JPS6335480Y2 - - Google Patents

Info

Publication number
JPS6335480Y2
JPS6335480Y2 JP17023082U JP17023082U JPS6335480Y2 JP S6335480 Y2 JPS6335480 Y2 JP S6335480Y2 JP 17023082 U JP17023082 U JP 17023082U JP 17023082 U JP17023082 U JP 17023082U JP S6335480 Y2 JPS6335480 Y2 JP S6335480Y2
Authority
JP
Japan
Prior art keywords
sample
holder
temperature
gas
refrigerant tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17023082U
Other languages
Japanese (ja)
Other versions
JPS5974661U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17023082U priority Critical patent/JPS5974661U/en
Publication of JPS5974661U publication Critical patent/JPS5974661U/en
Application granted granted Critical
Publication of JPS6335480Y2 publication Critical patent/JPS6335480Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は冷却された試料の温度チエツクを行な
うことのできる電子顕微鏡等の試料冷却装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample cooling device for an electron microscope or the like that can check the temperature of a cooled sample.

電子顕微鏡観察において、試料の冷却はその試
料の物性の研究上極めて重要であり、古くから実
用されている。従来の装置は試料をホルダーに保
持固定し、該ホルダーを熱伝導板及び熱伝導棒を
介して冷媒槽に接続し、該冷媒槽に液体窒素や液
体ヘリウムを注入することにより、試料を窒素温
度又はヘリウム温度近くまで冷却するようにな
し、又そのときの温度をホルダーに取付けた熱電
対により測定するようになしてある。
In electron microscopy, cooling a sample is extremely important for researching the physical properties of the sample, and has been in practice for a long time. In conventional equipment, the sample is held and fixed in a holder, the holder is connected to a refrigerant tank through a heat conduction plate and a heat conduction rod, and liquid nitrogen or liquid helium is injected into the refrigerant tank to keep the sample at a nitrogen temperature. Alternatively, it is designed to be cooled to near the helium temperature, and the temperature at that time is measured by a thermocouple attached to the holder.

斯かる装置において、試料は所定の温度に冷却
されるわけであるが、温度の測定はホルダーに取
付けた熱電対により行なわれるため、観察時、電
子線を照射すると該電子線の衝撃により試料は温
度上昇し、或いは何等かの事故により試料が温度
上昇した場合、測定結果は実際の試料温度と著し
く掛離れていることがあり、問題を生ずる。
In such an apparatus, the sample is cooled to a predetermined temperature, but the temperature is measured by a thermocouple attached to the holder, so when the electron beam is irradiated during observation, the sample is If the temperature of the sample increases due to an increase in temperature or some kind of accident, the measurement result may be significantly different from the actual sample temperature, causing a problem.

本考案は上記点に鑑みてなされたもので、冷却
試料の観察中該試料が所定温度以下に冷却されて
いることを正確に確認できる装置を提供するもの
である。
The present invention has been devised in view of the above points, and provides an apparatus that can accurately confirm that the sample has been cooled to a predetermined temperature or lower during observation of the cooled sample.

本考案の構成は試料を熱伝導良好に保持するホ
ルダー、該ホルダーを移動可能に支持する機構、
冷媒が充満された冷媒槽、前記試料ホルダーと冷
媒槽とを熱的に連結する手段及び前記試料ホルダ
ーに取付けられた温度測定手段を備えた装置にお
いて、前記ホルダーに保持された試料の表面に向
けて該試料の所定冷却温度より高い又は同程度の
温度で固化するガスを流す手段を設けてなる電子
顕微鏡等の試料冷却装置に特徴を有する。
The configuration of the present invention includes a holder that holds a sample with good heat conduction, a mechanism that movably supports the holder,
In an apparatus comprising a refrigerant tank filled with a refrigerant, a means for thermally connecting the sample holder and the refrigerant tank, and a temperature measuring means attached to the sample holder, the temperature is directed toward the surface of the sample held in the holder. The present invention is characterized by a sample cooling device such as an electron microscope, which is provided with means for flowing a gas that solidifies at a temperature higher than or comparable to a predetermined cooling temperature of the sample.

以下本考案の一実施例を図面に基づき詳説す
る。
An embodiment of the present invention will be explained in detail below based on the drawings.

