JPS6335183Y2 - - Google Patents

Info

Publication number
JPS6335183Y2
JPS6335183Y2 JP10100383U JP10100383U JPS6335183Y2 JP S6335183 Y2 JPS6335183 Y2 JP S6335183Y2 JP 10100383 U JP10100383 U JP 10100383U JP 10100383 U JP10100383 U JP 10100383U JP S6335183 Y2 JPS6335183 Y2 JP S6335183Y2
Authority
JP
Japan
Prior art keywords
plated
heating
plating
cylinder
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10100383U
Other languages
Japanese (ja)
Other versions
JPS6010872U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10100383U priority Critical patent/JPS6010872U/en
Publication of JPS6010872U publication Critical patent/JPS6010872U/en
Application granted granted Critical
Publication of JPS6335183Y2 publication Critical patent/JPS6335183Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は内燃機関の吸気系において気化器と吸
気マニホルドとの接合部に設置する吸気加熱装置
に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an intake air heating device installed at the joint between a carburetor and an intake manifold in an intake system of an internal combustion engine.

従来技術 内燃機関の低温始動時に吸入空気の加熱を行な
つて燃料の微粒化を良好にし機関の運転性の改善
を図るため気化器と吸気マニホルドの接合部に加
熱装置を設置することが行なわれている。そして
この加熱装置における発熱体として最近正温度特
性発熱体(以下PTC発熱体という)が使用され
るようになつた。
Prior Art A heating device is installed at the joint between the carburetor and the intake manifold in order to heat the intake air when starting an internal combustion engine at a low temperature to improve fuel atomization and improve engine drivability. ing. Recently, positive temperature characteristic heating elements (hereinafter referred to as PTC heating elements) have come to be used as heating elements in this heating device.

このようなPTC発熱体を用いる吸気加熱装置
として、結晶性樹脂と導電性粒子とを主成分とす
るPTC素子をフランジ付円筒状に形成しこのフ
ランジ部に電極取り出し部を組み込み前記発熱筒
の内外周面に異極を構成するための電極メツキを
施した吸気加熱体を、前記フランジ部を気化器と
吸気マニホルドとで挾持することによつて、気化
器と吸気マニホルドとの接合部に保持させた吸気
加熱装置が提案されている(特開昭57−135253号
公報参照)。しかしこのような従来の吸気加熱装
置においては、発熱筒の内周面及び外周面全体に
亘つて異極を構成する電極メツキが施されるた
め、即ち、発熱筒の内外周面全体が加熱面(ヒー
タ面)を形成するため消費電力が比較的大きくな
る。しかるに特に自動車輌の内燃機関等にあつて
は限られた電源電力で種々の電気系統への消費電
力を確保しなければならないので、吸気加熱装置
に要求される最大の条件の1つは消費電力が少な
いということである。にも拘わらず従来の吸気加
熱装置はこの要求に十分応えているとは言い難
い。
As an intake air heating device using such a PTC heating element, a PTC element mainly composed of crystalline resin and conductive particles is formed into a cylindrical shape with a flange, and an electrode extraction part is installed in the flange part to connect the inside and outside of the heating cylinder. The intake air heating body, which has electrode plating on its circumferential surface to form different poles, is held at the joint between the carburetor and the intake manifold by sandwiching the flange portion between the carburetor and the intake manifold. An intake air heating device has been proposed (see Japanese Patent Laid-Open No. 135253/1983). However, in such conventional intake air heating devices, the entire inner and outer circumferential surfaces of the heating tube are plated with electrodes that constitute different poles, meaning that the entire inner and outer circumferential surfaces of the heating tube are heated. (heater surface), power consumption is relatively large. However, especially in the case of internal combustion engines of automobiles, it is necessary to ensure power consumption for various electrical systems with limited power supply, so one of the biggest requirements for intake air heating devices is power consumption. This means that there are few However, it cannot be said that conventional intake air heating devices sufficiently meet this demand.

