JPS6335680B2 - - Google Patents

Info

Publication number
JPS6335680B2
JPS6335680B2 JP56130364A JP13036481A JPS6335680B2 JP S6335680 B2 JPS6335680 B2 JP S6335680B2 JP 56130364 A JP56130364 A JP 56130364A JP 13036481 A JP13036481 A JP 13036481A JP S6335680 B2 JPS6335680 B2 JP S6335680B2
Authority
JP
Japan
Prior art keywords
halogen
flame retardant
flame
compositions
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56130364A
Other languages
Japanese (ja)
Other versions
JPS57151672A (en
Inventor
Erutsudo Betsutsu Josefu
Furanku Horabu Furetsudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS57151672A publication Critical patent/JPS57151672A/en
Publication of JPS6335680B2 publication Critical patent/JPS6335680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Fireproofing Substances (AREA)
  • Inorganic Insulating Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

極めて極性の高い組成物あるいは材料は、典型
的な誘電性電気絶縁性組成物又はそのコンパウン
ドの電気的特性、例えば、絶縁抵抗並びに絶縁強
度に対して決定的で厳しい損傷的作用を及ぼすこ
とが永年にわたつて知られてきた。この電気的特
性に対する顕著な損傷作用によつて、多くの種類
の誘電電気絶縁性材料に、極性の高い特徴を持つ
た火炎遅延剤の如き多くの通常の添加剤又は薬剤
を添加ないし使用することに、重大な障害ないし
は絶対的阻害が生じていた。 従つて、こうした理由から、多くの効果性が高
い市販の火炎遅延剤を誘電電気絶縁性材料あるい
はその製品に利用できなかつたり、あるいはこう
した極性の高い火炎遅延添加剤の量又は割合が望
みの特性を他の特性に対して妥協せしめ補完せし
めるよう削減され制限を受けており、この為、か
かる火炎遅延剤の潜在的効果性が減少しこうした
添加剤を使つた電気絶縁性材料や製品にさもなく
ば得られるところの火炎ないしは燃焼に対する抵
抗水準が目立つて低下を受けることとなる。 本発明は電気絶縁性重合体コンパウンド中に使
う為の極性添加剤を熱反応性のシリコーン液体で
処理してかかる極性添加剤を含んだ重合体コンパ
ウンドの電気的特性を向上せしめること、並びに
熱反応性のシリコーン液体で処理された極性添加
剤を含有した重合体電気絶縁物から成る電気的特
性の向上した製品に係わる。従つて、本発明は極
性充填剤又か添加剤を含有した良好な電気的特性
の電気絶縁重合体コンパウンドに関し、殊にハロ
ゲン含有火炎遅延剤を含み良好な電気的特性並び
に高度な火炎及び燃焼抵抗性を備えた重合体の電
気的絶縁物又はそのコンパウンドに係わる。 本発明の方法により、重合体材料又はコンパウ
ンドより成り、ハロゲン含有火炎遅延剤又は組成
物を含んだ電気特性の著しく改善された電気絶縁
物が製造され、この方法は、極性の高い成分を熱
反応性のシリコーン液組成物による前処理にか
け、即ちこの極性成分をシリコーン液と共に加熱
し、次いで極性成分を重合体物質又は重合体コン
パウンドの諸成分と組み合わせることからなつて
いる。 本発明はゴム又はエラストマーの如き既知かつ
現在使用の重合体組成物並びに電気的絶縁用途に
使うのに適した新規に開発された重合体組成物に
適用しうるが、本発明は殊に電気的絶縁に対し特
異な属性を備え該用途に広範囲にわたり使われて
いるところからポリオレフイン重合体を含んだ重
合体絶縁物に係わる。 本発明の実施に使用できるポリオレフイン重合
体物質は、エチレン含有重合体例えばポリエチレ
ン、エチレンと他の重合性物質との共重合体及び
に共重合体をば含めたかかる重合体類の配合物を
含む。エチレンの代表的な共重合体には例えばエ
チレン―プロピレン共重合体、エチレン―アクリ
ル酸エチル共重合体及びエチレン―アクリル酸メ
チル共重合体が含まれる。 本発明の火炎抵抗性のポリオレフイン重合体又
はそのコンパウンドには更に、充填剤例えば、増
容性成分又は補強性成分例えばシリカ、粘土又は
繊維、顔料、硬化用協働剤、及び他の慣用の添加
剤例えば保護(防腐)剤、例えば抗酸化剤、変性
剤例えば可塑剤、処理助剤、離型成分、あるいは
潤滑剤、並びにポリオレフイン重合体又はこれよ
り形成される代表的な製品例えば電気絶縁物と通
常コンパウンドされる同等物が含有される。 本発明は又殊に、架橋硬化され熱硬化された状
態の上記ポリオレフイン類全てに適用され従つて
これ等全てを包含するものであつて、この熱硬化
は例えば電子による等の高エネルギ照射によるか
又は米国特許第2888424号、同第3079370号、同第
3086966号及び同第3214422号に開示されている如
き熱活性化可能な有機過酸化物架橋剤によつて為
される。適当な過酸化物架橋硬化剤は、構造式 を少なくとも1単位有すことを特徴とする有機第
三ペルオキシドを含み、約146℃(295〓)より高
い温度で分解して遊離基を提供する。ポリオレフ
イン類を硬化するのに好ましい過酸化物はジ―α
―クミルペルオキシド、並びに第三ジペルオキシ
ド例えば2,5―ジメチル―2,4―ジ(t―ブ
チルペルオキシ)ヘキサンや2,5―ジメチル―
2,4―ジ(t―ブチルペルオキシ)ヘキシン―
3及び類似のジペルオキシ及びポリペルオキシド
化合物を含めた他の適当なペルオキシドである。 本発明の実施に使われる極性の高い火炎遅延剤
は、米国特許第2480298号、同第3340226号、同第
3582518号、同第3705128号、同第3740245号及び
同第3741893号のハロゲン化炭化水素を含めた今
までに使われてきたハロゲン含有組成物又は試剤
のどれでもよい。 例えば、火炎抵抗の目的に慣用されてきたハロ
ゲン化炭化水素には、塩素化パラフイン、塩素化
プロパン、塩素化プロピレン、ヘキサクロロエタ
ン、塩素化ポリテン、塩化ポリイソブチレン、ポ
リ塩化ビニル、ポリ塩化ビニリデン、後塩素化ポ
リ塩化ビニル、塩素化ポリフエニル、塩素化ナフ
タレン、ヘキサクロロベンゼン、塩素化インデ
ン、塩素化ポリスチレン、塩素化ジフエニルアル
カン、並びにこれ等の臭素化あるいは他のハロゲ
ン化同等物例えばヘキサブロモビフエニル、デカ
ブロモビフエニルあるいはデカブロモビフエニル
オキシドが含まれる。従来からのハロゲン化炭化
水素に含まれるものには又、専売品のハロゲン化
火炎遅延剤例えばHooker Chemical Company
のDechlorane Plus515,Diamond Alkali
CompanyのChlorowax,及び類似の製品もある。 ハロゲンを基質とする火炎遅延剤又は組成物の
使用に於いて慣用的になつている如く、酸化アン
チモン又は同等な作用をする酸化金属をハロゲン
含有火炎遅延剤と共に含ませて周知の火炎抵抗系
を提供できる。ハロゲン含有火炎遅延剤及び/又
は酸化アンチモンあるいはその同等物を慣用の量
又は割合で使つて必要とされるか望まれる程度の
火炎又は燃焼に対する抵抗を得ることができる。 本発明の熱反応性シリコーン液は多官能性メチ
ルシリコーン類の組合せ、即ち、主要量のジメチ
ルシラノールと少量のメチルシラノールの配合物
であり、例えば、メチルシラントリオール約5〜
約25モル%とジメチルシランジオール約95〜約75
モル%から成る。 多官能性即ちポリオールのジメチルシラノール
とメチルシラノールの配合物は昇温例えば約150
℃好ましくはそれ以上あるいは約175℃に数時間
さらすと反応又は硬化する。加熱時間は処理を受
けている物質の全体の温度をシリコーンの反応を
導くのに十分な時間にわたり上記の温度レベルに
上昇させるのに十分でなければならない。 多官能性シラノール液の配合物の適当な量は、
これに組み合わせる物質の少なくとも約1重量
%、好ましくは約2%から約5重量%までであ
る。 本発明の実施に含ませうる追加の随意成分には
鉛化合物例えば二塩基性フタル酸鉛、シリコーン
ガム及びフユームドシリカがある。 適当なシリコーンガムはゴム質の弾性でほとん
ど固体の状態の高分子量重合体に縮合されたガム
又はオルガノポリシロキサンである。例えば、本
発明の組成物に使われる典型的なシリコーンエラ
ストマーは次の化学構造を有する群のジメチルポ
リシロキサン類である。 本発明に使われる他の群のシリコーンエラスト
マー類は、メチル―フエニルポリシロキサン、及
び少量のビニル基を含んだかかるシリコーン類で
ある。本発明の組成物を得るのに使用できる種類
のシリコーンエラストマーの例には更に、米国特
許第2888424号及び同第2888419号に言及されてい
るオルガノポリシロキサンがあり、これは米国特
許第2448556号、同第2448756号、同第2457688号、
同第2484595号、同第2490357号、同第2521528号、
同第2541137号、同第3098836号及び同第3341489
号に詳しく示されている。かかる高分子量重合体
は通常25℃で約100000センチポイズ以上のブルツ
クフイールド粘度を有する。 フユームドシリカは米国特許第2888424号に記
載された形態のシリカを言い、マサチユセツツ
州、ボストン市所在のGodfrey L.Cabot,Inc.,
のCabosil MS7の商品名で市販されているタイ
プのものである。 本発明の方法及び製品についての以下の実施
例、及び比較の規準としての実質的に同等な組成
物に対して比較した評価とデータとにより、本発
明の新規な方法により改善された電気的特性並び
に他の有益な特性をば例証する。本発明の実施例
と標準例の絶縁性組成物は全て重量部で与えられ
ており、本発明の実施例並びに各標準例の組成物
を同一の条件下にてそれぞれ架橋硬化し試験し評
価した。 本発明の実施例並びに標準例の種々の組成物の
火炎及び燃焼に対する相対的抵抗度を米国特許第
3755214号及び同第2787356号に記載の如き
ASTM Test Method D―2863―70に規定され
た酸素指数試験法に従つて全て測定した。既に知
られているとおり、この試験は試験試料物質の火
炎を丁度維持するのに要する窒素中の酸素の割合
(容量分率)を示す。従つて、ある組成物に対し
て酸素指数が高い程、火炎及び燃焼に対する抵抗
が良いこととなる。 本発明に従えば、臭素化組成物を含んだ諸成分
の組合せの火炎遅延系は以下に示すようにして前
処理に付される。 火炎遅延系を提供する諸成分、即ち、極性の高
いハロゲン組成物と、系の諸成分の前処理に使わ