第1図は本考案の全体的な断面図であり、第2
図はその一部の拡大断面図である。これらの図に
おいて、1は対物レンズで、該対物レンズはヨー
ク2、励磁コイル3及び磁極片4によつて構成さ
れている。該磁極片の磁極間隙内には電子線の光
軸と垂直な方向に試料ホルダー5が配置されてい
る。該ホルダーは対物レンズの上部(磁極片の周
り)に配置された試料ステージ6に取付けられた
保持体7に支持されている。該保持体は真空外に
取出され、液体窒素や液体ヘリウムが充満された
冷媒槽8と結合される。又、保持体と反対側のス
テージには試料の移動機構9が取付けてあり、前
記ホルダー5と係合している。ホルダー5には電
子線の通過穴10が設けてあり、該穴に熱伝導保
持片11a,11bを介して試料12を保持した
メツシユ13が取付けられる。前記ホルダーは熱
伝導板14を介して熱伝導棒15の一端に接続さ
れている。該伝導棒は前記保持体7の内部に熱絶
縁して保持されており、他端は前記冷媒槽8の冷
媒に熱的に接続している。
Figure 1 is an overall sectional view of the present invention;
The figure is an enlarged sectional view of a portion thereof. In these figures, reference numeral 1 denotes an objective lens, and the objective lens is composed of a yoke 2, an excitation coil 3, and a magnetic pole piece 4. A sample holder 5 is arranged in the magnetic gap between the magnetic pole pieces in a direction perpendicular to the optical axis of the electron beam. The holder is supported by a holder 7 attached to a sample stage 6 placed above the objective lens (around the magnetic pole pieces). The holder is taken out of the vacuum and connected to a refrigerant tank 8 filled with liquid nitrogen or liquid helium. Further, a sample moving mechanism 9 is attached to the stage opposite to the holder and engages with the holder 5. The holder 5 is provided with an electron beam passage hole 10, into which a mesh 13 holding a sample 12 is attached via thermally conductive holding pieces 11a and 11b. The holder is connected to one end of a heat conduction rod 15 via a heat conduction plate 14. The conduction rod is held thermally insulated inside the holder 7, and the other end is thermally connected to the refrigerant in the refrigerant tank 8.

前記対物レンズの上には試料室16が載置さ
れ、その側壁にガス供給源17が固定されてい
る。このガス供給源からはパイプ18が試料室内
に延びており、該パイプの先端から細管19が取
出され、その先端解放部は前記ホルダー5に保持
された試料12の上面に近接・対向しており、そ
の解放部より冷却温度確認用のガス(例えば窒素
ガス)が試料に向けて放射される。20は熱電対
であり、前記ホルダー5に固定されており、その
リード線は保持体7を通して鏡体外に取出され、
表示計(図示せず)に接続される。
A sample chamber 16 is placed above the objective lens, and a gas supply source 17 is fixed to its side wall. A pipe 18 extends into the sample chamber from this gas supply source, and a thin tube 19 is taken out from the tip of the pipe, the open end of which is close to and opposite the upper surface of the sample 12 held in the holder 5. A gas for checking the cooling temperature (for example, nitrogen gas) is emitted from the open part toward the sample. A thermocouple 20 is fixed to the holder 5, and its lead wire is taken out of the mirror body through the holder 7.
Connected to an indicator (not shown).

