JPS6336263Y2 - - Google Patents

Info

Publication number
JPS6336263Y2
JPS6336263Y2 JP8776680U JP8776680U JPS6336263Y2 JP S6336263 Y2 JPS6336263 Y2 JP S6336263Y2 JP 8776680 U JP8776680 U JP 8776680U JP 8776680 U JP8776680 U JP 8776680U JP S6336263 Y2 JPS6336263 Y2 JP S6336263Y2
Authority
JP
Japan
Prior art keywords
signal
notch
light
synchronization
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8776680U
Other languages
Japanese (ja)
Other versions
JPS5716851U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8776680U priority Critical patent/JPS6336263Y2/ja
Publication of JPS5716851U publication Critical patent/JPS5716851U/ja
Application granted granted Critical
Publication of JPS6336263Y2 publication Critical patent/JPS6336263Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、被測定体に赤外光を照射し、被測定
体と相互作用をもつた後、時系列的にセンサに導
かれる、性質の異なる複数の信号を検出し、それ
らの検出信号を用いて所望の演算を行なつて、被
測定体に含まれる水分量を測定する測定装置に関
する。
[Detailed description of the invention] <Industrial application field> The invention is based on the property that infrared light is irradiated onto an object to be measured, and after interacting with the object, it is guided to a sensor in a time-series manner. The present invention relates to a measuring device that detects a plurality of signals with different values, performs desired calculations using these detection signals, and measures the amount of water contained in an object to be measured.

〈従来の技術〉 第1図は従来装置の構成説明図、第2図は第1
図の従来装置の部分断面図、第3図は第1図の従
来装置における信号のタイムチヤートである。
<Prior art> Fig. 1 is an explanatory diagram of the configuration of a conventional device, and Fig. 2 is a diagram showing the configuration of a conventional device.
FIG. 3 is a partial sectional view of the conventional device shown in the figure, and FIG. 3 is a time chart of signals in the conventional device shown in FIG.

第1図において、10は上ヘツド、20は上ヘ
ツド10に対向配置された下ヘツド、30はこれ
ら上・下ヘツドで形成される間隙を流れる紙のよ
うなシート状被測定体、13,22は上ヘツド1
0と下ヘツド20の対向面に設けられた反射膜、
11,12は上ヘツドに設けられ照射窓で、第2
図ロにおいて矢印で示す紙の流れ方向に間隔置い
て設けられている。21は照射窓12に対向して
下ヘツド20に設けられた入射窓である。
In FIG. 1, 10 is an upper head, 20 is a lower head disposed opposite to the upper head 10, 30 is a sheet-like object to be measured such as paper that flows through the gap formed by these upper and lower heads, 13, 22 upper head 1
0 and a reflective film provided on the opposing surfaces of the lower head 20,
11 and 12 are irradiation windows provided in the upper head;
They are provided at intervals in the paper flow direction indicated by arrows in FIG. Reference numeral 21 denotes an entrance window provided in the lower head 20 facing the irradiation window 12.

上ヘツド10には回転セクタ40、ランプ5
0、レンズ51,52及び反射鏡53が含まれ
る。回転セクタ40は円板状の板41を支承し、
この板の板面に2個の貫通孔を設け、一方の貫通
孔には約1.80μmの波長領域を選択的に透過させ
る基準光用光学フイルタ42が設けられ、他方の
貫通孔には約1.95μmの波長領域を選択的に透過
させる測定光用光学フイルタ43が設けられてい
る。上ヘツド10ではランプ50→レンズ51→
照射窓11→紙30に至る光路とランプ50→反
射鏡53→レンズ52→照射窓12→紙30に至
る光路とが形成される。第2図において44〜4
7は板41の周縁部に設けられた切欠で、これに
よつて光学フイルタ42,43が照射窓11或は
12を通過するとき後出の同期信号発生部と協働
して同期信号を発生させる。
The upper head 10 has a rotating sector 40 and a lamp 5.
0, lenses 51 and 52, and a reflecting mirror 53. The rotating sector 40 supports a disc-shaped plate 41,
Two through holes are provided in the plate surface of this plate, and one through hole is provided with an optical filter 42 for reference light that selectively transmits a wavelength range of approximately 1.80 μm, and the other through hole is provided with an optical filter 42 for a reference light that selectively transmits a wavelength range of approximately 1.95 μm. An optical filter 43 for measuring light is provided that selectively transmits light in the μm wavelength range. In the upper head 10, the lamp 50→lens 51→
An optical path from the irradiation window 11 to the paper 30 and an optical path from the lamp 50 to the reflecting mirror 53 to the lens 52 to the irradiation window 12 to the paper 30 are formed. 44-4 in Figure 2
Reference numeral 7 denotes a notch provided at the peripheral edge of the plate 41, whereby when the optical filters 42 and 43 pass through the irradiation window 11 or 12, a synchronization signal is generated in cooperation with a synchronization signal generation section to be described later. let

