JPS6335296B2 - - Google Patents

Info

Publication number
JPS6335296B2
JPS6335296B2 JP55173627A JP17362780A JPS6335296B2 JP S6335296 B2 JPS6335296 B2 JP S6335296B2 JP 55173627 A JP55173627 A JP 55173627A JP 17362780 A JP17362780 A JP 17362780A JP S6335296 B2 JPS6335296 B2 JP S6335296B2
Authority
JP
Japan
Prior art keywords
spray
absorption tower
amount
desulfurization
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55173627A
Other languages
Japanese (ja)
Other versions
JPS5799321A (en
Inventor
Toshio Katsube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP55173627A priority Critical patent/JPS5799321A/en
Publication of JPS5799321A publication Critical patent/JPS5799321A/en
Publication of JPS6335296B2 publication Critical patent/JPS6335296B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ボイラ等の排ガス中に含まれる硫黄
酸化物(SOx)を石灰石等の吸収剤スラリーとの
気液接触により吸収除去する湿式排煙脱硫装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet flue gas desulfurization device that absorbs and removes sulfur oxides ( SO be.

従来、湿式排煙脱硫装置において、排ガスは脱
硫フアン1により昇圧され冷却塔2に送られる。
冷却塔2で排ガスはポンプ3により冷却塔スプレ
配管4を経て供給される冷却塔循環タンク5内の
スラリと気液接触し、排ガス温度が飽和温度迄冷
却すると共に除じんおよび一部脱硫が行なわれ
る。冷却後の排ガスは吸収塔7に入り、ここで吸
収塔循環タンク8より吸収塔循環ポンプ9、スプ
レ配管10を経て吸収塔内に送られた吸収スラリ
との気液接触により排ガス中のSOxが吸収・除去
される。
Conventionally, in a wet flue gas desulfurization apparatus, exhaust gas is pressurized by a desulfurization fan 1 and sent to a cooling tower 2.
In the cooling tower 2, the exhaust gas is brought into gas-liquid contact with the slurry in the cooling tower circulation tank 5, which is supplied via the cooling tower spray pipe 4 by the pump 3, and the exhaust gas temperature is cooled to the saturation temperature, and at the same time, dust removal and partial desulfurization are performed. It will be done. The cooled exhaust gas enters the absorption tower 7, where it comes into contact with the absorption slurry sent from the absorption tower circulation tank 8 to the absorption tower circulation pump 9 and the spray piping 10 into the absorption tower, so that SO x in the exhaust gas is removed. is absorbed and removed.

ここで脱硫装置に流入する排ガス量および排ガ
ス中のSOx濃度はボイラ負荷およびボイラで燃や
す燃料の性状により、各々定格から1/4定格程
度変動する。しかし脱硫装置では排ガス条件(ガ
ス量、SOx濃度)が変動しても一定の脱硫効率で
運転することが望ましい。
Here, the amount of exhaust gas flowing into the desulfurization device and the SO x concentration in the exhaust gas vary from the rated value to about 1/4 of the rated value, depending on the boiler load and the properties of the fuel burned in the boiler. However, it is desirable for desulfurization equipment to operate at a constant desulfurization efficiency even if the exhaust gas conditions (gas amount, SO x concentration) fluctuate.

脱硫装置は吸収スラリのスプレー量を一定とし
た場合、排ガス量の少ない程、また吸収塔入口の
排ガス中のSOx濃度が低い程脱硫率が高く、排ガ
ス条件が一定の場合吸収剤スラリーのスプレー量
が多い程脱硫率が高くなる特性を持つている。従
つて排ガス条件の変動に対応してスプレー量を変
動させることにより、脱硫率を一定に保つことは
理論的には可能である。しかしながらこのような
脱硫装置においては、液ガス比〔スプレー液量
(/h)/排ガス量(Nm3/h)〕は通常10
(/Nm3)前後必要である。従つて例えば、排
ガス量500000Nm3/hを処理する場合、液ガス比
を10/Nm3とするとスプレー液量は5000m3/h
と膨大な量になる。この膨大なスプレー液量を一
本のスプレー配管で流す場合、配管径は約40Bと
なる。
When the amount of absorption slurry sprayed is constant, desulfurization equipment has a higher desulfurization rate as the amount of exhaust gas is smaller and the SO x concentration in the exhaust gas at the absorption tower inlet is lower. It has the characteristic that the higher the amount, the higher the desulfurization rate. Therefore, it is theoretically possible to keep the desulfurization rate constant by varying the spray amount in response to variations in exhaust gas conditions. However, in such desulfurization equipment, the liquid-gas ratio [spray liquid volume (/h)/exhaust gas volume (Nm 3 /h)] is usually 10
(/Nm 3 ) is required. Therefore, for example, when treating an exhaust gas amount of 500000Nm 3 /h, if the liquid gas ratio is 10/Nm 3 , the spray liquid amount will be 5000m 3 /h.
It becomes a huge amount. If this huge amount of spray liquid is to be flowed through a single spray pipe, the pipe diameter will be approximately 40B.