ところで気化器内における混合気の霧化状態は
外気温、あるいは暖機完了の前後に応じて当然異
なつてくる。即ち、外気温が高いときや暖機完了
後は外気温が低いときや暖機完了前に比して吸気
加熱の必要性は少なくて済み、従つて混合気の加
熱の程度はこのような運転条件に応じて変化させ
て然るべきである。また、気化器内での混合気の
流れについて見ると燃料の分布は一様でなく、当
然燃料の吸出ポート(スローポート、アイドルポ
ート、メインノズル等)を設けてある側の気化器
本体内周壁面近傍の流れの方がその反対側内周壁
面近傍の流れよりも燃料を多く含んでいると考え
られる。従つて燃料の霧化を促進するという目的
からは発熱筒全周で均一に加熱するよりも燃料を
多く含んでいる混合気流の部分を他部に比して重
点的に加熱すべきである。斯かる要求には従来の
吸気加熱装置では対処し得なかつた。即ち、従来
の吸気加熱装置には発熱筒の部分加熱という構想
は全くなかつた。
By the way, the atomization state of the air-fuel mixture in the carburetor naturally varies depending on the outside temperature or before and after completion of warm-up. In other words, when the outside temperature is high or after warm-up is completed, there is less need to heat the intake air than when the outside temperature is low or before warm-up is completed, and therefore the degree of heating of the air-fuel mixture is reduced by such operation. It should be changed depending on the conditions. In addition, when looking at the flow of the air-fuel mixture inside the carburetor, the distribution of fuel is not uniform, and naturally the inner circumference of the carburetor body on the side where the fuel suction port (slow port, idle port, main nozzle, etc.) is installed. It is considered that the flow near the wall contains more fuel than the flow near the inner peripheral wall on the opposite side. Therefore, for the purpose of promoting atomization of the fuel, rather than uniformly heating the entire circumference of the heating cylinder, it is necessary to heat the part of the air mixture containing a large amount of fuel more intensively than other parts. Conventional intake air heating devices have not been able to meet such demands. That is, in the conventional intake air heating device, there was no concept of partial heating of the heating cylinder.

そこで本願出願人は先に発熱筒の加熱面を複数
個に分割することにより発熱筒の部分加熱を可能
ならしめ、それにより機関運転状態に応じて適宜
不要な部分の加熱面への給電を選択的に停止する
ことにより、全体としての消費電力を低減せしめ
得るようにした吸気加熱装置を提案した(以下、
便宜上この型の発熱筒を分割メツキ型発熱筒と呼
ぶ)。これにより吸気を必要に応じて少ない電力
で部分加熱することができるため、従来消費電力
との関係で加熱を見合わせざるを得なかつた運転
状態のもとで吸気の加熱が可能となつた。更にま
たこれとは別に、少くとも一方の電極メツキを発
熱筒の外周あるいは内周全面に施すのではなく上
述の如き吸気中の燃料分布を考慮して燃料を多く
含んでいる吸気流れ部分に対応する発熱筒部分の
み部分的に電極メツキを施す技術も提案した(以
下、便宜上、この型の発熱筒を部分メツキ型発熱
筒と呼ぶ)。
Therefore, the applicant first divided the heating surface of the heating cylinder into multiple parts to enable partial heating of the heating cylinder, and thereby selected the power supply to the heating surfaces of unnecessary parts as appropriate depending on the engine operating condition. We have proposed an intake air heating device that can reduce overall power consumption by stopping the system at certain times (hereinafter referred to as
For convenience, this type of heating cylinder is called a split plating type heating cylinder). This allows the intake air to be partially heated with a small amount of power as needed, making it possible to heat the intake air under operating conditions where heating had conventionally been forced to be suspended due to power consumption. Furthermore, apart from this, at least one electrode plating is not applied to the entire outer or inner periphery of the heat generating cylinder, but is applied to the intake flow part that contains a large amount of fuel, taking into consideration the fuel distribution in the intake air as described above. We also proposed a technique in which electrode plating is applied only partially to the heating cylinder (hereinafter, for convenience, this type of heating cylinder will be referred to as a partially plated heating cylinder).