D1,Q3は回転セクタ40の板41の周縁部の
切欠部44〜47を挟むように配置された発光ダ
イオードとフオトトランジスタで、増幅器A4
び信号変換部A5と共に同期信号発生部を構成し
ている。
D 1 and Q 3 are light emitting diodes and phototransistors placed across the notches 44 to 47 at the peripheral edge of the plate 41 of the rotating sector 40, and together with the amplifier A 4 and the signal converter A 5 , they function as a synchronizing signal generator. It consists of

下ヘツド20にはレンズ54、センサSE、信
号検出部を含む。信号検出部は、セサSEからの
検出信号が与えられた増幅器A1、AGの回路A6
前記同期信号発生部からの信号e1〜e4によつて動
作するサンプル・ホールド回路SH1〜SH4を含
む。AGC回路A6は、抵抗R1を介し増幅器A1の出
力E1が与えられた増幅器A2、この増幅器の入力
端子と基準電位間に接続された電界効果トランジ
スタQ1、増幅器A2の出力側に接続された直流阻
止コンデンサC1、このコンデンサと基準電位間
に接続され、同期信号発生部からの信号e5によつ
て一定周期でこのコンデンサの電荷を放電させる
電界効果トランジスタA2、抵抗R2を介し与えら
れたサンプル・ホールド回路SH4の出力Rnと抵
抗R3を介し与えられた基準信号Vsとが加算入力
され、入・出力間にコンデンサC2が接続され、
出力が電界効果トランジスタQ1のゲートに与え
られた積分増幅器A3とを含む。
The lower head 20 includes a lens 54, a sensor SE, and a signal detection section. The signal detection section includes an amplifier A 1 to which a detection signal from SESA SE is given, an AG circuit A 6 ,
It includes sample-and-hold circuits SH 1 to SH 4 operated by signals e 1 to e 4 from the synchronization signal generator. The AGC circuit A 6 consists of an amplifier A 2 to which the output E 1 of the amplifier A 1 is applied via a resistor R 1 , a field effect transistor Q 1 connected between the input terminal of this amplifier and a reference potential, and the output of the amplifier A 2 A DC blocking capacitor C 1 connected to the side, a field effect transistor A 2 connected between this capacitor and a reference potential and discharging the charge of this capacitor at regular intervals by a signal e 5 from the synchronization signal generator, and a resistor. The output Rn of the sample-and-hold circuit SH 4 applied through R 2 and the reference signal Vs applied through the resistor R 3 are added together, and a capacitor C 2 is connected between the input and output.
an integrating amplifier A 3 whose output is applied to the gate of a field effect transistor Q 1 .

次にこのように構成された従来装置の動作を第
2図並びに第3図のタイムチヤートに従い説明を
行なう。回転セクタ40の光学フイルタ42,4
3と照射窓11,12との関係は第2図イのよう
になつている。即ち、回転セクタ40の回転中に
あつて、光学フイルタ42,43が照射窓11,
12を順次通過し、いずれかの光路中に光学フイ
ルタが位置するとき、他方の光路は回転セクタ4
0の板41で遮られる構成となつている。板41
の周縁部に設けた切欠部44は、第2図イのよう
に、光学フイルタ42が照射窓11上にあると
き、発光ダイオードD1及びフオトトランジスタ
Q3で構成する光路中に位置しフオトトランジス
タQ3を励起し同期信号を発生する。同様に、切
欠部45は、光学フイルタ43が照射窓11上に
あるとき同期信号を発生させ、切欠部46は光学
フイルタ42が照射窓12上にあるとき同期信号
を発生させ、切欠部47は光学フイルタ43が照
射窓12上にあるとき同期信号を発生させる。
Next, the operation of the conventional device configured as described above will be explained with reference to the time charts shown in FIGS. 2 and 3. Optical filters 42, 4 of rotating sector 40
3 and the irradiation windows 11 and 12 are as shown in FIG. 2A. That is, while the rotating sector 40 is rotating, the optical filters 42 and 43 are exposed to the irradiation windows 11,
12 sequentially, and when an optical filter is located in one of the optical paths, the other optical path passes through the rotating sector 4.
The structure is such that it is blocked by a plate 41 of 0. Board 41
When the optical filter 42 is above the irradiation window 11 , as shown in FIG.
It is located in the optical path consisting of Q 3 and excites phototransistor Q 3 to generate a synchronization signal. Similarly, the notch 45 generates a synchronization signal when the optical filter 43 is above the irradiation window 11, the notch 46 generates a sync signal when the optical filter 42 is above the irradiation window 12, and the notch 47 generates a sync signal when the optical filter 42 is above the irradiation window 12. When the optical filter 43 is above the irradiation window 12, a synchronization signal is generated.

