JPS6335715B2 - - Google Patents
Info
- Publication number
- JPS6335715B2 JPS6335715B2 JP56043223A JP4322381A JPS6335715B2 JP S6335715 B2 JPS6335715 B2 JP S6335715B2 JP 56043223 A JP56043223 A JP 56043223A JP 4322381 A JP4322381 A JP 4322381A JP S6335715 B2 JPS6335715 B2 JP S6335715B2
- Authority
- JP
- Japan
- Prior art keywords
- anode
- galvanic anode
- thin plate
- shaped
- galvanic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 239000010405 anode material Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000004210 cathodic protection Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Description
【発明の詳細な説明】
本発明は、各種貯槽底板外面、土中埋設貯槽外
面、管路外面等を防食するための電気防食用薄形
板状流電陽極に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin plate-shaped galvanic anode for cathodic protection for corrosion-protecting the outer surface of various storage tank bottom plates, the outer surface of underground storage tanks, the outer surface of pipelines, etc.
一般に、電気防食に使用する流電陽極は、スラ
ブ又はブロツク状であつて、被防食体との電気的
接続を長期間確保するために、陽極の中心部に鉄
鋼製の芯金を挿入して鋳込んでいる。しかし、使
用環境によつて単位容積当りの陽極表面積を大き
くして使用する必要がある場合には、0.3〜7mm
程度の厚さの流電陽極、すなわち薄形板状流電陽
極がのぞまれる。この薄形板状流電陽極は、鋳造
法によつても製造は可能であるが、薄肉のため芯
金を挿入して鋳込むことは至難であり、且つ、鋳
造でできた物は曲げ等の加工性に乏しい。 Generally, galvanic anodes used for cathodic protection have a slab or block shape, and a steel core is inserted into the center of the anode to ensure long-term electrical connection with the object to be protected. It's being cast. However, if it is necessary to increase the anode surface area per unit volume depending on the usage environment, 0.3 to 7 mm
A galvanic anode with a thickness of about 100 mL, that is, a thin plate-shaped galvanic anode, is desired. Although it is possible to manufacture this thin plate-shaped galvanic anode by the casting method, it is extremely difficult to insert a core metal and cast it due to its thin wall, and the product made by casting cannot be bent or otherwise bent. Poor processability.
これらの欠点を改良することを目的として本発
明者等は鋭意検討を行ない、芯金を取りつけた可
撓性を有する薄形板状流電陽極を開発した。流電
陽極に可撓性を与えるには金属学的に脆い鋳造組
織を破壊することであり、圧延することによつて
可能であることが一般に知られている。本発明者
達は、この圧延による薄形板状流電陽極素材を用
いることに注目した訳である。 In order to improve these drawbacks, the present inventors conducted extensive research and developed a flexible thin plate-shaped galvanic anode equipped with a metal core. It is generally known that flexibility can be imparted to galvanic anodes by breaking the metallurgically brittle cast structure, which can be achieved by rolling. The inventors of the present invention have focused on using this rolled thin plate-shaped galvanic anode material.
薄形板状流電陽極素材の特徴は、単位容積当り
の表面積を大きくすることにあり、板厚が必然的
に薄くなる。一般に0.3〜7mm厚で、多くの場合、
0.5〜3mmのものが適している。板の巾や長さは
圧延機のロール等その機構や被防食対象物によつ
て変わるが、20〜1000mm巾、多くの場合30〜600
mm巾である。長さは薄板単体で300〜1500mm、あ
るいは長尺コイル状にして適宜対象物に合わせて
切断して用いる。 The characteristic of the thin plate-shaped galvanic anode material is that it has a large surface area per unit volume, which inevitably results in a thin plate. Generally 0.3-7mm thick, often
0.5 to 3 mm is suitable. The width and length of the plate varies depending on the mechanism such as rolling mill rolls and the object to be protected, but it is 20 to 1000 mm wide, and in most cases 30 to 600 mm wide.
It is mm wide. The length of a single thin plate is 300 to 1500 mm, or it can be made into a long coil and cut to suit the object.
単位容積当りの表面積を大きくする理由は、陽
極の分極を小さくするために極力陽極電流密度を
少さくする一方、陽極1枚当りの発生電流を大き
くし加えて長寿命を計るためである。すなわち流
電陽極の具備すべき条件としては、陽分極が小さ
く、発生電流が大きく長寿命であることが必要で
ある。陽極の材質としては亜鉛、アルミニウム、
マグネシウムおよびこれらの合金が用いられる。
材質が定まり使用環境が判明すると、上記の条件
は陽極の形状、大きさに左右される。ここに陽極
の肉厚を薄くして表面積を大きくする理由があ
る。 The reason for increasing the surface area per unit volume is to reduce the anode current density as much as possible in order to reduce polarization of the anode, and at the same time to increase the current generated per anode to increase the lifetime. In other words, the conditions that a galvanic anode must meet are that it has small anodic polarization, a large generated current, and a long life. The material of the anode is zinc, aluminum,
Magnesium and alloys thereof are used.
