JPS6336466B2 - - Google Patents

Info

Publication number
JPS6336466B2
JPS6336466B2 JP54076940A JP7694079A JPS6336466B2 JP S6336466 B2 JPS6336466 B2 JP S6336466B2 JP 54076940 A JP54076940 A JP 54076940A JP 7694079 A JP7694079 A JP 7694079A JP S6336466 B2 JPS6336466 B2 JP S6336466B2
Authority
JP
Japan
Prior art keywords
stationary phase
chemically bonded
group
inorganic carrier
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076940A
Other languages
Japanese (ja)
Other versions
JPS561350A (en
Inventor
Shoji Hara
Akira Dobashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7694079A priority Critical patent/JPS561350A/en
Publication of JPS561350A publication Critical patent/JPS561350A/en
Publication of JPS6336466B2 publication Critical patent/JPS6336466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光学活性のオルガノシランが担体と化
学的に結合した光学活性のクロマトグラフ固定相
(充填剤)に関するものである。 従来化学結合型クロマトグラフ固定相または充
填剤としてアルキルシラン、シアノ・アミノ・ヒ
ドロキシル・イオン交換基をもつアルキルシラン
を化学結合したものは知られているが、化学結合
のために使用されるシリコン誘導体の種類が少な
く、多種多様な試料に対して所望の分離性能を有
する固定相または充填剤が得られず、またたとえ
得られたとしても酸、塩基、熱に対し安定性が良
くない点で実用上多くの問題点が残されている。 本発明のような光学活性−化学結合型固定相ま
たは充填剤については、液体クロマトグラフイー
において少数の研究が行なわれているが、その適
用範囲は特殊な試料に限定され、実用化されるに
至つていない。例えばCram等(L.R.Sousa、G.
D.Y.Sogah、D.H.Hoffman、D.J.Cram、J.Am.
Soc.、100、4569(1978))は光学活性の(キラル
な)クラウンエーテルを結合した固定相により、
Host−Guestはコンプレツクス形成を利用する分
離法を開発したが、この方法はアミノ酸エステル
等の試料のうちの分子サイズが一定の範囲のもの
に限定され、それ以外の試料には応用することは
できない。Davankov等(V.A.Davankov、A.V.
Semechkin、J.Chromatography、141(1977)、
313)は光学活性のプロリンを化学結合した固定
相を作り、移動相にCu〓イオンを加え、Ligand−
exchangeの原理によりアミノ酸等の光学分割に
成功したが、この方法で適用される試料は解離性
の官能基を持ち、プロリン、Cu〓イオンとコンプ
レツクスを形成する狭範囲の化合物に限定され
る。またGil−Av等(F.Mikes、G.Boshart、E.
Gil−Av、J.Chromatography、122(1976)、
205)、Lochmu¨ller等はπ−電子不足の光学活性
グラフトを持つ固定相を作り、π−πコンプレツ
クス形成の原理により、フエリセン誘導体の光学
分割に成功したが、この事例においてもπ電子供
与性の試料に限定されている。 これに対し、ガスクロマトグラフ用光学活性固
定相または充填剤は、液相のコーテイングにより
形成される現状で、化学結合型固定相については
大井等の光学活性アミノ基をグラフトした試みが
知られているだけであり、その応用例は一、二の
アミノ酸の、揮発性誘導体に限定されている。 上記の事例は何れも化学結合型固定相と試料と
の特異的な相互作用を利用して光学分割を行なつ
ており、適用される試料はいずれも挟範囲のもの
に限定されている。従つて、例えばペプチド、た
んぱく質の合成中間体の如く、合成工程でのラセ
ミ化の問題のため、光学分割の要求のたかい光学
活性物質の分離に適用し得るものは見当らない。 本発明の目的はこれらの問題点を解決して化学
的に安定であつて、しかも広範囲の有機官能基を
固定相として有し、種々の分離性能のある有用な
新規な固定相をヒドロキシ基をその表面にもつ無
機担体に化学的に結合せしめてなるクロマトグラ
フ固定相を提供することにある。 すなわち、本発明のクロマトグラフ固定相は、
ヒドロキシル基を表面に持つ無機担体と化学結合
したクロマトグラフ固定相であつて、末端に不斉
炭素含有N−アシルアミノ酸残基を有し、該殘基
がアミド結合によりスペーサーを介して無機担体
に化学結合されていることを特徴とするものであ
る。 ここでスペーサーとは、無機担体表面のヒドロ
キシル基と縮合し得る官能基を末端に有し、アシ
ルアミノ酸殘基とアミド結合し得る官能基を他端
に有するものとする。 この発明の好ましい態様において、下記構造式
で表される、アミド結合により化学結合された不
斉炭素含有N−アシルアミド酸殘基を有する。 (式中R4およびR5は異種の置換基であり、水素
原子、アルキル基、アリール基、ヒドロキシル基
またはアルコキシル基の有機官能基であり、また
R6COは種々のカルボン酸殘基であつて、R6には
少なくとも1個の不斉炭素を持つことができる)
例えば (式中R1、R2およびR3はヒドロキシ基、アルコ
キシ基、アルキル基、またはハロゲン原子から選
ばれる。R4およびR5は水素原子、アルキル基、
アリール基、ヒドロキシル基またはアルコキシル
基の有能官能基であり、R6COは種々のカルボン
酸の残基であつてR6には1個以上の不斉炭素を
持つこともできる) を、ヒドロキシル基を表面に持つ無機担体に化学
結合してなるクロマトグラフ固定相である。な
お、式中、*の付いている炭素は不斉炭素を示
す。 不斉炭素含有N−アシルアミノ酸残基 を末端に含有する側鎖を有するクロマトグラフ固
定相は、液体クロマトグラフイー用のガラスキヤ
ピラリーカラムまたは充填カラムとして使用で
き、広範囲の光学異性体(対掌体)を分割でき
る。 本発明においてヒドロキシル基をその表面にも
つ無機担体としてはシリカゲル、ケイソウ土、ガ
ラスおよび石英などのシリカ含有担体を使用する
ことが好ましい。担体の形状は球体、破砕状、繊
維状、棒状、中空管状など何れの形状でも差支え
ないが、粒径の揃つた微粒子または内径の一定な
中空管が高効率のクロマトグラフ用カラムを得る
ために好ましい。 本発明における新規なクロマトグラフ固定相を
種々の方法によつて製造することができる。以
下、その例を示す。 表面にヒドロキシル基を有する無機担体を、ω
−アミノアルキル・トリエトキシシラン、ω−ア
ミノアルキル・トリクロロシランなどでシラン処
理して無機担体にω−アミノアルキル基を導入さ
せ、さらに上記(1)式に対応する次式 に示す種々の不斉炭素をもつカルボン酸を縮合さ
せて本発明によるクロマトグラフ固定相を製造す
ることができる。例えば、光学活性なN−アシル
−α−アミノ酸、ペプチド、N−アシルアミドオ
キシ酸、もしくはこれらの保護体を反応させて脱
水縮合させることにより得られる。 本発明における新規なクロマトグラフ固定相を
得る他の方法とには、例えば、3−アミノプロピ
ル・トリエトキシシランなどのω−アミノアルキ
ル・トリエトキシシランまたはω−アミノアルキ
ル・トリクロロシランなどに、種々の不斉炭素を
含むアシル化剤を反応させ、次いでこれをシリカ
ゲル等の無機担体に化学結合する方法である。必
要に応じてアシル基に含まれる保護基を除去する
ことができる。 これらの方法によれば、上記(1)式に対応して表