れる多官能性シリコーン液との組合せ、並びに諸
成分の相対的重量割合は次のとおりである。
Highly polar compositions or materials have long been known to have a decisive and severe damaging effect on the electrical properties, such as insulation resistance and dielectric strength, of typical dielectric electrically insulating compositions or compounds thereof. It has been known for a long time. This significant damaging effect on electrical properties has led to the addition or use of many conventional additives or agents, such as flame retardants with highly polar characteristics, in many types of dielectric electrically insulating materials. Significant or absolute obstacles had arisen. Therefore, for these reasons, many highly effective commercially available flame retardants cannot be used in dielectric electrically insulating materials or products thereof, or the amounts or proportions of these highly polar flame retardant additives may not be suitable for the desired properties. The potential effectiveness of such flame retardants is reduced and electrically insulating materials and products using such additives are subject to limitations that compromise and complement other properties. The level of resistance to flame or combustion that would otherwise be obtained would be markedly reduced. The present invention involves treating polar additives for use in electrically insulating polymeric compounds with a thermally reactive silicone fluid to improve the electrical properties of polymeric compounds containing such polar additives, and The present invention relates to products with improved electrical properties consisting of polymeric electrical insulators containing polar additives treated with polar silicone fluids. Accordingly, the present invention relates to electrically insulating polymeric compounds with good electrical properties containing polar fillers or additives, in particular halogen-containing flame retardants, with good electrical properties and high flame and combustion resistance. It relates to polymer electrical insulators or compounds thereof. The method of the present invention produces electrical insulation with significantly improved electrical properties comprising a polymeric material or compound containing a halogen-containing flame retardant or composition; The polar component is heated with the silicone fluid and then combined with the components of the polymeric material or compound. Although the present invention is applicable to known and currently used polymer compositions such as rubbers or elastomers, as well as newly developed polymer compositions suitable for use in electrical insulation applications, the present invention is particularly applicable to electrical insulation applications. The present invention relates to polymeric insulators containing polyolefin polymers because they have unique properties for insulation and are widely used in such applications. Polyolefin polymeric materials that can be used in the practice of this invention include ethylene-containing polymers such as polyethylene, copolymers of ethylene and other polymerizable materials, and blends of such polymers, including copolymers. . Representative copolymers of ethylene include, for example, ethylene-propylene copolymers, ethylene-ethyl acrylate copolymers, and ethylene-methyl acrylate copolymers. The flame-resistant polyolefin polymers or compounds thereof according to the invention may further contain fillers such as bulking or reinforcing ingredients such as silica, clays or fibers, pigments, curing co-operative agents, and other customary additions. agents, such as protective (preservative) agents, such as antioxidants, modifiers, such as plasticizers, processing aids, mold release components, or lubricants, as well as polyolefin polymers or typical products formed therefrom, such as electrical insulation. Usually compounded equivalents are included. The present invention also particularly applies to, and thus includes, all of the polyolefins mentioned above in their crosslinked and thermoset state, the thermosetting being carried out by high energy irradiation, e.g. by electrons. or U.S. Patent No. 2888424, U.S. Patent No. 3079370, U.S. Patent No.
3086966 and 3214422 with heat activatable organic peroxide crosslinking agents. Suitable peroxide crosslinking curing agents have the structural formula decomposes to provide free radicals at temperatures above about 146°C (295°C). The preferred peroxide for curing polyolefins is di-α.
-cumyl peroxide, as well as tertiary diperoxides such as 2,5-dimethyl-2,4-di(t-butylperoxy)hexane and 2,5-dimethyl-
2,4-di(t-butylperoxy)hexyne-
3 and similar diperoxy and polyperoxide compounds. The highly polar flame retardants used in the practice of this invention include U.S. Pat.