扨て上述の如き分割メツキ型発熱筒あるいは部
分メツキ型発熱筒ではいずれの場合も少くとも一
方の電極メツキ(分割メツキあるいは部分メツキ
を有する方の電極メツキ)は非メツキ部分を有す
る。即ち、分割メツキ部分あるいは部分メツキ部
分は非メツキ部分があると、非メツキ部分に対応
する発熱筒部分はほとんど加熱しないのでメツキ
部分に対応する発熱筒部分に比し低温となつてい
る。そのため特に、非メツキ部分に境接するメツ
キ部分は非ツキ部分により冷却され、従つて
PTC特性によりその部位の発熱量が多くなり発
熱集中が生じ易いということが判明した。この発
熱集中はその部位の劣化を促進することにもな
る。
In either case, in the split plating type heat generating cylinder or the partially plated type heating cylinder as described above, at least one electrode plating (the electrode plating having the divided plating or the partial plating) has a non-plated portion. That is, if there is a non-plated part in the split plating part or the partial plating part, the heat generating cylinder part corresponding to the non-plating part is hardly heated, so that the temperature is lower than that of the heat generating cylinder part corresponding to the plating part. Therefore, in particular, the plated part bordering the non-plated part is cooled by the non-plated part, and therefore
It was found that due to the PTC characteristics, the amount of heat generated in that area increases and heat concentration tends to occur. This concentration of heat also promotes deterioration of the area.

考案の目的 本考案の目的は上述の如き非メツキ部分を有す
る分割メツキ型あるいは部分メツキ型発熱筒にお
いて、少くともメツキ部分に隣接する非メツキ部
分に対応する発熱筒の肉厚を他部よりも大きくす
ることにより非メツキ部分に隣接するメツキ部分
の境界部での発熱集中を防止し、それによりこれ
ら境界部の劣化を防止せんとするものである。
Purpose of the invention The purpose of the invention is to increase the wall thickness of the heating cylinder at least in the non-plated part adjacent to the plated part to be thicker than other parts in the split plating type or partially plated type heating cylinder having the non-plated part as described above. By increasing the size, it is possible to prevent heat generation from concentrating at the boundary between the plated portion adjacent to the non-plated portion, thereby preventing deterioration of these boundary portions.

考案の構成 上述の目的を達成するために本考案によれば、
非メツキ部分を有する分割メツキ型あるいは部分
メツキ型吸気加熱装置において非メツキ部分とメ
ツキ部分との境界部の発熱筒肉厚は部分的に大き
くなつている。
Composition of the invention According to the invention, in order to achieve the above-mentioned purpose,
In a split plating type or partially plating type intake air heating device having a non-plated portion, the thickness of the heating cylinder at the boundary between the non-plated portion and the plated portion is partially increased.

考案の作用 PTC発熱筒においては発熱量はその筒厚さが
大きくなる程小さくなるという特性を有するので
上述の如き構成することにより境界部での発熱集
中が防止できるものである。
Effect of the invention Since the PTC heating cylinder has a characteristic that the amount of heat generated decreases as the thickness of the cylinder increases, the above-described configuration can prevent heat generation from concentrating at the boundary.

実施例 本考案の実施例を図面に従つて以下に説明す
る。
Embodiments Examples of the present invention will be described below with reference to the drawings.

