9...Synchronization controller, 11 and 13...
AGC amplifier circuit, 12... despreading demodulator.

Claims (1)

【特許請求の範囲】[Claims] 1 伝送路雑音と干渉波信号の混在するスプレツ
ド・スペクトラム信号を受信しこのスプレツド・
スペクトラム信号のレベルが一定となるよう制御
する第1の手段と、前記第1の手段の出力を復調
する第2の手段と、前記第2の手段の出力に希望
信号が含まれているかどうかを所定のスレシホー
ルド電圧を基準にして判定する第3の手段と、前
記第2の手段の出力レベルが一定となるよう制御
する第4の手段とを含むスプレツド・スペクトラ
ム復調装置。
1. Receives a spread spectrum signal containing a mixture of transmission line noise and interference wave signals, and calculates this spread spectrum signal.
a first means for controlling the level of the spectrum signal to be constant; a second means for demodulating the output of the first means; and a method for determining whether or not the output of the second means includes a desired signal. A spread spectrum demodulation device comprising: third means for determining based on a predetermined threshold voltage; and fourth means for controlling the output level of the second means to be constant.
JP55149800A 1980-10-24 1980-10-24 Spread spectrum demodulator Granted JPS5773543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55149800A JPS5773543A (en) 1980-10-24 1980-10-24 Spread spectrum demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55149800A JPS5773543A (en) 1980-10-24 1980-10-24 Spread spectrum demodulator

Publications (2)

Publication Number Publication Date
JPS5773543A JPS5773543A (en) 1982-05-08
JPS6336584B2 true JPS6336584B2 (en) 1988-07-20

Family

ID=15482984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55149800A Granted JPS5773543A (en) 1980-10-24 1980-10-24 Spread spectrum demodulator

Country Status (1)

Country Link
JP (1) JPS5773543A (en)

Also Published As

Publication number Publication date
JPS5773543A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
US5132985A (en) Spread spectrum receiver
US7764930B2 (en) Data transmission system, data transmitter and data receiver used in the data transmission system
US6335923B2 (en) Mobile communication terminal and transmission power control method therefor
US5301364A (en) Method and apparatus for digital automatic gain control in a receiver
US4541118A (en) SSB System with pilot coded squelch
US6078611A (en) Rake receiver and finger management method for spread spectrum communication
US4774715A (en) Device for demodulating a spread spectrum signal
US5966402A (en) Method and apparatus for detecting pilot signals and subscriber
US6549545B1 (en) Pilot signal detection method and receiver
JPH03162115A (en) Automatic gain controller
US6252866B1 (en) Virtual locating of a fixed subscriber unit to reduce re-acquisition time
US4625331A (en) Automatic frequency control system or an SSB receiver
US6373878B1 (en) Using a fast AGC as part of SIR calculation
US5119508A (en) Predictive AGC in TDM systems
US5329546A (en) Clock recovery stabilization method and circuit in a receiver of a code division multiple access/direct sequence (CDMA/DS) system
US6414984B1 (en) Method for controlling a receiver, and a receiver
US5668829A (en) Spread spectrum communication apparatus
US5267260A (en) Spread spectrum receiver using the code division multiple access mode
CA2080323C (en) Method and circuit for detecting burst signal
JPS6336584B2 (en)
US6795509B1 (en) Method of receiving spread-spectrum signal and radio communication terminal device
US4513443A (en) Radio receiver suitable for use in a spaced carrier area coverage system
US6954508B2 (en) Automatic frequency control system adapted to compensate for an insufficient capture range
JPS58197935A (en) Spread spectrum receiver
JPS5839137A (en) Synchronous detection system