しかし吸収剤は酸性成分からなり、かつスラリ
ー状となつているので、耐蝕性および耐摩耗性を
有する大口径の配管が必要となるため、従来は排
ガス条件の変動に拘らず、一定のスプレー量で運
転されていた。したがつて、従来装置における入
口ガス量と脱硫率との関係を示す第2図から明ら
かなように処理ガス量500000Nm3/hで設計した
装置において、処理ガス量が200000Nm3/hまで
減少した場合、脱硫率は97%に上昇する。この結
果、定格以下の運転では脱硫率が高くなりすぎ、
その分だけ石灰石および硫酸を消費するばかりで
なく、副生石膏を多量に生成することになる。
However, since the absorbent consists of acidic components and is in the form of a slurry, large-diameter piping with corrosion and abrasion resistance is required. It was being driven by. Therefore, as is clear from Figure 2, which shows the relationship between the inlet gas amount and the desulfurization rate in the conventional equipment, the processing gas amount was reduced to 200,000 Nm 3 /h in the equipment designed with a processing gas amount of 500,000 Nm 3 /h. In this case, the desulfurization rate increases to 97%. As a result, the desulfurization rate becomes too high when operating below the rated value.
Not only will limestone and sulfuric acid be consumed accordingly, but a large amount of by-product gypsum will also be produced.

本発明の目的は、排ガス条件の変動に拘わらず
一定の脱硫率で運転することができる湿式排煙脱
硫装置を提供することにある。
An object of the present invention is to provide a wet flue gas desulfurization device that can be operated at a constant desulfurization rate regardless of fluctuations in exhaust gas conditions.

本発明は、石灰石等の吸収剤スラリーの特性に
鑑み吸収剤スラリーのスプレー量の制御を稼動す
るポンプ台数によつて行うとともに負荷変動に対
しても各スラリー配管及び各段スプレー毎に常時
に吸収剤スラリーが流動するようにしたものであ
る。
In consideration of the characteristics of absorbent slurry such as limestone, the present invention controls the spray amount of absorbent slurry by the number of pumps in operation, and even in response to load fluctuations, each slurry pipe and each stage spray constantly absorbs the slurry. The agent slurry is made to flow.

以下、添付図面によつて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図は本発明の実施例を示す概略的構成図で
あつて、図示していない脱硫フアンから冷却塔2
に至るラインの途中にガス流量計12およびSOx
濃度検知器13が設けられ、吸収塔7の出口ガス
ラインの途中にSOx濃度検知器18が設けられて
いる。
FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention, in which a desulfurization fan (not shown) is connected to a cooling tower 2.
Gas flow meter 12 and SO x
A concentration detector 13 is provided, and an SO x concentration detector 18 is provided in the middle of the outlet gas line of the absorption tower 7.

また、吸収塔7内に複数段(図では5段)のス
プレー21A〜21Eが設置され、それぞれのス
プレー21A〜21Eを吸収塔循環タンク8と連
絡する吸収塔スプレー配管10A〜10E(ただ
し10B〜10Dは一部省略されている)が設け
られている。各々の吸収塔スプレー配管10A〜
10Eは途中2本の配管に分岐され、各分岐管に
吸収塔循環ポンプ9A〜9J(ただし9C〜9H
は省略されている)が設置されている。
In addition, multiple stages (5 stages in the figure) of sprays 21A to 21E are installed in the absorption tower 7, and absorption tower spray piping 10A to 10E (however, 10B to 10D is partially omitted). Each absorption tower spray pipe 10A~
10E is branched into two pipes in the middle, and absorption tower circulation pumps 9A to 9J (however, 9C to 9H) are connected to each branch pipe.
) has been set up.