Once the material is determined and the usage environment is determined, the above conditions will depend on the shape and size of the anode. This is the reason why the anode is made thinner to increase its surface area.
しかし、他方において電気防食用の流電陽極で
あるから、被防食対象物との完全な電気的接続、
すなわち電池回路を確保させなくてはならない。
前述の如くスラブまたはブロツク状陽極では、芯
金(多くの場合亜鉛メツキした鉄鋼)を挿入して
鋳込むことができるので、被防食体に芯金を回し
てボルト締めあるいは溶接等によつて電池回路を
作ることができる。しかし、かかる芯金を薄形板
状流電陽極素材に挿入することが事実上難しく、
生産性が悪く、コスト的に見合わない。 However, on the other hand, since it is a galvanic anode for cathodic protection, it has a complete electrical connection with the object to be protected.
In other words, the battery circuit must be secured.
As mentioned above, with slab or block-shaped anodes, the core metal (often galvanized steel) can be inserted and cast, so the core metal is passed around the object to be protected and the battery is secured by bolting or welding. You can make circuits. However, it is practically difficult to insert such a core into a thin plate-shaped galvanic anode material.
Productivity is poor and cost is not worth it.
薄形板状流電陽極がその性能を効果的、経済的
に発揮するには、被防食体との電気的接続が確
実、容易であること、云い換えれば電気的回路と
なる芯金と薄形板状流電陽極素材との電気的一体
化を如何に確実容易に行わしめるかにある。ま
た、薄形板状流電陽極の一つの特徴である可撓性
を生かすことも必要である。従つて、芯金も可撓
性があり、且つ芯金の優先消耗を抑えるために電
気化学的にベースになる流電陽極素材よりも貴な
電位を有する金属体でなくてはならない。例えば
鉄鋼、銅および銅合金等の板又は条が適してい
る。芯金の寸法大きさは薄形板状流電陽極素材や
被防食対象物の大きさ等によつてかわるが、0.5
〜5mm厚、20〜50mm巾および300〜2500mm長さの
ものが多く使われる。勿論、これら芯金は圧延加
工や焼鈍によつて可撓性を計りその表面に亜鉛や
錫等のメツキを施すのがよい。 In order for a thin plate-shaped galvanic anode to effectively and economically demonstrate its performance, the electrical connection with the object to be protected must be reliable and easy. The problem lies in how to ensure and easily achieve electrical integration with the plate-shaped galvanic anode material. It is also necessary to take advantage of flexibility, which is one of the characteristics of the thin plate-shaped galvanic anode. Therefore, the core metal must also be flexible and must be a metal body that has a higher potential than the galvanic anode material that is electrochemically based in order to suppress preferential wear of the core metal. For example, plates or strips of steel, copper and copper alloys are suitable. The dimensions of the core metal vary depending on the thin plate galvanic anode material and the size of the object to be corrosion protected, but it is 0.5
~5mm thick, 20~50mm wide, and 300~2500mm long are often used. Of course, it is preferable that these core metals be made flexible by rolling or annealing, and that their surfaces be plated with zinc, tin, or the like.
それらの芯金と薄形板状流電陽極素材との接続
は、現地施工を考えると、スポツト溶接、ハンダ
付、ロウ付等がよく、工場的には上記板または条
状の芯金を薄形板状流電陽極と一諸に圧延、鍛接
等の圧接着によつて取付けることも可能である。
そして、これらの芯金は、ブロツクあるいはスラ
ブ状流電陽極のように陽極の断面または陽極内部
に挿入する方式ではなく、薄形板状流電陽極素材
の片側表面に露出した状態で取り付けられること
になる。それ故、芯金と陽極素材との接触近傍で
の陽極が使用中に優先溶解し、芯金と陽極素材と
の接続が不良になるおそれが多分にある。これを
防止するため、薄形板状流電陽極素材に芯金を取
り付けた後、該取付部の芯金および陽極表面にタ
ールエポキシ塗料、エポキシウレタン塗料および
その他の絶縁被覆材を用いて塗覆する。 When considering on-site construction, spot welding, soldering, brazing, etc. are recommended for connection between the core metal and the thin plate-shaped galvanic anode material.In the factory, the above-mentioned plate or strip core metal is connected thinly. It is also possible to attach it to the plate-shaped galvanic anode by pressure bonding such as rolling or forge welding.