わされる種々の不斉炭素含有N−アシルアミノ酸
残基 を選ぶことができるので、本発明で製造した固定
相は種々の試料、溶質の分離に応用することがで
きるばかりでなく選択性の優れたものを造ること
ができる。 以下実施例によつて本発明を説明するが、実施
例は単なる一例であつて本例が本発明を限定する
ものでないことは云うまでもない。 実施例 1 クロマトグラフ用固定相または充填剤の調製 シリカゲル(粒径10μm、孔径95Å表面積380
m2/g)20gを、蒸留し精製した3−アミノプロ
ピル・トリエトキシシラン(沸点108℃/15torr)
20mlと無水トルエン400ml中に入れて反応せしめ、
3−アミノプロピルシラン化シリカ(APS)を
得た。このものの元素分析値はN:1.59%、APS
モノマーとして3.0μmole/m2の密度をもつ。 次に得られたAPS2.1gを、減圧下にて5分間
脱気したジメチルホルムアミド(DMF)8ml中
に懸濁し、DMF3mlに溶かした1−ヒドロキシベ
ンツトリアゾール970mg(7.2mmole)と、DMF3
mlに溶かしたN−ホルミル−L−バリン695mg
(4.8mmole)とを加える。これにジシクロヘキ
シルカルボジイミド(DCC)1.09gを含むDMF3
mlの溶液を混ぜ、撹拌下0℃に1時間保ち、つい
で室温下で48時間撹拌する。ジシクロヘキシル尿
素と、グラフトしたシリカとを遠心分離し、クロ
ロホルム、アセトン、エーテルで洗滌後、五酸化
リンの存在下で6時間減圧にして乾燥する。グラ
フトしたシリカの元素分析値から2.11%のNを含
むことがわかり、この値はAPS表面の32・7%
がN−ホルミル−L−バリンでグラフト(以下
FVAで示す)されたことを示す。 実施例 2 クロマトグラフ用固定相または充填剤の調製 実施例1に使用したものと同じシリカゲルに、
実施例1と同様の方法により、N−アセチル、N
−プロピオニル、N−ブチリル、N−バレリル−
L−バリンなどをグラフトし、それぞれのシリカ
誘導体を得た。以下N−アセチル、N−プロピオ
ニル、N−ブチリル、N−バレリル−L−バリン
誘導体をAVA、PVA、BVA、VVAで示す。グ
ラフト後N・O−アシル基等の保護基を分解除去
することができる。 次に実施例1および実施例2で調製した5種の
シリカ誘導体FVA、AVA、PVA、BVAおよび
VVAをスラリー充填したカラムで、N−アシル
α−アミノ酸メチルエステル、N−ベンジルオキ
シカルボニル−ジペプチドメチルエステルを分離
した結果を第1表および第1〜2図に示す。
The present invention relates to an optically active chromatographic stationary phase (filling material) in which an optically active organosilane is chemically bonded to a carrier. Conventionally, chemically bonded chromatographic stationary phases or fillers in which alkylsilanes and alkylsilanes with cyano, amino, hydroxyl, and ion exchange groups are chemically bonded are known, but silicon derivatives used for chemical bonding are known. Since there are only a few types of stationary phases or packing materials that have the desired separation performance for a wide variety of samples, it is difficult to obtain stationary phases or packing materials that have the desired separation performance, and even if they are obtained, they are not practical due to their poor stability against acids, bases, and heat. Many problems remain. Although a small number of studies have been conducted on optically active/chemically bonded stationary phases or packing materials in liquid chromatography, their applicability is limited to special samples, and it is difficult to put them into practical use. I haven't reached it yet. For example, Cram et al. (LRSousa, G.
DYSogah, DHHoffman, DJCram, J.Am.
Soc., 100, 4569 (1978)) uses a stationary phase bonded with an optically active (chiral) crown ether.
Host-Guest has developed a separation method that utilizes complex formation, but this method is limited to samples with molecular sizes within a certain range, such as amino acid esters, and cannot be applied to other samples. Can not. Davankov et al. (VADavankov, AV
Semechkin, J. Chromatography, 141 (1977),
(313) created a stationary phase chemically bonded with optically active proline, added Cu〓 ions to the mobile phase, and added Ligand−
Although we succeeded in optically resolving amino acids etc. using the principle of exchange, the samples to which this method can be applied are limited to a narrow range of compounds that have dissociative functional groups and form complexes with proline and Cu ions. Also, Gil-Av et al. (F. Mikes, G. Boshart, E.
Gil-Av, J. Chromatography, 122 (1976),