光学フイルタ42が照射窓11,12上にある
とき、水分によつて減衰を受けない約1.80μmの
比較光(R光)を紙30に照射し、光学フイルタ
43が照射窓11,12上にあるとき、約
1.95μmの測定光(M光)を紙30に照射する。
R光及びM光が紙30と相互作用をもつた後、セ
ンサSEで検出され、AGC回路A6を経てサンプ
ル・ホールド回路SH1〜SH4に与えられる。
AGC回路A6からの信号は第3図のタイムチヤー
トの波形E2のように、信号R′n,M′n,R′t,及び
M′tの時系列信号である。ここで信号R′n,M′n
は照射窓11から照射されるR光及びM光であつ
て、紙30と数多く相互作用をもつた後、センサ
SEに到達するR光及びM光の光量に対応する信
号である。また、信号R′t,M′tは照射窓12か
ら照射されるR光及びM光であつて、紙30と数
少ない相互作用(ときには透過のみ)をもつてセ
ンサSEに到達するR光及びM光の光量に対応す
る信号である。
When the optical filter 42 is above the irradiation windows 11 and 12, the paper 30 is irradiated with comparative light (R light) of approximately 1.80 μm that is not attenuated by moisture, and the optical filter 43 is above the irradiation windows 11 and 12. At one time, approx.
The paper 30 is irradiated with 1.95 μm measurement light (M light).
After the R light and M light interact with the paper 30, they are detected by the sensor SE, and are provided to the sample and hold circuits SH1 to SH4 via the AGC circuit A6 .
The signals from the AGC circuit A6 are the signals R'n, M'n , R't, and
This is a time series signal of M′t. Here, the signals R′n, M′n
are the R light and M light emitted from the irradiation window 11, and after having many interactions with the paper 30, the sensor
This is a signal corresponding to the amount of R light and M light that reaches the SE. Furthermore, the signals R't and M't are the R and M lights emitted from the irradiation window 12, and the R and M lights reach the sensor SE with a small number of interactions (sometimes only transmission) with the paper 30. This is a signal corresponding to the amount of light.

同期信号発生部からの同期信号は第3図におけ
る波形e0で示す信号e′4,e′3,e′2及びe′1の時系列
信号である。信号e′4,e′3,e′2及びe′1は信号E2
おける信号成分R′n,M′n,R′t,及びM′tにそれ
ぞれ同期しており、各同期信号e′4〜e′1の幅は、
切欠44〜47の切欠幅W1に対応している。こ
の時系列信号e′4〜e′1は、信号変換器A5で、第3
図のタイムチヤートにおける波形e4,e3,e2及び
e1で示す信号に変換され、サンプル・ホールド回
路SH4〜SH1を制御する信号となる。これら信号
によつてサンプル・ホールド回路SH4〜SH1が制
御され、直流阻止コンデンサC1から与えられる
交流信号より信号成分R′n,M′n,R′t,及びM′t
を分離し、各サンプル・ホールド回路から信号
Rn,Mn,Rt及びMtを出力する(第3図では信
号Mnのみが示されている。)。これらの信号を次
段の演算部に与えて、紙30に含まれる水分量に
対応する信号を演算により求める。
The synchronizing signal from the synchronizing signal generator is a time-series signal of signals e' 4 , e' 3 , e' 2 and e' 1 shown by waveform e 0 in FIG. Signals e′ 4 , e′ 3 , e′ 2 and e′ 1 are synchronized with signal components R′n, M′n, R′t and M′t in signal E 2 , respectively, and each synchronization signal e The width of ′ 4 ~ e′ 1 is
This corresponds to the notch width W 1 of the notches 44 to 47. These time series signals e′ 4 to e′ 1 are sent to the third signal converter A 5 .
Waveforms e 4 , e 3 , e 2 and
It is converted into a signal indicated by e 1 and becomes a signal that controls the sample-and-hold circuits SH 4 to SH 1 . The sample and hold circuits SH 4 to SH 1 are controlled by these signals, and the signal components R′n, M′n , R′t, and M′t are
signals from each sample-and-hold circuit.
Outputs Rn, Mn, Rt and Mt (only signal Mn is shown in FIG. 3). These signals are given to a calculation section at the next stage, and a signal corresponding to the amount of moisture contained in the paper 30 is calculated.