斯かる構成において、試料の冷却及び熱電対を
用いての試料温度の測定は従来と同様である。そ
して、ホルダーの温度より試料温度を想定し、そ
の温度より凝固(固化)点が高いガスを前記細管
19より試料の表面に吹き付ける。今、試料を液
体ヘリウムで冷却している場合、前記確認用のガ
スとして窒素ガスが使用される。該窒素ガスはそ
の固化点が63〓であるので試料がそれ以下に冷却
されていれば該ガスは試料面で固化し、付着する
ことになる。そこで、試料を冷却した状態で電子
線を試料に照射し、まず試料の電子線回折像を観
察する。そして、前記ガスを細管19より試料表
面に吹き付けながら該試料の電子線回折像の変化
を観察する。このとき、もし試料の温度が該ガス
の固化点より高いならばガスは固化せず、従つて
試料の電子線回折像には何等の変化も現われな
い。しかし、試料が該ガスの固化点より低く冷却
されていれば、ガスは固化して試料表面に付着し
ていき、試料と該固化したガスの電子線回折像が
観察されることになり、前記試料のみの回折像と
は明らかに異なつたものとなる。而して、上記の
観察を行なえば吹き付けたガスの固化点までは試
料温度が下がつていることが確認できるわけであ
る。
In such a configuration, cooling the sample and measuring the sample temperature using a thermocouple are the same as in the prior art. Then, the temperature of the sample is assumed to be higher than the temperature of the holder, and a gas having a solidification point higher than that temperature is blown onto the surface of the sample from the thin tube 19. Now, when the sample is cooled with liquid helium, nitrogen gas is used as the confirmation gas. The solidification point of the nitrogen gas is 63°, so if the sample is cooled below that point, the gas will solidify on the sample surface and adhere to it. Therefore, an electron beam is irradiated onto the sample in a cooled state, and an electron beam diffraction image of the sample is first observed. Then, while blowing the gas onto the surface of the sample from the thin tube 19, changes in the electron beam diffraction image of the sample are observed. At this time, if the temperature of the sample is higher than the solidification point of the gas, the gas will not solidify, and therefore no change will appear in the electron beam diffraction image of the sample. However, if the sample is cooled below the solidification point of the gas, the gas will solidify and adhere to the sample surface, and an electron diffraction image of the sample and the solidified gas will be observed. The diffraction image will be clearly different from the diffraction image of the sample alone. Therefore, by performing the above observation, it can be confirmed that the sample temperature has decreased to the solidification point of the blown gas.

以上説明したような構成となせば、熱電対20
によるホルダーの温度測定ではチエツクできない
不慮の事故や電子線照射による試料の温度上昇を
簡単にしかも確実に検知することが可能となる。
又、熱電対が故障している場合の発見も可能であ
り、更には熱電対の温度較正にも利用できる。
With the configuration described above, the thermocouple 20
This makes it possible to easily and reliably detect unexpected accidents and increases in sample temperature due to electron beam irradiation that cannot be checked by measuring the temperature of the holder.
It is also possible to discover when a thermocouple is out of order, and it can also be used to calibrate the thermocouple temperature.

尚、上記は本考案の一例であつて、実施に際し
ては種々の変更が可能である。例えば、図示の例
では試料を光軸に垂直な方向から挿入した場合で
あるが、試料を対物レンズの上方から挿入するよ
うな装置にも同様に利用できる。又、細管19か
ら試料に向けて放射するガスは例示の窒素ガスに
限られるものではなく、その試料の冷却温度に応
じて任意に選定できるものである。更に、ガスは
試料室から導入する構造を示したが、これに限定
することなく試料ホルダー5から吹き出すように
したり、試料直下に置かれている対物絞りを支持
するホルダー内に細管を設置することにより対物
絞り部分からガスを試料に吹き付けるようにして
も良い。更に又、使用するガスは複数種類用意し
ておき、試料温度に応じて選択・使用すると便利
である。
Note that the above is an example of the present invention, and various changes can be made when implementing the invention. For example, in the illustrated example, the sample is inserted from a direction perpendicular to the optical axis, but the present invention can be similarly applied to an apparatus in which the sample is inserted from above the objective lens. Further, the gas emitted from the thin tube 19 toward the sample is not limited to the illustrated nitrogen gas, but can be arbitrarily selected depending on the cooling temperature of the sample. Furthermore, although the structure is shown in which the gas is introduced from the sample chamber, the present invention is not limited to this, but it may be blown out from the sample holder 5, or a thin tube may be installed in the holder that supports the objective aperture placed directly below the sample. Alternatively, the gas may be blown onto the sample from the objective aperture. Furthermore, it is convenient to prepare a plurality of types of gases and select and use them according to the sample temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す全体断面図、
第2図は第1図の主要部断面図である。 1:対物レンズ、4:磁極片、5:試料ホルダ
ー、6:ステージ、7:保持体、8:冷媒槽、
9:移動機構、12:試料、15:熱伝導棒、1
6:試料室、17:ガス供給源、18:パイプ、
19:細管、20:熱電対。
FIG. 1 is an overall sectional view showing an embodiment of the present invention;
FIG. 2 is a sectional view of the main part of FIG. 1. 1: Objective lens, 4: Magnetic pole piece, 5: Sample holder, 6: Stage, 7: Holder, 8: Coolant tank,
9: Moving mechanism, 12: Sample, 15: Heat conduction rod, 1
6: sample chamber, 17: gas supply source, 18: pipe,
19: Thin tube, 20: Thermocouple.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料を熱伝導良好に保持するホルダー、該ホル
ダーを移動可能に支持する機構、冷媒が充満され
た冷媒槽、前記試料ホルダーと冷媒槽とを熱的に
連結する手段及び前記試料ホルダー部に取付けら
れた温度測定手段を備えた装置において、前記ホ
ルダーに保持された試料の表面に向けて該試料の
所定冷却温度より高い又は同程度の温度で固化す
るガスを流す手段を設けてなる電子顕微鏡等の試
料冷却装置。
A holder for holding a sample with good thermal conductivity, a mechanism for movably supporting the holder, a refrigerant tank filled with refrigerant, a means for thermally connecting the sample holder and the refrigerant tank, and a mechanism attached to the sample holder part. An apparatus, such as an electron microscope, which is equipped with a temperature measuring means, which is equipped with a means for flowing a gas that solidifies at a temperature higher than or about the same as the predetermined cooling temperature of the sample toward the surface of the sample held in the holder. Sample cooling device.
JP17023082U 1982-11-10 1982-11-10 Sample cooling equipment for electron microscopes, etc. Granted JPS5974661U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17023082U JPS5974661U (en) 1982-11-10 1982-11-10 Sample cooling equipment for electron microscopes, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17023082U JPS5974661U (en) 1982-11-10 1982-11-10 Sample cooling equipment for electron microscopes, etc.