205), Lochmu¨ller et al. created a stationary phase with a π-electron deficient optically active graft and succeeded in optically resolving a ferriscene derivative based on the principle of π-π complex formation. limited to sex samples. On the other hand, optically active stationary phases or fillers for gas chromatographs are currently formed by coating a liquid phase, and for chemically bonded stationary phases, attempts by Oi et al. to graft optically active amino groups are known. However, its applications are limited to volatile derivatives of one or two amino acids. In all of the above examples, optical resolution is performed using the specific interaction between a chemically bonded stationary phase and a sample, and the applicable samples are all limited to a narrow range. Therefore, no method has been found that can be applied to the separation of optically active substances, such as synthetic intermediates of peptides and proteins, which require optical resolution due to the problem of racemization during the synthesis process. The purpose of the present invention is to solve these problems and provide a useful new stationary phase that is chemically stable, has a wide range of organic functional groups, and has various separation properties. The object of the present invention is to provide a chromatographic stationary phase which is chemically bonded to an inorganic carrier on its surface. That is, the chromatographic stationary phase of the present invention is
A chromatographic stationary phase chemically bonded to an inorganic carrier having a hydroxyl group on its surface, which has an asymmetric carbon-containing N-acylamino acid residue at the end, and the remaining group is bonded to the inorganic carrier via a spacer by an amide bond. It is characterized by being chemically bonded. Here, the spacer has at one end a functional group capable of condensing with a hydroxyl group on the surface of the inorganic carrier, and at the other end a functional group capable of forming an amide bond with an acylamino acid residue group. In a preferred embodiment of the present invention, it has an asymmetric carbon-containing N-acylamidic acid residue group chemically bonded by an amide bond and represented by the following structural formula. (In the formula, R 4 and R 5 are different substituents, and are hydrogen atoms, alkyl groups, aryl groups, hydroxyl groups, or organic functional groups of alkoxyl groups, and
R 6 CO is a variety of carboxylic acid residue groups, and R 6 can have at least one asymmetric carbon.)
for example (In the formula, R 1 , R 2 and R 3 are selected from a hydroxy group, an alkoxy group, an alkyl group, or a halogen atom. R 4 and R 5 are a hydrogen atom, an alkyl group,
A capable functional group of an aryl group, a hydroxyl group or an alkoxyl group, where R 6 CO is the residue of various carboxylic acids and R 6 can also have one or more asymmetric carbon atoms), It is a chromatographic stationary phase that is chemically bonded to an inorganic carrier that has a group on its surface. In addition, in the formula, the carbon marked with * represents an asymmetric carbon. Asymmetric carbon-containing N-acyl amino acid residue Chromatographic stationary phases with side chains containing at the ends can be used as glass capillary columns or packed columns for liquid chromatography and can resolve a wide range of optical isomers (antipodes). In the present invention, as the inorganic carrier having hydroxyl groups on its surface, it is preferable to use silica-containing carriers such as silica gel, diatomaceous earth, glass, and quartz. The shape of the carrier may be spherical, crushed, fibrous, rod-like, hollow tube, etc., but fine particles with a uniform particle size or hollow tubes with a constant inner diameter are used to obtain a highly efficient chromatography column. preferred. The novel chromatographic stationary phase of the present invention can be manufactured by various methods. An example is shown below. An inorganic carrier having a hydroxyl group on the surface, ω