AGC回路A6において、比較光に基く信号Rnが
基準信号Vsと比較され、これらが一致するよう
に電界効果トランジスタQ1のドレイン−ソース
間抵抗が制御され利得制御が行なわれる。また、
信号E2のベースが変動すると誤差要因となるた
め、一定周期で信号e5を電界効果トランジスタ
Q2のゲートに与え、コンデンサC1を基準電位に
接続してベース補償が行なわれる。
In the AGC circuit A6 , the signal Rn based on the comparison light is compared with the reference signal Vs, and the drain-source resistance of the field effect transistor Q1 is controlled to perform gain control so that they match. Also,
If the base of signal E 2 fluctuates, it will cause an error, so signal e 5 is connected to a field effect transistor at a constant period.
Base compensation is performed by connecting the capacitor C 1 to the reference potential .

〈考案が解決しようとする問題点〉 信号e5は信号変換器A5にタイマを設けて光学
フイルタ42,43が照射窓11,12上にない
タイミング、例えば切欠部44と47の中間が発
光ダイオードD1及びフオトトランジスタQ3部分
を通過するときに発生させるようにしていた。こ
のため、精度良く安定動作するタイマが必要で、
通常、回転セクタ40の駆動源に同期モータを用
いることもあつて、測定装置が使用される場所の
電源周波数に応じて上記タイマの仕様を変える必
要があつた。従つて、水分計を製造するメーカと
しては、精度良く、かつ、安定動作するタイマを
2種類用意して製造にあたる必要があり、これが
コスト高の要因となつていた。
<Problem to be solved by the invention> The signal e 5 is generated by providing a timer in the signal converter A 5 and determining the timing when the optical filters 42 and 43 are not above the irradiation windows 11 and 12, for example, when the light is emitted between the notches 44 and 47. It was designed to be generated when passing through the diode D1 and phototransistor Q3 . For this reason, a timer that operates accurately and stably is required.
Usually, a synchronous motor is used as the drive source for the rotating sector 40, so it is necessary to change the specifications of the timer depending on the power frequency of the location where the measuring device is used. Therefore, manufacturers of moisture meters are required to prepare two types of timers that are highly accurate and operate stably, which causes high costs.

本考案は、かかる点に鑑みてなされたものであ
り、その目的は、電源周波数に関係なく、しかも
高精度のタイマを必要としない同期信号発生部を
具備する測定装置を提供するにある。
The present invention has been devised in view of these points, and its purpose is to provide a measuring device equipped with a synchronization signal generator that is independent of the power supply frequency and does not require a highly accurate timer.

〈課題を解決するための手段〉 本考案の構成は、前記測定装置において、前記
回転セクタの周縁部の同期信号発生用の切欠の間
にこれら切欠より幅広の切欠を形成し、前記回転
セクタ1回転に付き1個の幅広パルス信号と照射
状態に同期した幅の狭い複数の同期信号とからな
る時系列信号を発生させ、この時系列信号をワン
シヨツトマルチバイブレータと論理回路とを含む
タイマに加え、前記幅広のパルスが加えられたと
きこの幅広パルスより狭く前記同期信号より幅の
広いパルス信号を発生させ、このパルス信号と前
記時系列信号との論理によつて前記幅広パルス信
号に同期した信号を生成し、この信号に基き前記
直流阻止コンデンサのベース補償を行なうように
したことにある。
<Means for Solving the Problems> The configuration of the present invention is such that in the measuring device, a notch wider than these notches is formed between the notches for generating a synchronization signal on the peripheral edge of the rotating sector, and A time series signal consisting of one wide pulse signal and multiple narrow synchronization signals synchronized with the irradiation state is generated for each rotation, and this time series signal is applied to a timer including a one-shot multivibrator and a logic circuit. , when the wide pulse is applied, a pulse signal that is narrower than the wide pulse and wider than the synchronization signal is generated, and the signal is synchronized with the wide pulse signal by logic between the pulse signal and the time series signal. is generated, and base compensation of the DC blocking capacitor is performed based on this signal.