In addition, these core metals are not inserted into the cross section of the anode or inside the anode as in block or slab galvanic anodes, but are attached in an exposed state on one surface of the thin plate-shaped galvanic anode material. become. Therefore, there is a high possibility that the anode near the contact between the core metal and the anode material will preferentially melt during use, resulting in poor connection between the core metal and the anode material. To prevent this, after attaching the core metal to the thin plate-shaped galvanic anode material, the core metal and the anode surface of the attachment part are coated with tar epoxy paint, epoxy urethane paint, or other insulating coating material. do.
かくして可撓性の流電陽極素材と芯金との接続
が確保されて薄形板状流電陽極が構成される。該
流電陽極は工場規模でも製作可能であるし、現地
施工現場においてもコイル状の薄形板状流電陽極
素材を被防食対象物に合せて適当な大きさに切断
し、芯金の取り付け、絶縁被覆処理が容易且つ確
実に行うことができるので材料や施工コストの低
減にもなり工業的経済的に有意義な薄形板状流電
陽極である。 In this way, the connection between the flexible galvanic anode material and the metal core is ensured, and a thin plate-shaped galvanic anode is constructed. The galvanic anode can be manufactured on a factory scale, and even at the construction site, the coiled thin plate galvanic anode material can be cut to an appropriate size to match the object to be protected, and the core metal can be attached. This is a thin plate-shaped galvanic anode that is industrially and economically significant because the insulation coating process can be easily and reliably performed, reducing material and construction costs.
以下第1図及びそのA−A線断面図である第2
図に基づき実施例を記すが、これによつて本発明
の薄形板状流電陽極の大きさ、取付方法および用
途を限定するものではない。 Below, Figure 1 and Figure 2, which is a sectional view taken along line A-A.
Although examples will be described based on the drawings, the size, attachment method, and application of the thin plate-shaped galvanic anode of the present invention are not limited thereby.
実施例 1
通常の溶解鋳造により50mm厚×420mm巾×650mm
長の亜鉛系流電陽極のインゴツトを作つた。この
インゴツトを加熱後、熱間圧延により4mm厚の長
尺板条にした。この板条をシエアにより4mmt×
400mmW×500mmLの板に切断後、冷間圧延で2mmt
まで圧延し2mmt×400mmW×1000mmLの薄形板状亜
鉛系流電陽極素材1を作つた。Example 1 50mm thickness x 420mm width x 650mm by normal melt casting
A long zinc-based galvanic anode ingot was made. After heating this ingot, it was hot rolled into a long plate with a thickness of 4 mm. This plate strip is sheared to 4mm t ×
After cutting into 400mm W x 500mm L plates, cold rolled to 2mmt.
A thin plate-shaped zinc-based galvanic anode material 1 with dimensions of 2 mm t × 400 mm W × 1000 mm L was produced by rolling the material.
実施例 2
実施例1で作つた薄形板状亜鉛系流電陽極素材
1の片側の表面1aに陽極素材の巾方向から長さ
方向に2.3mmt×30mmW×1500mmLの亜鉛メツキ鋼製
芯金2を2列に並べ、スポツト溶接により固定し
た。この芯金2および陽極の表面はタールエポキ
シ塗料にて絶縁被覆3した。Example 2 On one surface 1a of the thin plate-shaped zinc-based galvanic anode material 1 made in Example 1, a galvanized steel plate measuring 2.3 mm t × 30 mm W × 1500 mm L in the length direction from the width direction of the anode material was attached. The core metals 2 were arranged in two rows and fixed by spot welding. The surfaces of the core metal 2 and the anode were insulated 3 with tar epoxy paint.
実施例 3
実施例1の4mmt×400mmW×500mmLの亜鉛系流
電陽極素材1の表面に2.3mmt×30mmW×1500mmLの
黄銅条を実施例2の如く2列に並べ240〜250℃に
加熱し、圧延圧下率50%以上で圧延し、圧着によ
り黄銅芯金2と流電陽極素材1を接着せしめ2mm
t×400mmW×1000mmL薄形板状亜鉛系流電陽極を作
つた。芯金および陽極の表面はエポキシウレタン
塗料で絶縁被覆3した。Example 3 Brass strips of 2.3 mm t × 30 mm W × 1500 mm L were arranged in two rows as in Example 2 on the surface of the zinc-based galvanic anode material 1 of 4 mm t × 400 mm W × 500 mm L as in Example 1. Heating to 250℃, rolling at a rolling reduction ratio of 50% or more, and bonding the brass core 2 and galvanic anode material 1 by crimping to form a 2mm piece.
T × 400 mm W × 1000 mm L thin plate-shaped zinc-based galvanic anode was fabricated. The surfaces of the core metal and the anode were insulated with epoxy urethane paint.