- Silane treatment with aminoalkyl triethoxysilane, ω-aminoalkyl trichlorosilane, etc. to introduce an ω-aminoalkyl group into the inorganic carrier, and further the following formula corresponding to the above formula (1) The chromatographic stationary phase according to the present invention can be produced by condensing carboxylic acids having various asymmetric carbon atoms as shown in the following. For example, it can be obtained by reacting an optically active N-acyl-α-amino acid, a peptide, an N-acylamidooxyacid, or a protected form thereof to cause dehydration condensation. Other methods of obtaining the novel chromatographic stationary phase of the present invention include, for example, using various ω-aminoalkyl triethoxysilanes such as 3-aminopropyl triethoxysilane or ω-aminoalkyl trichlorosilanes. This is a method in which an acylating agent containing an asymmetric carbon is reacted, and then this is chemically bonded to an inorganic carrier such as silica gel. The protective group contained in the acyl group can be removed if necessary. According to these methods, various asymmetric carbon-containing N-acylamino acid residues represented by the above formula (1) Therefore, the stationary phase produced according to the present invention can not only be applied to the separation of various samples and solutes, but also have excellent selectivity. The present invention will be explained below with reference to Examples, but it goes without saying that the Examples are merely examples and do not limit the present invention. Example 1 Preparation of stationary phase or packing material for chromatography Silica gel (particle size 10 μm, pore size 95 Å surface area 380
m 2 /g) 20g was purified by distillation of 3-aminopropyl triethoxysilane (boiling point 108℃/15torr)
20ml and 400ml of anhydrous toluene to react.
3-aminopropylsilanized silica (APS) was obtained. The elemental analysis value of this item is N: 1.59%, APS
As a monomer, it has a density of 3.0 μmole/m 2 . Next, 2.1 g of the obtained APS was suspended in 8 ml of dimethylformamide (DMF) that had been degassed for 5 minutes under reduced pressure, and 970 mg (7.2 mmole) of 1-hydroxybenztriazole dissolved in 3 ml of DMF and 3
695mg of N-formyl-L-valine dissolved in ml
(4.8 mmole). DMF3 containing 1.09g of dicyclohexylcarbodiimide (DCC)
ml of solution are mixed and kept under stirring at 0° C. for 1 hour, then stirred at room temperature for 48 hours. The dicyclohexyl urea and the grafted silica are centrifuged, washed with chloroform, acetone, and ether, and then dried under reduced pressure for 6 hours in the presence of phosphorus pentoxide. Elemental analysis of the grafted silica reveals that it contains 2.11% N, which is 32.7% of the APS surface.
is grafted with N-formyl-L-valine (hereinafter
(indicated by FVA). Example 2 Preparation of chromatographic stationary phase or packing material The same silica gel used in Example 1 was
By the same method as in Example 1, N-acetyl, N
-Propionyl, N-butyryl, N-valeryl-
Each silica derivative was obtained by grafting L-valine and the like. Hereinafter, N-acetyl, N-propionyl, N-butyryl, and N-valeryl-L-valine derivatives are indicated by AVA, PVA, BVA, and VVA. After grafting, protective groups such as N·O-acyl groups can be decomposed and removed. Next, five types of silica derivatives FVA, AVA, PVA, BVA and
Table 1 and Figures 1 and 2 show the results of separating N-acyl α-amino acid methyl ester and N-benzyloxycarbonyl dipeptide methyl ester using a column filled with VVA slurry.