〈作用〉 前記の技術手段は次のように作用する。即ち、
前記コンデンサのベース補償を行なう制御信号を
前記回転セクタの周縁部に設けた幅広の切欠部に
よつて作り、時系列信号からこの信号を、ワンシ
ヨツトマルチバイブレータと論理回路とを含むタ
イマによつて分離するようにしたため、高精度の
タイマが要らず、前記回転セクタの駆動電源周波
数の変更に関係なく安定した制御が行える。
<Operation> The above technical means operates as follows. That is,
A control signal for base compensation of the capacitor is generated by a wide notch provided at the periphery of the rotating sector, and this signal is converted from a time series signal by a timer including a one-shot multivibrator and a logic circuit. Since they are separated, a high-precision timer is not required, and stable control can be performed regardless of changes in the drive power frequency of the rotating sector.

〈実施例〉 以下図面に従い本考案の実施例を説明する。第
5図は本考案実施例装置における回転セクタを示
し、図イは正面図、図ロは平面図をである。第6
図は本考案実施例装置における信号変換器の構成
説明図である。第5図において、第2図に付した
符号と同一のものは同一意味をもたせているの
で、ここでの説明は省略する。48は、切欠部4
4と47との間に、切欠部44〜47の切欠幅
W1より大きい切欠幅W2を有する切欠部である。
60は発光ダイオード及びフオトトランジスタを
内蔵する断面コの字形のフオトインタラプタで、
板41の周縁部を挟むようにして設置し、切欠部
44〜48がフオトインタラプタ60の位置を通
過する毎に、切欠部48,44〜47に対応する
時系列信号e′5〜e′1を得るようになつている。
<Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 5 shows a rotating sector in an apparatus according to an embodiment of the present invention, in which figure A is a front view and figure B is a plan view. 6th
The figure is an explanatory diagram of the configuration of the signal converter in the apparatus according to the embodiment of the present invention. In FIG. 5, the same reference numerals as those in FIG. 2 have the same meanings, so the explanation here will be omitted. 48 is the notch 4
4 and 47, the notch width of notches 44 to 47
The notch has a notch width W2 larger than W1 .
60 is a photointerrupter with a U-shaped cross section that incorporates a light emitting diode and a phototransistor;
It is installed so as to sandwich the peripheral edge of the plate 41, and each time the notches 44 to 48 pass the position of the photo interrupter 60, time series signals e' 5 to e' 1 corresponding to the notches 48 and 44 to 47 are obtained. It's becoming like that.

第6図に示す信号変換器において、Tiは信号e0
が印加される入力端子、TMは、ワンシヨツトマ
ルチバイブレータMM及びゲートA7を含み、信
号e0を入力するタイマである。COは、信号e0
与えられ、タイマTMの出力によつてリセツトさ
れるカウンタ、DEは、カウンタCOより各ビツト
出力が与えられ、タイマTMの出力によつてリセ
ツトされるデコーダ、GEは、信号e0及びデコー
ダDEの出力を入力とし、ゲートA8〜A11からな
るゲート、T01〜T04はゲートA8〜A11の出力を外
部に送出するための出力端子、T05はタイマTM
の出力を外部に送出するための出力端子である。
In the signal converter shown in FIG. 6, T i is the signal e 0
The input terminal TM to which is applied is a timer that includes a one-shot multivibrator MM and a gate A7 and inputs a signal e0 . CO is a counter that is given the signal e0 and is reset by the output of the timer TM, DE is a decoder that is given each bit output from the counter CO and is reset by the output of the timer TM, and GE is A gate consisting of gates A 8 to A 11 takes the signal e 0 and the output of the decoder DE as input, T 01 to T 04 are output terminals for sending the outputs of gates A 8 to A 11 to the outside, and T 05 is a timer. TM
This is an output terminal for sending the output to the outside.