この装置では排ガス条件によつて吸収剤を噴霧
するスプレー量を決定するようになつている。す
なわち、ガス流量計12およびSOx濃度検知器1
3からの信号に基づき吸収塔循環ポンプ9A〜9
Jのうち稼動を行うポンプ数が制御され、またポ
ンプ数は吸収塔7の出口SOx濃度の設定値とSOx
濃度検知器18の測定値との差により補正され
る。この結果吸収塔循環ポンプ9A〜9Jの稼動
数によつて、吸収塔7への吸収剤スラリーの供給
量が制御される。
This device is designed to determine the amount of absorbent sprayed depending on exhaust gas conditions. That is, the gas flow meter 12 and the SO x concentration detector 1
Based on the signal from 3, the absorption tower circulation pumps 9A to 9
The number of pumps that operate in J is controlled, and the number of pumps is determined by the set value of the SO x concentration at the outlet of the absorption tower 7 and the SO
It is corrected based on the difference from the measured value of the concentration detector 18. As a result, the amount of absorbent slurry supplied to the absorption tower 7 is controlled by the number of operations of the absorption tower circulation pumps 9A to 9J.

ここで石灰石等の吸収剤スラリーは、溶解度限
度を遥るかに超えたものであるので充分な撹拌あ
るいは流動している状態でないと、直ちに沈積が
生じ、固形物が生じやすい。
Since the slurry of the absorbent such as limestone far exceeds its solubility limit, unless it is sufficiently stirred or fluidized, sedimentation will readily occur and solid matter will likely form.

本実施例において、例えば定格時5段スプレー
21A〜21Eの各段とそれぞれ連結するスプレ
ー配管毎に並列された2基の吸収塔循環ポンプ9
A〜9Hを全て稼動させ、入口ガス量が減少し低
負荷となつたとき各スプレー配管の2基の吸収塔
循環ポンプのうち各スプレー配管の一方の一基の
みを稼動させることができる。また各スプレー配
管毎に3基以上のポンプを並列に設けることによ
つて負荷変動に応じて各スプレー配管毎の稼動ポ
ンプ台数を制御することができる。この場合、各
スプレー配管において、負荷変動に拘わらず、各
スプレー配管毎に常時少なくとも一台が、稼動す
る必要があるが、各スプレー配管毎の稼動ポンプ
台数は必ずしも一致しなくともよい。
In this embodiment, for example, two absorption tower circulation pumps 9 are arranged in parallel for each spray pipe connected to each stage of the five-stage sprays 21A to 21E at the rated time.
When all of A to 9H are operated and the inlet gas amount decreases and the load becomes low, only one of the two absorption tower circulation pumps of each spray pipe can be operated. Furthermore, by providing three or more pumps in parallel for each spray pipe, the number of operating pumps for each spray pipe can be controlled in accordance with load fluctuations. In this case, at least one pump for each spray pipe needs to be in operation at all times regardless of load fluctuations, but the number of operating pumps for each spray pipe does not necessarily have to be the same.

このような吸収剤スラリーのスプレー量制御に
よつて、負荷変動に応じてスプレー量が制御され
るが、負荷変動に拘わらず、常時全てのスプレー
配管および全てのスプレー段に吸収剤スラリーが
供給される。したがつてスプレー配管内でのスラ
リーの固結が防止される。また各スプレー段から
も常時スラリーが噴霧されるので各ノズルの閉塞
が防止され、また各スプレー段近辺の吸収塔内壁
面におけるスラリーの固結が防止される。このた
め負荷変動に応じた吸収剤スラリーのスプレー量
を安定して制御でき、また低負荷時に1部のポン
プを停止させることができるので脱硫装置の消費
電力量を低減させることができる。
By controlling the spray amount of absorbent slurry in this way, the spray amount is controlled according to load fluctuations, but absorbent slurry is always supplied to all spray pipes and all spray stages regardless of load fluctuations. Ru. Therefore, solidification of the slurry within the spray piping is prevented. Furthermore, since the slurry is constantly sprayed from each spray stage, clogging of each nozzle is prevented, and solidification of the slurry on the inner wall surface of the absorption tower near each spray stage is also prevented. Therefore, it is possible to stably control the spray amount of the absorbent slurry in response to load fluctuations, and it is also possible to stop some of the pumps during low loads, thereby reducing the power consumption of the desulfurization apparatus.

また、排ガス条件の変動に拘わらず、脱硫装置
を一定の脱硫率で運転することができるので、石
灰石、硫酸の消費量を低減することができる。
Furthermore, since the desulfurization device can be operated at a constant desulfurization rate regardless of fluctuations in exhaust gas conditions, the consumption of limestone and sulfuric acid can be reduced.