【表】 を表わす。
こゝに第1表はカラムとして径0.4cm、長さ20
cmのものを使用し、溶媒として2−プロパノー
ル/n−ヘキサンを使用し、移動相を4v/v%
とし温度40℃、線速度0.080cm/secでカラム中に
通し、保持係数をk′とし、選択係数αはα=
k′1/k′2で求めたものである。但しk′1、k′2は対
掌体対の保持係数である。 また第1図に示すクロマトグラフはFVAシリ
カ誘導体を径0.4cm、長さ20cmのカラム充填し直
列に接続したものを使用し、溶媒として2−プロ
パノール/n−ヘキサンを使用し、移動相を
4v/v%とし、温度40℃で線速度0.086cm/secで
通し、検出は紫外線230nm.0.16a.u.f.s.で行つた
場合を示す。そして第2図に示すクロマトグラフ
は、FVAシリカ誘導体を充填した第1図の場合
と同じカラムを使用し、上記と同じ溶剤を使用
し、移動相を2v/v%とし、温度40℃で線速度
0.086cm/secで通し、検出は紫外線254nm、
0.16a.u.f.s.で行つた場合を示す。
[Table] represents.
Here, Table 1 shows a column with a diameter of 0.4 cm and a length of 20 cm.
cm, 2-propanol/n-hexane was used as the solvent, and the mobile phase was 4v/v%.
Pass it through the column at a temperature of 40℃ and a linear velocity of 0.080cm/sec, the retention coefficient is k′, and the selection coefficient α is α=
It is calculated by k′ 1 /k′ 2 . However, k′ 1 and k′ 2 are retention coefficients of the enantiomer pair. The chromatograph shown in Figure 1 uses FVA silica derivatives packed in columns with a diameter of 0.4 cm and a length of 20 cm and connected in series. 2-propanol/n-hexane is used as the solvent, and the mobile phase is
4v/v%, passed at a temperature of 40℃ and a linear velocity of 0.086cm/sec, and detected ultraviolet light at 230nm. This shows the case performed at 0.16aufs. The chromatograph shown in Figure 2 uses the same column packed with FVA silica derivative as in Figure 1, the same solvent as above, a mobile phase of 2v/v%, and a temperature of 40°C. speed
Passes through at 0.086cm/sec, detects ultraviolet light at 254nm,
This shows the case performed at 0.16aufs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明で造つた固定相ま
たは充填剤を使用し、分離試験を行つて得たクロ
マトグラフを示す。
FIGS. 1 and 2 show chromatographs obtained in separation tests using the stationary phase or packing material produced according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ヒドロキシル基を表面に持つ無機担体と化学
結合したクロマトグラフ固定相であつて、末端に
不斉炭素含有N−アシルアミノ酸残基を有し、該
残基がアミド結合によりスペーサーを介して無機
担体に化学結合されていることを特徴とするクロ
マトグラフ固定相。
1 A chromatographic stationary phase chemically bonded to an inorganic carrier having a hydroxyl group on its surface, which has an asymmetric carbon-containing N-acylamino acid residue at the end, and the residue is bonded to the inorganic carrier via a spacer by an amide bond. A chromatographic stationary phase characterized in that it is chemically bonded to.
JP7694079A 1979-06-20 1979-06-20 Grafted chromatographic stationary phase or filler and its preparation Granted JPS561350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7694079A JPS561350A (en) 1979-06-20 1979-06-20 Grafted chromatographic stationary phase or filler and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7694079A JPS561350A (en) 1979-06-20 1979-06-20 Grafted chromatographic stationary phase or filler and its preparation