Any of the halogen-containing compositions or agents used heretofore may be used, including the halogenated hydrocarbons of No. 3582518, No. 3705128, No. 3740245, and No. 3741893. For example, halogenated hydrocarbons that have been commonly used for flame resistance purposes include chlorinated paraffin, chlorinated propane, chlorinated propylene, hexachloroethane, chlorinated polythene, chlorinated polyisobutylene, polyvinyl chloride, polyvinylidene chloride, Chlorinated polyvinyl chloride, chlorinated polyphenyl, chlorinated naphthalene, hexachlorobenzene, chlorinated indene, chlorinated polystyrene, chlorinated diphenylalkane, and their brominated or other halogenated equivalents such as hexabromobiphenyl, Includes decabromobiphenyl or decabromobiphenyl oxide. Conventional halogenated hydrocarbons also include proprietary halogenated flame retardants such as Hooker Chemical Company
Dechlorane Plus515,Diamond Alkali
Company's Chlorowax, and similar products. As is customary in the use of halogen-based flame retardants or compositions, antimony oxide or an equivalent metal oxide may be included with the halogen-containing flame retardant to provide a well-known flame retardant system. Can be provided. Halogen-containing flame retardants and/or antimony oxide or the like can be used in conventional amounts or proportions to provide the degree of flame or combustion resistance needed or desired. The thermoresponsive silicone fluid of the present invention is a combination of polyfunctional methylsilicones, i.e., a major amount of dimethylsilanol and a minor amount of methylsilanol, e.g.
about 25 mole% and about 95 to about 75 dimethylsilanediol
Consisting of mole%. Blends of polyfunctional, i.e. polyol, dimethylsilanol and methylsilanol can be heated e.g.
C. Preferably above or about 175.degree. C. for several hours to react or cure. The heating time must be sufficient to raise the overall temperature of the material undergoing treatment to the above temperature level for a sufficient period of time to induce reaction of the silicone. A suitable amount of the polyfunctional silanol liquid formulation is
At least about 1%, preferably from about 2% to about 5% by weight of the combined materials. Additional optional ingredients that may be included in the practice of this invention include lead compounds such as dibasic lead phthalates, silicone gums, and fumed silica. Suitable silicone gums are gums or organopolysiloxanes condensed to rubbery, elastic, nearly solid state high molecular weight polymers. For example, typical silicone elastomers used in the compositions of the present invention are dimethylpolysiloxanes of the group having the chemical structure: Another group of silicone elastomers used in this invention are methyl-phenylpolysiloxanes and such silicones containing small amounts of vinyl groups. Further examples of silicone elastomers of the type that can be used to obtain the compositions of the invention include the organopolysiloxanes mentioned in U.S. Pat. Nos. 2,888,424 and 2,888,419; Same No. 2448756, Same No. 2457688,
Same No. 2484595, Same No. 2490357, Same No. 2521528,
Same No. 2541137, No. 3098836 and No. 3341489
Details are shown in the issue. Such high molecular weight polymers typically have a Bruckfield viscosity of about 100,000 centipoise or greater at 25°C. Fuyumed silica refers to the form of silica described in U.S. Pat. No. 2,888,424, manufactured by Godfrey L. Cabot, Inc., Boston, Mass.
This type is commercially available under the trade name Cabosil MS7. The following examples of the methods and products of the present invention, and evaluations and data compared to substantially equivalent compositions as a basis of comparison, demonstrate the improved electrical properties of the novel methods of the present invention. as well as other beneficial properties. The insulating compositions of Examples and Standard Examples of the present invention are all given in parts by weight, and the compositions of Examples and Standard Examples of the present invention were crosslinked and cured under the same conditions, tested, and evaluated. . The relative resistance to flame and combustion of various compositions of the Examples and Standards of the Invention are shown in U.S. Pat.
As described in No. 3755214 and No. 2787356
All measurements were made in accordance with the oxygen index test method specified in ASTM Test Method D-2863-70. As already known, this test indicates the proportion of oxygen in nitrogen (volume fraction) required to just maintain a flame in the test sample material. Therefore, the higher the oxygen index for a given composition, the better its resistance to flame and combustion. In accordance with the present invention, a flame retardation system of combinations of components including a brominated composition is pretreated as described below. The combination of the components providing the flame retardation system, i.e. the highly polar halogen composition and the polyfunctional silicone fluid used to pre-treat the components of the system, and the relative weight proportions of the components are as follows: It is.