第1図はPTC発熱体を組み込んだ内燃機関の
吸気加熱装置を示すものである。図中、1は気化
器本体であり吸気マニホルド2の上部に設けら
れ、これらの間に第2図に示す如きヒートインシ
ユレータ3を組み込み、このヒートインシユレー
タ3と気化器1と、吸気マニホルド2との間には
それぞれガスケツト4,5を介在させ、これらを
ボルト21で合体させる構造となつている。6は
大略円筒状に成形されたPTC発熱体で、スロツ
トル弁23の下方の気化器部分と吸気マニホルド
2との接合部に位置しかつヒートインシユレータ
3の支持凹溝25内に支持され、スロツトル弁2
3からの混合気を吸気マニホルド2に導く役目を
するとともに此処を通過する吸気の加熱を行な
う。
FIG. 1 shows an intake air heating device for an internal combustion engine incorporating a PTC heating element. In the figure, 1 is a carburetor main body, which is provided on the upper part of an intake manifold 2, and a heat insulator 3 as shown in FIG. Gaskets 4 and 5 are interposed between the manifold 2 and the manifold 2, and these are joined together with bolts 21. Reference numeral 6 denotes a PTC heating element formed into a roughly cylindrical shape, which is located at the joint between the carburetor portion below the throttle valve 23 and the intake manifold 2, and is supported within the support groove 25 of the heat insulator 3. Throttle valve 2
It serves to guide the air-fuel mixture from 3 to the intake manifold 2, and also heats the intake air passing through it.

発熱体6は、例えば結晶性樹脂と導電性粒子と
を主成分としたPTC素子によつて構成される発
熱円筒部7と、非発熱性の樹脂材のフランジ部8
とよりなる。このようなPTC素子は例えば結晶
性樹脂を溶融させ、この中にカーボンブラツク粒
子を加え、分散、混練した後、この混練物を微粉
砕し、この粉体中にガラス繊維配合熱硬化性ポリ
エステル樹脂を配合し、この配合物を型に入れ加
熱成形することにより円筒状に作ることができ
る。このようにして成形された発熱円筒部7は、
その上端の外周に非発熱性樹脂材からなるフラン
ジ部8が圧接、接着剤等により一体的に接合され
て発熱体6が構成される。
The heating element 6 includes, for example, a heating cylindrical portion 7 made of a PTC element mainly composed of crystalline resin and conductive particles, and a flange portion 8 made of a non-heat generating resin material.
It becomes more. Such PTC elements are made by, for example, melting a crystalline resin, adding carbon black particles into it, dispersing and kneading it, then finely pulverizing this kneaded material, and adding glass fiber-containing thermosetting polyester resin to the powder. It can be made into a cylindrical shape by blending and heating and molding this blend into a mold. The heat generating cylindrical part 7 formed in this way is
A flange portion 8 made of a non-heat generating resin material is integrally joined to the outer periphery of the upper end by pressure contact, adhesive, etc., thereby forming the heat generating element 6.

発熱円筒部7にフランジ部8を接合した後、発
熱円筒部7の内周面及びフランジ部8の上面にわ
たつて一方の極を形成する電極メツキ9を、また
発熱円筒部7の外周面及びフランジ部8の下面に
わたつて他方の極を形成する電極メツキ10をそ
れぞれ施す。尚、発熱筒6の下端面はメツキされ
ない。
After joining the flange part 8 to the heat generating cylinder part 7, an electrode plating 9 forming one pole is attached to the inner peripheral surface of the heat generating cylinder part 7 and the upper surface of the flange part 8, and also to the outer peripheral surface of the heat generating cylinder part 7 and the upper surface of the flange part 8. Electrode plating 10 forming the other pole is applied over the lower surface of the flange portion 8 . Note that the lower end surface of the heat generating tube 6 is not plated.

第3図は分割メツキ型発熱筒の一例を示す。電
極メツキの一方、例えば電極メツキ9が複数個、
例えば2個のメツキ部9A,9Bに分割される。
メツキ部9A,9Bは非メツキ部(フランジ部8
の一部及び発熱筒本体の一部)13によつて相互
に電気的に分離される。図示実施例の場合、メツ
キ部9Aはメツキ部9Bに比し表面積がはるかに
大きくなつているがその面積比は任意である。
尚、分割個数は2個に限られずそれ以上でもよ
い。分割個数を増やす程、発熱筒6の部分加熱制
御が可能となる。
FIG. 3 shows an example of a split plating type heating cylinder. One of the electrode platings, for example, a plurality of electrode platings 9,
For example, it is divided into two plating parts 9A and 9B.
The plated parts 9A and 9B are the non-plated parts (flange part 8
and a portion of the heat generating cylinder body) 13 electrically separate them from each other. In the illustrated embodiment, the surface area of the plated portion 9A is much larger than that of the plated portion 9B, but the area ratio is arbitrary.
Note that the number of divisions is not limited to two, but may be more than two. As the number of divisions increases, partial heating control of the heating cylinder 6 becomes possible.