Publications (2)

Publication Number Publication Date
JPS561350A JPS561350A (en) 1981-01-09
JPS6336466B2 true JPS6336466B2 (en) 1988-07-20

Family

ID=13619732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7694079A Granted JPS561350A (en) 1979-06-20 1979-06-20 Grafted chromatographic stationary phase or filler and its preparation

Country Status (1)

Country Link
JP (1) JPS561350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342378U (en) * 1986-09-05 1988-03-19
JPH0671092U (en) * 1992-12-02 1994-10-04 顕造 宇梶 Marumochi continuous cutting machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985000661A1 (en) * 1983-07-20 1985-02-14 Daicel Chemical Industries, Ltd. Packing for use in separation
JP2538618B2 (en) * 1987-10-13 1996-09-25 昭二 原 Separation agent
SE9203646L (en) 1992-12-03 1994-05-24 Eka Nobel Ab Chiral adsorbents and their preparation as well as compounds on which the adsorbents are based and their preparation
JP2008527054A (en) * 2004-12-21 2008-07-24 エボニック デグサ ゲーエムベーハー Perfume delivery system
US20060165740A1 (en) * 2005-01-24 2006-07-27 Goldschmidt Chemical Corporation Perfume delivery system
CN103301822B (en) * 2012-10-25 2016-08-03 中国人民解放军第四军医大学 A kind of polar liquid chromatogram filler and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381295A (en) * 1976-12-27 1978-07-18 Sumitomo Chemical Co Grafted filler for chromatography and its manufacture
JPS5476587A (en) * 1977-11-30 1979-06-19 Sumitomo Chem Co Ltd Optically active s-triazine derivative and method of separation and analysis of mirror-image isomer mixture having amino group using the same by gas-chromatography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381295A (en) * 1976-12-27 1978-07-18 Sumitomo Chemical Co Grafted filler for chromatography and its manufacture
JPS5476587A (en) * 1977-11-30 1979-06-19 Sumitomo Chem Co Ltd Optically active s-triazine derivative and method of separation and analysis of mirror-image isomer mixture having amino group using the same by gas-chromatography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342378U (en) * 1986-09-05 1988-03-19
JPH0671092U (en) * 1992-12-02 1994-10-04 顕造 宇梶 Marumochi continuous cutting machine

Also Published As

Publication number Publication date
JPS561350A (en) 1981-01-09

Similar Documents

Publication Publication Date Title
US4322310A (en) Chiral supports for resolution of racemates
EP0276138B1 (en) Chromatographic supports for separation of oligonucleotides
EP0108813B1 (en) Grafted chromatographic filler and method for analyzing enantiomer mixture using same
JP3896468B2 (en) Chiral stationary phases for chromatographic separation of enantiomers.
US5268442A (en) Chiral copolymers with oligosiloxane spacers
JPH06211880A (en) Liquid chromatography stationary phase undergoing reduced action of silanol
US5104547A (en) Separating materials for chromatography comprising cyclodextrin chemically bonded to a support via a carbamic acid group
US4996277A (en) Novel oligoethylene oxide-containing alkenes, alkoxysilanes, and polysiloxanes
JP4461137B2 (en) Silica gel bonded with cucurbituril
JPS6336466B2 (en)
US5135649A (en) Column packing material with both hydrophobic and hydrophilic groups and process for production thereof
US4830921A (en) Packing material for liquid chromatography
US4909935A (en) Chromatographic arylcarboxamide polysiloxanes
Nakamura et al. Preparation and chromatographic characteristics of a chiral-recognizing perphenylated cyclodextrin column
JP3653798B2 (en) New modified silica gel
US20040159611A1 (en) Packings for liquid chromatography, process for preparing and usage
EP0469739B1 (en) Stationary phase for enantiomeric resolution in liquid chromatography
US7208086B2 (en) Saccharide and support for chromatography
KR0167138B1 (en) Separating agent for optical isomers
EP0420115B1 (en) Packing material for liquid chromatography
JPH0475892B2 (en)
Frank et al. A versatile approach to the reproducible synthesis of functionalized polysiloxane stationary phases
US7175767B2 (en) Preparation of a metal chelating separation medium
JP2904540B2 (en) Column packing and method for producing the same
JPH06298672A (en) Chirality-discrimination agent and separating agent for chromatography