次に、第4図のタイムチヤートを参照し本考案
実施例装置の動作を説明する。センサSEによる
検出信号は波形E2のように従来の水分計と同様
な信号となつている。一方、フオトインタラプタ
60による検出信号は波形e0のように、広いパル
ス幅T2を持つ信号e′5、並びに狭いパルス幅T1
持つ信号e′4,e′3,e′2及びe′1の時系列信号であ
る。パルス幅T2,T1は板41の切欠部48,4
4〜47の切欠幅W2,W1に対応している。
Next, the operation of the apparatus according to the present invention will be explained with reference to the time chart shown in FIG. The detection signal from sensor SE is a signal similar to that of a conventional moisture meter, as shown in waveform E2 . On the other hand, the detection signal by the photo interrupter 60 has a waveform e0 , a signal e'5 having a wide pulse width T2 , and signals e'4 , e'3 , e'2 , and e having a narrow pulse width T1. ′ 1 time series signal. The pulse widths T 2 and T 1 are determined by the notches 48 and 4 of the plate 41.
It corresponds to notch widths W 2 and W 1 of 4 to 47.

マルチバイブレータMMは信号e′5〜e′1の立下
がりで動作し、その時定数T0がT1<T0<T2に選
定されいて、パルス幅T1の幅広のパルスのとき
だけ準安定状態に移行しカウントアツプされ、パ
ルス幅T1の狭いパルスのときはカウントアツプ
されずに途中から元の安定点に戻り、波形e6のよ
うな出力を発生する。ゲートA7は信号e0及びe6
入力としパルス幅の広い信号e′5に同期した波形
e5で示す信号のみを出力する。
The multivibrator MM operates on the falling edge of the signal e′ 5 ~ e′ 1 , its time constant T 0 is chosen such that T 1 < T 0 < T 2 , and it is metastable only for wide pulses with pulse width T 1 . When the pulse width T1 is narrow, the count is not increased and returns to the original stable point midway, producing an output as shown in waveform e6 . Gate A 7 receives signals e 0 and e 6 and has a waveform synchronized with wide pulse width signal e′ 5 .
e Outputs only the signal shown in 5 .

カウンタCOはタイマTMからの出力e5によつ
てリセツトされ、パルス信号e′4,e′3,e′2及びe′1
をカウントして、その計数値をデコーダDEに与
えてデコードし、信号e′4のデコード信号をゲー
トA11に与え、信号e′3のデコード信号をゲート
A10に与え、信号e′2のデコード信号をゲートA9
与え、信号e′1のデコード信号をゲートA8に与え
る。各ゲートの他の入力端子には時系列信号e0
与えられており、ゲートA11からは信号e′4に同期
した信号e4が得られ、ゲートA10からは信号e′3
同期した信号e3が得られ、ゲートA9からは信号
e′2に同期した信号e2が得られ、ゲートA8からは
信号e′1に同期した信号e1が得られる。これら信
号e4〜e1は第1図に示す装置のサンプル・ホール
ド回路SH4〜SH1を制御する信号として使用さ
れ、信号E2における信号成分R′n,M′n,R′t,及
びM′tが分離される。
The counter CO is reset by the output e 5 from the timer TM and pulse signals e' 4 , e' 3 , e' 2 and e' 1
is counted, the counted value is given to the decoder DE for decoding, the decoded signal of signal e′ 4 is given to gate A 11 , and the decoded signal of signal e′ 3 is decoded.
A 10 , a decode signal of signal e' 2 is applied to gate A 9 , and a decode signal of signal e' 1 is applied to gate A 8 . A time series signal e 0 is given to the other input terminal of each gate, a signal e 4 synchronized with the signal e′ 4 is obtained from the gate A 11 , and a signal e 4 synchronized with the signal e′ 3 is obtained from the gate A 10 . A signal e 3 is obtained from the gate A 9, and a signal e 3 is obtained from the gate A 9 .
A signal e 2 synchronized with e' 2 is obtained, and a signal e 1 synchronized with signal e' 1 is obtained from gate A 8 . These signals e 4 to e 1 are used as signals to control the sample and hold circuits SH 4 to SH 1 of the device shown in FIG. 1 , and the signal components R'n, M'n, R't, and M′t are separated.

一方、信号e5は第1図に示す装置の電界効果ト
ランジスタQ2のゲートに与えられコンデンサC1
を回転セクタ40が1回転する毎に基準電位に接
続しベース補償を行なう。
On the other hand, the signal e 5 is applied to the gate of the field effect transistor Q 2 of the device shown in FIG .
is connected to the reference potential every time the rotating sector 40 rotates once, thereby performing base compensation.