例えば入口ガス量500000Nm3/h、入口SOx
度1000ppm、計画脱硫率90%の脱硫装置におい
て、従来装置では200000Nm3/hの運転で97%の
脱硫率となつていた。一方本発明装置により
200000Nm3/hにおいて90%の脱硫率で運転した
場合、石灰石の使用量を1時間当り約65Kg低減で
き、200000Nm3/hでの運転が1日に夜間8時
間、脱硫装置の運転を年間300日とすると65×8
×300=156000Kgとなり、年間16トンの石灰石使
用量が低減できる。同様に硫酸は1時間当り約6
Kg、年間で14400Kg低減できる。
For example, in a desulfurization device with an inlet gas amount of 500000Nm 3 /h, an inlet SO x concentration of 1000ppm, and a planned desulfurization rate of 90%, the conventional device achieved a desulfurization rate of 97% when operated at 200000Nm 3 /h. On the other hand, with the device of the present invention
When operating at 200,000Nm 3 /h with a desulfurization rate of 90%, the amount of limestone used can be reduced by approximately 65 kg per hour. 65×8 for days
×300 = 156,000Kg, which means that the amount of limestone used can be reduced by 16 tons per year. Similarly, sulfuric acid is about 6
kg, can be reduced by 14,400 kg per year.

以上のように本発明によれば、排ガス条件の変
動にかかわらず、一定の脱硫率で運転できるの
で、石灰石および硫酸の消費量が少なく副生石膏
の生成も少なく、かつ吸収剤スラリーの固結によ
る弊害を防止できる。
As described above, according to the present invention, it is possible to operate at a constant desulfurization rate regardless of fluctuating exhaust gas conditions, so the consumption of limestone and sulfuric acid is small, the production of by-product gypsum is small, and the solidification of the absorbent slurry is reduced. Harmful effects can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排煙脱硫装置を示す概略的構成
図、第2図は従来装置における入口ガス量と脱硫
率との関係を示す図、第3図は本発明の一実施例
を示す概略的構成図である。 1……脱硫フアン、2……冷却塔、5……冷却
塔循環タンク、7……吸収塔、8……吸収塔循環
タンク、9A〜9J……吸収塔循環ポンプ、10
A〜10E……吸収塔スプレー配管、12……ガ
ス流量計、13……SOx濃度検知器、18……
SOx濃度検知器。
Fig. 1 is a schematic configuration diagram showing a conventional flue gas desulfurization equipment, Fig. 2 is a diagram showing the relationship between inlet gas amount and desulfurization rate in the conventional equipment, and Fig. 3 is a schematic diagram showing an embodiment of the present invention. It is a configuration diagram. DESCRIPTION OF SYMBOLS 1... Desulfurization fan, 2... Cooling tower, 5... Cooling tower circulation tank, 7... Absorption tower, 8... Absorption tower circulation tank, 9A to 9J... Absorption tower circulation pump, 10
A to 10E... Absorption tower spray piping, 12... Gas flow meter, 13... SO x concentration detector, 18...
SO x concentration detector.

Claims (1)

【特許請求の範囲】[Claims] 1 塔内に2段以上のスプレーを設けた吸収塔を
備え、この吸収塔内に供給される排ガス中の硫黄
酸化物を前記スプレーより噴霧される石灰石等の
吸収剤スラリーと接触させて除去する湿式排煙脱
硫装置において、前記吸収塔に排ガスを導入する
ライン途中にガス流量検知器と硫黄酸化物濃度検
知器を設け、かつ前記各段のスプレーとそれぞれ
連結されたスプレー配管の途中にそれぞれ複数個
並列されたポンプを介設し、前記ガス流量検知器
と前記硫黄酸化物濃度検知器からの検知信号に基
づいて各々のスプレー配管毎に並列された複数個
のポンプの少なくとも一台が稼動するようにして
吸収剤スラリーのスプレー量が制御されるように
構成されていることを特徴とする湿式排煙脱硫装
置。
1. Equipped with an absorption tower with two or more stages of spray in the tower, and removes sulfur oxides in the exhaust gas supplied to the absorption tower by contacting with an absorbent slurry such as limestone sprayed by the spray. In the wet flue gas desulfurization equipment, a gas flow rate detector and a sulfur oxide concentration detector are provided in the line that introduces the flue gas into the absorption tower, and a plurality of gas flow rate detectors and sulfur oxide concentration detectors are provided in the middle of the spray piping connected to each stage of spray. At least one of the plurality of pumps connected in parallel is provided for each spray pipe based on detection signals from the gas flow rate detector and the sulfur oxide concentration detector. A wet flue gas desulfurization device characterized in that the amount of spray of absorbent slurry is controlled in this way.
JP55173627A 1980-12-09 1980-12-09 Wet-type desulfurizer for exhaust gas Granted JPS5799321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55173627A JPS5799321A (en) 1980-12-09 1980-12-09 Wet-type desulfurizer for exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173627A JPS5799321A (en) 1980-12-09 1980-12-09 Wet-type desulfurizer for exhaust gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57174375A Division JPS5874127A (en) 1982-10-04 1982-10-04 Wet desulfurizing device for waste gas