【表】 上記のシリコーン液はメチルシラントリオール
約7モル%及びジメチルシランジオール約93モル
%から成つていた。 極性の高い試剤を含んだ火炎遅延剤系より成る
上記諸成分を熱反応性シリコーン液で前処理し
た。即ち、適当な混合装置中にて上掲の系諸成分
混合物に上記のシリコーン液を加えて効果的に分
散させ、次いで分散されたシリコーン及び諸成分
の生成混合物を加熱しシリコーン液の反応をもた
らした。この場合、生成混合物は約190℃(375
〓)にて略16時間オープン処理した。 上記の量にてデカブロモジフエニルエーテル、
酸化アンチモン及びフユームドシリカを含んだ火
炎遅延系のシリコーン液で前処理を受けた生成成
分を以下の架橋硬化性ポリエチレン電気絶縁用コ
ンパウンドに混入した。全ての成分は重量基準で
与えられている。比較の為、火炎遅延系の諸成分
がシリコーン液で前処理されていない点を除き実
質的に同一組成(全成分は重量基準で与えられて
いる)の組成物も用意した。前処理工程並びにそ
の為に使われた約1.5重量部のシリコーン液を除
き、本発明の実施例及び標準例の絶縁用コンパウ
ンドの調製に於けるあらゆる操作又は工程は同一
であつた。
Table: The above silicone fluid consisted of about 7 mole percent methylsilane triol and about 93 mole percent dimethylsilane diol. The components, consisting of a flame retardant system containing highly polar reagents, were pretreated with a thermally reactive silicone fluid. That is, the above-mentioned silicone liquid is added to the above-mentioned system component mixture in a suitable mixing device to effectively disperse it, and then the resultant mixture of the dispersed silicone and various components is heated to bring about a reaction of the silicone liquid. Ta. In this case, the product mixture is approximately 190°C (375
〓) for approximately 16 hours. Decabromodiphenyl ether in the above amounts,
The product components, pretreated with a flame retardant silicone fluid containing antimony oxide and fumed silica, were incorporated into the following crosslinked curable polyethylene electrical insulation compound. All ingredients are given on a weight basis. For comparison purposes, compositions were also prepared with substantially the same composition (all components given on a weight basis) except that the components of the flame retardation system were not pretreated with a silicone fluid. Except for the pretreatment step and the approximately 1.5 parts by weight of silicone fluid used therefor, all operations or steps in the preparation of the insulating compounds of the Examples and Standards of the Invention were identical.