Publications (2)

Publication Number Publication Date
JPS5974661U JPS5974661U (en) 1984-05-21
JPS6335480Y2 true JPS6335480Y2 (en) 1988-09-20

Family

ID=30371674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17023082U Granted JPS5974661U (en) 1982-11-10 1982-11-10 Sample cooling equipment for electron microscopes, etc.

Country Status (1)

Country Link
JP (1) JPS5974661U (en)

Also Published As

Publication number Publication date
JPS5974661U (en) 1984-05-21

Similar Documents

Publication Publication Date Title
US4162401A (en) High-resolution, cryogenic, side-entry type specimen stage
JPS6335480Y2 (en)
CN105474348B (en) Anti-pollution trap and vacuum applying unit
CN113009389B (en) Laser heating high-temperature nuclear magnetic resonance probe and device
US11307020B2 (en) Sample thickness measuring arrangement and method for measuring a thickness of a sample at cryogenic temperature by interferometry using a cryostat
JP3619345B2 (en) Circuit board support, circuit board inspection method, and circuit board inspection apparatus
JPS6292461U (en)
CN110181034A (en) Aluminum piston product qualification rate is improved with production line monitoring system
JPH0210281A (en) Probe for spectroscopic measurement of magnetic resonance at super high temperature
JP2582377B2 (en) Low temperature physical property measurement device
GB2071297A (en) Controlled-temperature measuring cell for photo-acoustic spectroscopy
JPH0518913A (en) Method and apparatus for measuring thermoelectromotive force
JP2002014026A (en) Scanning probe microscope
JP2986304B2 (en) Sample cooling and holding device for scanning tunneling microscope
JPH01104349A (en) Cryogenic stage in vacuum vessel
JPH0234808Y2 (en)
JP3937206B2 (en) Position control device
JPS5850479A (en) Tester for josephson integrated circuit
US20230284610A1 (en) Methods and apparatus for providing biological samples in a vitrified state for static and time-resolved structural investigations using electron or x-ray sources
JPH0765770A (en) Electron microscope with current-carrying function while cooling, and superconductive current distribution measuring method by using the electron microscope
Kessler Cooler for Semiconductor Light Emitters, Lasers, and Photodetectors
JPS58161846A (en) Creep tester
JPS59172284A (en) Low-temperature tester
KR20230122670A (en) A probe system configured to test a device under test and a method of operating the probe system
JPH04145637A (en) Semiconductor wafer inspecting device