〈考案の効果〉 本考案によれば、前記コンデンサの放電を制御
する信号を前記回転セクタの周縁部に設けた幅広
の切欠部によつて作り、この信号を前記時系列信
号より、ワンシヨツトマルチバイブレータと論理
回路で構成した簡単なタイマで分離するようにし
たため、高精度のタイマが要らず、また、前記回
転セクタの駆動電源周波数の変更に関係なく安定
した制御が行える。
<Effects of the invention> According to the invention, a signal for controlling the discharge of the capacitor is generated by a wide notch provided at the periphery of the rotating sector, and this signal is generated from the time-series signal by one-shot multiplexing. Since separation is performed using a simple timer composed of a vibrator and a logic circuit, a highly accurate timer is not required, and stable control can be performed regardless of changes in the drive power frequency of the rotating sector.

また、二次的効果として、回転セクタ40の板
41の周縁部に幅広の切欠部48を有するので、
回転セクタ40の保守点検時、この切欠部48を
フオトインタラプタ60の位置に合わせて板41
を回転軸方向に取外すことが出来、回転セクタ4
0等の保守点検が容易に行える利点がある。
In addition, as a secondary effect, since the plate 41 of the rotating sector 40 has a wide notch 48 at the peripheral edge,
During maintenance and inspection of the rotating sector 40, align the notch 48 with the position of the photo interrupter 60 and remove the plate 41.
can be removed in the direction of the rotation axis, rotating sector 4
There is an advantage that maintenance and inspection of 0 etc. can be performed easily.

尚、上記実施例では、信号変換器にデコーダを
用いる構成となつているが、他の手段、例えば直
列並列出力形のシフトレジスタを用いることも出
来る。
In the above embodiment, a decoder is used as a signal converter, but other means, such as a shift register with serial and parallel outputs, can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の構成説明図、第2図イ,ロ
及びハは第1図におけるイ−イ,ロ−ロ及びハ−
ハの断面図、第3図は第1図の従来装置における
信号のタイムチヤート、第4図は本考案の一実施
例による水分計における信号のタイムチヤート、
第5図は本考案に一実施例による水分計の回転セ
クタの構成説明図で、イは正面図、ロは平面図、
第6図は本考案の一実施例による水分計の信号変
換器の構成説明図である。 40…回転セクタ、41…板、42,43…光
学フイルタ、44〜47…幅の狭い切欠部、48
…幅の広い切欠部、60…フオトインタラプタ、
TM…タイマ、CO…カウンタ、DE…デコーダ、
GE…ゲート、MM…ワンシヨツトマルチバイブ
レータ。
Fig. 1 is an explanatory diagram of the configuration of the conventional device, and Fig. 2 A, B, and C represent the A, Ro, and H parts in Fig. 1.
3 is a time chart of signals in the conventional device shown in FIG. 1, and FIG. 4 is a time chart of signals in a moisture meter according to an embodiment of the present invention.
FIG. 5 is an explanatory diagram of the configuration of a rotating sector of a moisture meter according to an embodiment of the present invention, in which A is a front view, B is a plan view, and FIG.
FIG. 6 is an explanatory diagram of the configuration of a signal converter of a moisture meter according to an embodiment of the present invention. 40... Rotating sector, 41... Plate, 42, 43... Optical filter, 44-47... Narrow notch, 48
...wide notch, 60...photo interrupter,
TM...Timer, CO...Counter, DE...Decoder,
GE...Gate, MM...One-shot multivibrator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 上ヘツドと下ヘツドとを対向配置し、上・下ヘ
ツドの間隙にシート状被測定体を流し、前記上ヘ
ツドに、光源と、波長領域の異なる光を選択的に
透過させる複数の光学フイルタが設けられ周縁部
に前記光学フイルタが照射窓上にあるとき同期信
号を発生させる切欠を設けた回転セクタと、前記
切欠を検出するフオトインタラプタとを設け、前
記下ヘツドに、前記上ヘツドからの照射光に基き
前記シート状被測定体で透過・散乱した入射光を
検出するセンサと、AGC回路及び直流阻止コン
デンサを含む信号検出部とを設け、前記センサよ
り時系列に与えられる検出信号を前記コンデンサ
に与えて直流分を除去し、前記同期信号を用いて
このコンデンサを通過した交流信号から信号成分
を分離しこれら信号成分に基き演算により前記被
測定体中の水分量を求めると共に、前記信号成分
中の基準信号に基きこの信号が一定になるように
前記AGC回路を制御し、前記直流阻止コンデン
サを一定周期で基準電位に接続しベース補償する
ようにした測定装置において、前記回転セクタの
周縁部の同期信号発生用の切欠の間にこれら切欠
より幅広の切欠を形成し、前記回転セクタ1回転
に付き1個の幅広パルス信号と照射状態に同期し
た幅の狭い複数の同期信号とからなる時系列信号
を発生させ、この時系列信号をワンシヨツトマル
チバイブレータと論理回路とを含むタイマに加
え、前記幅広のパスルが加えられたときこの幅広
パルスより狭く前記同期信号より幅の広いパルス
信号を発生させ、このパルス信号と前記時系列信
号との論理によつて前記幅広パルス信号に同期し
た信号を生成し、この信号に基き前記直流阻止コ
ンデンサのベース補償を行なうようにしたことを
特徴とする測定装置。
An upper head and a lower head are arranged facing each other, a sheet-like object to be measured is passed through the gap between the upper and lower heads, and a light source and a plurality of optical filters that selectively transmit light in different wavelength ranges are installed in the upper head. A rotary sector is provided with a notch provided on the peripheral edge thereof to generate a synchronization signal when the optical filter is on the irradiation window, and a photo interrupter for detecting the notch, and the lower head is provided with a rotary sector that is provided with a notch that generates a synchronization signal when the optical filter is on the irradiation window. A sensor for detecting incident light transmitted and scattered by the sheet-like object to be measured based on light, and a signal detection section including an AGC circuit and a DC blocking capacitor are provided, and a detection signal given in time series by the sensor is transmitted to the capacitor. The signal component is separated from the AC signal that passed through this capacitor using the synchronization signal, and the water content in the object to be measured is determined by calculation based on these signal components. In the measuring device, the AGC circuit is controlled based on a reference signal in the rotating sector so that this signal becomes constant, and the DC blocking capacitor is connected to a reference potential at a constant cycle for base compensation. A notch wider than these notches is formed between the notches for generating a synchronization signal, and each revolution of the rotation sector consists of one wide pulse signal and a plurality of narrow synchronization signals synchronized with the irradiation state. generating a series signal and applying the time series signal to a timer including a one-shot multivibrator and a logic circuit to generate a pulse signal narrower than the wide pulse and wider than the synchronization signal when the wide pulse is applied; A signal synchronized with the wide pulse signal is generated by logic between the pulse signal and the time series signal, and base compensation of the DC blocking capacitor is performed based on this signal. Device.
JP8776680U 1980-06-23 1980-06-23 Expired JPS6336263Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8776680U JPS6336263Y2 (en) 1980-06-23 1980-06-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8776680U JPS6336263Y2 (en) 1980-06-23 1980-06-23