【表】 剤
前処理してない火炎遅延剤を含んだ標準例のコ
ンパウンド、及び前処理した火炎遅延剤を含んだ
本発明のコンパウンド、より成る前記の各組成物
のポリエチレン電気絶縁用組成物を、電線上に同
じ厚さで、絶縁物の架橋硬化を含めたあらゆる面
で同一の条件下にて押し出した。 前記両組成物で絶縁された電線の同様の試料に
ついて、以下のとおり同一の試験条件、試験法及
び評価に付した。 試料全てを“冷却材損失事故”)、いわゆる
“LOCA”試験(IEEE規準323―1974)にかけた。
この試験は原子炉装置内で潜在的に遭遇の恐れあ
る侵食的条件を模似したものである。この試験は
高温・高圧下で加圧室内に絶縁電線試料を110日
間置いてからこの試料に水を噴霧することから成
る。 標準例及び本発明の両者に対する電線試料の電
気絶縁物の電気的並びにその他の特性は次のとお
りであつた。
[Table] Agents Polyethylene electrical insulation compositions of each of the above compositions, consisting of a standard example compound containing an unpretreated flame retardant and a compound of the present invention containing a pretreated flame retardant. , extruded onto wires to the same thickness and under identical conditions in all respects, including crosslinking and curing of the insulation. Similar samples of electric wires insulated with both of the above compositions were subjected to the same test conditions, test methods, and evaluations as follows. All samples were subjected to the "Loss of Coolant Accident"), so-called "LOCA" test (IEEE Standard 323-1974).
This test simulates the aggressive conditions potentially encountered within a nuclear reactor system. The test consists of placing an insulated wire sample in a pressurized chamber at high temperature and pressure for 110 days and then spraying the sample with water. The electrical and other properties of the electrical insulation of the wire samples for both the standard example and the present invention were as follows.