フランジ部8の張出部18には各メツキ部9
A,9B,10に対応する電極取出し金具11
A,11B,12が埋め込まれる。各金具11
A,11B,12の先端は夫々の電極メツキ9
A,9B,10にそれぞれ接続され、これら電極
取出し金具を介して各電極メツキに電圧が印加さ
れるようになつている。
Each plating part 9 is attached to the overhanging part 18 of the flange part 8.
Electrode extraction fittings 11 corresponding to A, 9B, 10
A, 11B, and 12 are embedded. Each metal fitting 11
The tips of A, 11B, and 12 are plated with the respective electrodes 9.
A, 9B, and 10, respectively, and a voltage is applied to each electrode plating via these electrode fittings.

以上のように構成した発熱体6を、第1図に示
すようにそのフランジ部8をヒートインシユレー
タ3とともに気化器1と吸気マニホルド2との接
合部に介在させボルト21により固定して合体さ
せ吸気加熱装置を構成する。尚、インシユレータ
3の凹溝25内に発熱筒6のフランジ部8を組み
付ける際に、該フランジ部に充てん剤を塗布して
おけばシール性を向上させることができる。
As shown in FIG. 1, the heating element 6 configured as described above is assembled by interposing its flange portion 8 together with the heat insulator 3 at the joint between the carburetor 1 and the intake manifold 2 and fixing it with bolts 21. This constitutes an intake air heating device. Incidentally, when assembling the flange portion 8 of the heat generating tube 6 into the groove 25 of the insulator 3, sealing performance can be improved by applying a filler to the flange portion.

以上の如く構成した吸気加熱装置において、例
えばメツキ部9A,9Bの極性は同一(陽極また
は陰極)にされ、メツキ部10の極性は反対(陰
極または陽極)とする。
In the intake air heating device configured as described above, for example, the polarities of the plated parts 9A and 9B are the same (anode or cathode), and the polarity of the plated part 10 is set to be opposite (cathode or anode).

好ましくはメツキ部9Bは気化器のスローポー
ト27、アイドルポート29の下方に位置し、上
述の如くメツキ部9B近傍を流れる混合気の液膜
燃料が他部よりも多くなるようにする。また、こ
のような配置することによりアイドル運転時にも
スローポートから吸出された燃料の大部分がメツ
キ部9B近傍を流れることになる。尚、特に図示
はしないが、発熱体6にはその内部に燃料が浸入
するのを防止するため、全表面に被覆が施され
る。
Preferably, the plating section 9B is located below the slow port 27 and the idle port 29 of the carburetor, so that as described above, the amount of liquid film fuel in the air-fuel mixture flowing near the plating section 9B is larger than in other parts. Furthermore, with this arrangement, most of the fuel sucked out from the slow port flows near the plating portion 9B even during idling operation. Although not particularly shown in the drawings, the entire surface of the heating element 6 is coated to prevent fuel from penetrating into its interior.

第5図は部分メツキ型発熱筒の一例を示すもの
である。第5図においては外周メツキ部10が非
メツキ部10Cにより分離された部分メツキ10
A,10Bから構成される。非メツキ部10Cは
その直径方向反対側にも設けられている。メツキ
部10Bは略々第3図のメツキ部9Bに対応する
角度位置にあり、メツキ部10Aはその直径方向
反対側にある。第5図の場合には第3図の場合の
如く切替制御を意図したものではなく、燃料の含
有量が比較的少い吸気流れに相当する部分の発熱
筒には電極メツキを施さないようにすることによ
り消費電力の節減を計つたものである。
FIG. 5 shows an example of a partially plated heating cylinder. In FIG. 5, a partial plating 10 is shown in which the outer peripheral plating portion 10 is separated by a non-plating portion 10C.
It is composed of A and 10B. The non-plated portion 10C is also provided on the opposite side in the diametrical direction. The plating portion 10B is located at an angular position approximately corresponding to the plating portion 9B in FIG. 3, and the plating portion 10A is located on the opposite side in the diametrical direction. In the case of Fig. 5, switching control is not intended as in the case of Fig. 3, and electrode plating is not applied to the heating cylinder in the part corresponding to the intake flow where the fuel content is relatively small. This is intended to reduce power consumption.