実施例 4
直径8.2mの化学薬品貯槽(鋼製)の底部外面
防食のため実施例2および3で製作した薄形板状
亜鉛系流電陽極を夫々36枚合計72枚(重量410Kg)
を槽底部外面との間に石膏およびベントナイトか
らなるバツグフイルを回して敷きつめた。各陽極
は6枚を一組として槽と連結した。槽底部外面と
陽極との面積比はおよそ2対1である。施工後す
でに2.5年を経過しているが、槽の対地電位は鉄
鋼の防食電位である−0.8Vの(飽和甘汞電極基
準)よりも卑な−0.85〜−0.94Vを示し防食状態
にあることを示している。Example 4 To prevent corrosion on the bottom outer surface of a chemical storage tank (made of steel) with a diameter of 8.2 m, a total of 72 thin plate-shaped galvanic anodes (36 pieces each) manufactured in Examples 2 and 3 (weight 410 kg) were used.
A thick foil made of gypsum and bentonite was laid between the bottom and the outer surface of the tank. Each anode was connected to a tank in a set of six. The area ratio between the outer surface of the tank bottom and the anode is approximately 2:1. Although 2.5 years have already passed since construction, the potential to the ground of the tank is -0.85 to -0.94V, which is lower than the anticorrosion potential of steel, which is -0.8V (standard for saturated Amane electrodes), and is in a corrosion-proof state. It is shown that.
また、1年毎に槽底部のアニユラ板による板厚
測定から腐食率を求めているが、2ケ年経過後、
本発明薄形板状流電陽極を使用する前に比して
1/20〜1/50に減少していることがわかつた。 In addition, the corrosion rate is calculated every year by measuring the thickness of the annular plate at the bottom of the tank, but after two years,
It was found that the reduction was 1/20 to 1/50 compared to before using the thin plate-shaped galvanic anode of the present invention.
第1図は本発明の実施例を示す斜視図、第2図
はそのA−A線断面図である。
図面中、1は流電陽極素材、1aは表面、2は
芯金、3は絶縁被覆である。
FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along line A--A. In the drawings, 1 is a galvanic anode material, 1a is a surface, 2 is a metal core, and 3 is an insulating coating.
Claims (1)
する金属板を取付けて芯金とし、更に流電陽極素
材及び芯金の表面に絶縁被覆を施したことを特徴
とする薄形板状流電陽極。1. A thin plate-shaped galvanic anode material, which is characterized by having a flexible metal plate attached to the surface thereof to serve as a core metal, and further having an insulating coating applied to the surfaces of the galvanic anode material and the core metal. Plate galvanic anode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56043223A JPS57158385A (en) | 1981-03-26 | 1981-03-26 | Sheetlike galvanic anode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56043223A JPS57158385A (en) | 1981-03-26 | 1981-03-26 | Sheetlike galvanic anode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57158385A JPS57158385A (en) | 1982-09-30 |
JPS6335715B2 true JPS6335715B2 (en) | 1988-07-15 |
Family
ID=12657908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56043223A Granted JPS57158385A (en) | 1981-03-26 | 1981-03-26 | Sheetlike galvanic anode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57158385A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6257110B1 (en) * | 2016-09-02 | 2018-01-10 | 日本防蝕工業株式会社 | Galvanic anode for cathodic protection |
-
1981
- 1981-03-26 JP JP56043223A patent/JPS57158385A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57158385A (en) | 1982-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3226314A (en) | Sacrificial zinc anode | |
US5853553A (en) | Sacrificial anode and method of making same | |
US3001924A (en) | Sacrificial magnesium anodes | |
JPS6335715B2 (en) | ||
CN205115606U (en) | Compound sacrificial anode of magnesium aluminium | |
US4187164A (en) | Anode | |
US4855027A (en) | Carbosil anodes | |
US3817852A (en) | Zinc-steel sacrificial anode ground rod | |
US3904378A (en) | Steel clad stainless composite article | |
US4468310A (en) | Aluminum marine anode with core activator | |
JP3503573B2 (en) | Corrosion protection method for base post type aluminum facility | |
SU1719463A1 (en) | Method of cathodic protection of tank bottom | |
JP3798189B2 (en) | Repair method for concrete structures | |
JPS609243Y2 (en) | galvanic anode | |
US2756204A (en) | Devices for cathodic protection of metallic structures | |
JP3641550B2 (en) | Curled galvanic anode and steel pipe with built-in it | |
JPH048514B2 (en) | ||
CN201317811Y (en) | Large tonnage magnesium aluminum zinc anode | |
JPH09157782A (en) | Magnesium alloy for galvanic anode | |
JPS6319327Y2 (en) | ||
JPH08199279A (en) | Aluminum alloy for thermal spraying | |
JP2001064788A (en) | Corrosion-protective method of metal surface in contact with flowing water of water film | |
GB1412836A (en) | Method of making a composite structure including a precious metal on a cored film-forming metal substrate | |
KR0178089B1 (en) | Sacrificial anode for electric anti-corrosion and its manufacturing method | |
JPS616286A (en) | Sacrificial anode for corrosion prevention |