【表】【table】

【表】 〓
7〓14日 〓なかつた。 0.00
上に示されているとおり、本発明の架橋硬化さ
れた火炎抵抗性ポリオレフイン又はそのコンパウ
ンドは電線及びケーブルの如き導電体に対する誘
電絶縁物として殊に有用な物質である。 図には絶縁電線又はケーブル製品10の典型的
な構成が示されており、製品10は導電性金属素
子12と、該導電体の周りに延びてこれを被覆し
て上層をなす硬化重合体絶縁体14とからなつて
いる。図では、製品10は短かく切断された形で
例示されており、導体12の端部から絶縁体14
が除去されたところを示されている。本発明の一
具体例によれば、新規な本発明の火炎抵抗性ポリ
オレフインを使つて電線又はケーブル製品10の
導電性素子12上に絶縁体14を提供し形成でき
る。しかし、上記の記載から理解されるように、
絶縁物は導電性素子のいかなる部分を被覆する被
膜でもよく、絶縁物が導電性素子を完全に包囲す
ることが、望まれる絶縁効果にとつて必要とされ
ないなら、その必要はない。 本発明を或る特定の具体例について記述した
が。多くの変更が可能であり、従つて、本発明の
精神と範囲に入る変更すべてが本発明に包含され
るものである。 EM―60試験法 加硫後、絶縁導体の15フイート(4.57メート
ル)試験標本を取り、加硫後48時間以上経過して
からこの標本を水中に浸漬する。 この試験標本の中央10フイート(3.05メート
ル)を75℃±1℃に維持された水道水中に14日間
浸漬し、標本の各端21/2フイート(0.76メート ル)部分を水より上に保持し漏れを絶縁する。緊
密に合つたカバーを水面の真上に置き、標本の両
端に適当な水密ブシユを設ける。水位は一定に保
つ。 絶縁物のキヤパシタンスを1日、7日及び14日
の浸漬後、略60ヘルツ周波数にて80V/ミルの平
均応力で測定する。絶縁体の力率は1日及び14日
の浸漬後に80及び40ボルト/ミルの平均応力にて
測定する。1〜14日間のキヤパシタンスの増大及
び7〜14日間のキヤパシタンスの増大をそれぞれ
1―日値及び7―日値の百分率として表わす。力
率は0.1%の精度で表わされる。 ここに安定率は試験標本を75℃±1℃の水中に
特定時間にわたり浸漬した後の、80ボルト/ミル
の力率%と40ボルト/ミルの力率%との差であ
る。交番安定率は14日後の安定率から1日後の安
定率を差し引いたものである。 絶縁物の誘電率(比誘電率)を60ヘルツで計算
すると次のとおりである。 誘電率=13600C log10D/d ここに、Cは10フイート(3.05メートル)部分
のマイクロフアラド単位のキヤパシタンス、Dは
絶縁物上方の直径、そしてdは絶縁物下方の直径
である。
[Table] 〓
7〓14th〓No. 0.00
As indicated above, the crosslinked cured flame resistant polyolefins or compounds thereof of the present invention are particularly useful materials as dielectric insulation for electrical conductors such as wires and cables. A typical construction of an insulated wire or cable product 10 is shown in the figure, comprising a conductive metal element 12 and an overlying layer of cured polymer insulation extending around and overlying the electrical conductor. It consists of a body 14. In the figure, article 10 is illustrated in short cut form, with insulator 14 extending from the end of conductor 12.
is shown removed. In accordance with one embodiment of the present invention, the novel flame resistant polyolefins of the present invention may be used to provide and form the insulation 14 on the conductive element 12 of the wire or cable product 10. However, as understood from the above description,
The insulator may be a coating over any portion of the conductive element, and there is no need for the insulator to completely surround the conductive element unless the desired insulation effect requires it. Although the invention has been described in terms of certain specific embodiments. Many modifications are possible and are therefore intended to include all modifications that come within the spirit and scope of the invention. EM-60 Test Method After vulcanization, take a 15-foot (4.57 meter) test specimen of insulated conductor and immerse the specimen in water at least 48 hours after vulcanization. The center 10 ft (3.05 m) of this test specimen was immersed in tap water maintained at 75°C ± 1°C for 14 days, and a 21/2 ft (0.76 m) portion of each end of the specimen was held above the water to prevent leakage. Insulate. Place a tight-fitting cover directly above the water surface and provide suitable watertight bushings at each end of the specimen. Keep the water level constant. The capacitance of the insulation is measured after 1, 7, and 14 days of immersion at an average stress of 80 V/mil at approximately 60 hertz frequency. The power factor of the insulation is measured after 1 and 14 days of immersion at average stresses of 80 and 40 volts/mil. The 1-14 day capacitance increase and the 7-14 day capacitance increase are expressed as percentages of the 1-day and 7-day values, respectively. Power factor is expressed with an accuracy of 0.1%. The stability factor here is the difference between the % power factor of 80 volts/mil and the % power factor of 40 volts/mil after the test specimen is immersed in water at 75° C.±1° C. for a specified period of time. The alternation stability rate is the stability rate after 14 days minus the stability rate after 1 day. Calculating the dielectric constant (relative permittivity) of an insulator at 60 Hz is as follows. Dielectric constant = 13600C log 10 D/d where C is the capacitance in microfarads over a 10 foot (3.05 meter) section, D is the diameter above the insulation, and d is the diameter below the insulation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法により絶縁された電線又はケ
ーブル製品10を示した図である。 10…電線又はケーブル、12…導電性金属素
子、14…硬化重合体絶縁物。
The figure shows a wire or cable product 10 insulated according to the method of the present invention. DESCRIPTION OF SYMBOLS 10... Electric wire or cable, 12... Conductive metal element, 14... Cured polymer insulator.