Publications (2)

Publication Number Publication Date
JPS5799321A JPS5799321A (en) 1982-06-21
JPS6335296B2 true JPS6335296B2 (en) 1988-07-14

Family

ID=15964111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173627A Granted JPS5799321A (en) 1980-12-09 1980-12-09 Wet-type desulfurizer for exhaust gas

Country Status (1)

Country Link
JP (1) JPS5799321A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142825A (en) * 1983-02-01 1984-08-16 Ishikawajima Harima Heavy Ind Co Ltd Control method of waste gas desulfurizing apparatus
JPS6121720A (en) * 1984-07-10 1986-01-30 Babcock Hitachi Kk Control apparatus of wet waste gas desulfurization apparatus
JPS6223423A (en) * 1985-07-24 1987-01-31 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling wet type waste gas desulfurization apparatus
JPH084710B2 (en) * 1986-05-07 1996-01-24 バブコツク日立株式会社 Operation method of wet flue gas desulfurization equipment
JP5415103B2 (en) * 2009-02-25 2014-02-12 中国電力株式会社 Desulfurization equipment
CN101799245A (en) * 2010-04-02 2010-08-11 华电重工装备有限公司 Method and device for realizing waste-steam cooling, desulphurization and smoke removal of power stations through one tower
JP2013215691A (en) * 2012-04-11 2013-10-24 Ihi Corp Flue gas desulfurization apparatus and flue gas desulfurization method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924342A (en) * 1972-05-08 1974-03-04
JPS5060477A (en) * 1973-09-28 1975-05-24
JPS5161040A (en) * 1974-11-25 1976-05-27 Hitachi Ltd BOIRAHAIENDATSURYUSEIGYOSOCHI

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924342A (en) * 1972-05-08 1974-03-04
JPS5060477A (en) * 1973-09-28 1975-05-24
JPS5161040A (en) * 1974-11-25 1976-05-27 Hitachi Ltd BOIRAHAIENDATSURYUSEIGYOSOCHI

Also Published As

Publication number Publication date
JPS5799321A (en) 1982-06-21

Similar Documents

Publication Publication Date Title
CN209968041U (en) Novel limestone gypsum method desulfurization oxidation fan governing system
BR102017013708A2 (en) AUTOMATIC AMMONIUM ADDITION SYSTEM AND METHOD FOR AMMONIUM-BASED DYSULPURIZATION DEVICE
JP2013086054A (en) Wet type limestone-gypsum method desulfurization apparatus using seawater
JPS6335296B2 (en)
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
CN105263604A (en) Device for removing impurities from water-containing gas and impurities removal system
CN208482253U (en) A kind of two furnaces, two tower desulfurization oxidation wind system central control device
JP5081000B2 (en) Method for controlling the amount of air supplied for oxidation in wet flue gas desulfurization equipment
CN205760545U (en) Three circulating flue gas desulfurization tower or the systems for wet ammonia process desulfurizing
JP2000051651A (en) Apparatus and method for flue gas desulfurization
JP2573589B2 (en) Flue gas treatment equipment
JPH0352097Y2 (en)
JP3519498B2 (en) Wet flue gas desulfurization equipment
JP2994913B2 (en) Wet flue gas desulfurization apparatus using magnesium oxide and desulfurization method thereof
CN208482258U (en) A kind of furnace double tower double circulation desulphurization oxidation wind system central control device
CN209287047U (en) Equipment for denitrifying flue gas
CN103557436B (en) A kind of desulphurization denitration activated coke regeneration gas cooling device and delivery method
CN87104993A (en) Apparatus for energy recovery from furnace waste gas
CN207822769U (en) A kind of coal-fired plant flue gas low-temperature denitration device
JP3651918B2 (en) Control method of wet flue gas desulfurization equipment
CN1201851C (en) Wet spray gas desulphuring devices
JP3190938B2 (en) Flue gas desulfurization equipment
CN206199002U (en) A kind of desulfuration absorbing tower serum recycle system
JPS586684B2 (en) Energy saver for contact type sulfuric acid production equipment
JPS6223423A (en) Method for controlling wet type waste gas desulfurization apparatus