Publications (2)

Publication Number Publication Date
JPS5716851U JPS5716851U (en) 1982-01-28
JPS6336263Y2 true JPS6336263Y2 (en) 1988-09-27

Family

ID=29449867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8776680U Expired JPS6336263Y2 (en) 1980-06-23 1980-06-23

Country Status (1)

Country Link
JP (1) JPS6336263Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055660U (en) * 1983-09-22 1985-04-18 山下 義久 Protective sheet for concrete panels, etc.

Also Published As

Publication number Publication date
JPS5716851U (en) 1982-01-28

Similar Documents

Publication Publication Date Title
US3857641A (en) Optical measuring apparatus
US3917957A (en) Transmissometer
US4798703A (en) Photometric apparatus in automatic chemical analyzer
JPS6336263Y2 (en)
KR940020121A (en) Signal detection method and phase modulation degree detection method
JPS6123932A (en) Measurement system for load quantity
JPS57204409A (en) Intercar distance measuring device
JPS598163Y2 (en) Edge position detection device
SU1087851A1 (en) Moisture method
SU1010460A1 (en) Device for measuring micro dimensions
SU1355869A1 (en) Device for measuring thickness of thin film on transparent backing
USRE27270E (en) Null type comparison eeflectometer wherein nulling is accomplished by moving the light detector
SU1583975A1 (en) Device for read-out of information from photographic sound track of cinematograph film
SU796656A1 (en) Device for measuring long object width
SU1170289A1 (en) Photometer
JPS6052852A (en) Device for controlling exposure
KR840002010Y1 (en) The coefficient multipler control circuit of the watt-hour meter
JPH0212562Y2 (en)
JPH0536202Y2 (en)
JPH0119112Y2 (en)
SU1101743A1 (en) Device for determination of speed non-uniformity in the limits of one shaft turn
JPS63279104A (en) Pinhole detector
RU1792642C (en) Device for measuring volume of gas flow
JPH0519650B2 (en)
SU1631311A1 (en) Device for determining linearity limit of photodetector