Claims (1)

【特許請求の範囲】 1 ハロゲン含有有機化合物を含む火炎遅延剤
を、95―75モル%のジメチルシランジオールと5
―25モル%のメチルシラントリオールとの組合せ
からなる熱反応性シリコーン液で加熱処理して成
る、電気絶縁性重合体コンパウンド中に使用する
ためのハロゲン含有火炎遅延剤組成物。 2 熱反応性シリコーン液が、メチルシラントリ
オール7モル%及びジメチルシランジオール93モ
ル%から成る、特許請求の範囲第1項記載のハロ
ゲン含有火炎遅延剤組成物。 3 熱反応性シリコーン液が少なくとも150℃で
反応を起すに十分な時間にわたり加熱される特許
請求の範囲第1項又は第2項のいずれかに記載の
ハロゲン含有火炎遅延剤組成物。
[Scope of Claims] 1. A flame retardant containing a halogen-containing organic compound is mixed with 95-75 mol% dimethylsilanediol and 5
- A halogen-containing flame retardant composition for use in electrically insulating polymeric compounds heat treated with a heat-reactive silicone fluid in combination with 25 mole percent methylsilane triol. 2. The halogen-containing flame retardant composition of claim 1, wherein the heat-reactive silicone liquid consists of 7 mol% methylsilane triol and 93 mol% dimethylsilane diol. 3. A halogen-containing flame retardant composition according to any one of claims 1 or 2, wherein the thermally reactive silicone fluid is heated to at least 150°C for a sufficient time to cause a reaction.
JP56130364A 1977-07-18 1981-08-21 Flame retardant Granted JPS57151672A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81685577A 1977-07-18 1977-07-18

Publications (2)

Publication Number Publication Date
JPS57151672A JPS57151672A (en) 1982-09-18
JPS6335680B2 true JPS6335680B2 (en) 1988-07-15

Family

ID=25221785

Family Applications (2)

Application Number Title Priority Date Filing Date
JP53086207A Expired JPS587204B2 (en) 1977-07-18 1978-07-17 Modification method of insulation compound
JP56130364A Granted JPS57151672A (en) 1977-07-18 1981-08-21 Flame retardant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP53086207A Expired JPS587204B2 (en) 1977-07-18 1978-07-17 Modification method of insulation compound

Country Status (9)

Country Link
JP (2) JPS587204B2 (en)
DE (2) DE2857542C2 (en)
DK (1) DK321678A (en)
ES (2) ES471842A1 (en)
FR (1) FR2398373A1 (en)
GB (1) GB1588663A (en)
HU (1) HU179475B (en)
SE (2) SE436080B (en)
YU (2) YU170978A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0163819B1 (en) * 1984-03-19 1991-02-06 Vulkor, Incorporated Polyolefin compounds having improved thermal stability and conductors coated therewith
DE102004012059A1 (en) * 2004-03-11 2005-10-06 Siemens Ag Process for production of a body including a housing part, adjuvant material and heat protection matrix useful useful in the production of sensor devices
JP5737323B2 (en) 2013-05-01 2015-06-17 住友電気工業株式会社 Electrical insulation cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1307208A (en) * 1960-12-01 1962-10-19 Thomson Houston Comp Francaise Cross-chain polyethylene-based vulcanizable compositions and their applications in the insulation of electrical conductors
US3553348A (en) * 1966-11-02 1971-01-05 Gen Electric Polymeric blends for insulation composition
US3742084A (en) * 1971-03-04 1973-06-26 Minnesota Mining & Mfg Corona-resistant electrically insulating organic polymeric compositions
US3900681A (en) * 1973-08-22 1975-08-19 Gen Electric Insulated electrical conductor
JPS5441720B2 (en) * 1974-04-10 1979-12-10

Also Published As

Publication number Publication date
YU178482A (en) 1984-12-31
FR2398373A1 (en) 1979-02-16
SE7807905L (en) 1979-01-19
YU170978A (en) 1982-10-31
ES471842A1 (en) 1980-03-01
DE2821651C2 (en) 1983-02-24
JPS57151672A (en) 1982-09-18
FR2398373B1 (en) 1983-09-09
DK321678A (en) 1979-01-19
SE456378B (en) 1988-09-26
DE2821651A1 (en) 1979-02-08
ES479260A1 (en) 1979-08-01
SE436080B (en) 1984-11-05
HU179475B (en) 1982-10-28
DE2857542C2 (en) 1983-02-03
SE8204208L (en) 1982-07-07
GB1588663A (en) 1981-04-29
JPS5442700A (en) 1979-04-04
JPS587204B2 (en) 1983-02-08

Similar Documents

Publication Publication Date Title
KR20130139891A (en) Polymeric compositions with voltage stabilizer additive
US4797323A (en) Flame retardant wire with high insulation resistance
US4209566A (en) Method of improving the electrical properties of polymeric insulations containing polar additives, and the improved polymeric insulation product thereof
US4693937A (en) Flame retardant wire with high insulation resistance
US4331733A (en) Flame-retardant polyolefin compositions, their method of preparation and insulated electrical conductors manufactured therewith
JPS62283984A (en) Additive for preventing treeing
US4770902A (en) Method for covering an electrical conducting means
JPS6335680B2 (en)
EP0084048A4 (en) Flame retardant compositions, method of preparation and wire and cable products thereof.
US4501688A (en) Silane oligomers useful as anti-treeing additives
GB1586327A (en) Flame-resistant composition and electrical product thereof
US4371653A (en) Method of improving the electrical properties of polymeric insulations containing polar additives, and the improved polymeric insulation product thereof
KR20180096174A (en) Polymer composition for high voltage cable and cable having an insulating layer formed from the same and a sheath layer formed from the same
CA1136312A (en) Heat resistant ethylene-propylene rubber with improved tensile properties and insulated conductor product thereof
US4492647A (en) Organopolysiloxanes useful as dielectric fluids and anti-treeing additives
AU568802B2 (en) Flame retardant wire with high insulation resistance
JPS64767B2 (en)
JPS59133253A (en) Additive composition for treeing prevention
GB2096151A (en) Insulated electric cables, and composition therefor
KR20080036644A (en) Hydrosilylation method
CA1195031A (en) Flame retardant wire with high insulation resistance
JPH0664951B2 (en) Method for manufacturing cross-linked polyethylene insulation fictional cable
EP0319199A1 (en) Elastomeric compositions
JPH10237233A (en) Cross-linked polyethylene, its production, and insulated power cable produced by using the same
JPS61214307A (en) Manufacture of flameproof wire