以上に述べた分割メツキ型発熱体及び部分メツ
キ型発熱体の構成自体は本願出願人が先行出願に
おいて提案したものであり本考案の主題ではな
い。本考案はこのような非メツキ部分を有する発
熱体において非メツキ部とメツキ部との境界部に
生じる発熱集中を防止せんとするものである。
The configurations of the split plating heating element and the partial plating heating element described above were proposed by the applicant in an earlier application and are not the subject matter of the present invention. The present invention aims to prevent heat generation from concentrating at the boundary between the non-plated part and the plated part in a heating element having such a non-plated part.

そのため本考案によればメツキ部と非メツキ部
との境界部近傍の発熱筒肉厚が第6,7図に夫々
50,60で示す如く相対的に厚肉となつてい
る。第6図は第3図に、また第7図は第5図に対
応する。
Therefore, according to the present invention, the thickness of the heating cylinder near the boundary between the plated portion and the non-plated portion is relatively thick as shown by 50 and 60 in FIGS. 6 and 7, respectively. 6 corresponds to FIG. 3, and FIG. 7 corresponds to FIG. 5.

第8図はPTC発熱筒6の発熱量と筒厚さとの
関係を示す特性線図で、同図から明らかな如く筒
厚さが大きくなると発熱量は小さくなる。従つて
第6,7図における厚肉部50,60は相対的に
発熱量が小さくなるのでこの部分での発熱集中は
防止できる。即ち、非メツキ部分の肉厚を増す
と、メツキからなる電極間の抵抗が大きくなるの
で非メツキ部分からの冷却の影響にかかわらず、
メツキ部との境界部位の抵抗が大きくなり発熱量
が抑えられる。
FIG. 8 is a characteristic diagram showing the relationship between the amount of heat generated and the thickness of the PTC heating cylinder 6. As is clear from the figure, the amount of heat generated decreases as the thickness of the cylinder increases. Therefore, since the thick portions 50 and 60 in FIGS. 6 and 7 generate a relatively small amount of heat, it is possible to prevent heat generation from being concentrated in these portions. In other words, as the thickness of the non-plated part increases, the resistance between the plated electrodes increases, regardless of the influence of cooling from the non-plated part.
The resistance at the boundary with the plating part increases and the amount of heat generated is suppressed.

これは、抵抗が大きくなれば発熱量が小さくな
るというPTC発熱体の特性によるものである。
厚肉部50,60への推移は好ましくは滑らかな
カーブを呈する。また第9図に示す如く厚肉部6
0を非メツキ部全面に亘つて延長させてもよい。
尚、第6図に示す実施例においてフランジ部8は
発熱しないのでフランジ部8上のメツキ部と非メ
ツキ部との境界部は厚肉にする必要はない。
This is due to the property of the PTC heating element that the greater the resistance, the smaller the amount of heat generated.
The transition to the thickened portions 50, 60 preferably has a smooth curve.
Alternatively, O may be extended over the entire non-plated portion.
In the embodiment shown in FIG. 6, since the flange portion 8 does not generate heat, it is not necessary to thicken the boundary portion between the plated portion and the non-plated portion on the flange portion 8.

尚、分割メツキ型発熱筒に本考案を適用した場
合に非メツキ部とメツキ部との境界部が厚肉とな
つているのでメツキ部の分割が容易に行える。即
ち一般的には発熱筒全体を一旦じやぶ付けでメツ
キした後にせんばん等により非メツキ部を削り出
し形成するのであるが、削りとる部分が厚肉状に
突出しているとそこのみを容易に削りとることが
できる。
In addition, when the present invention is applied to a split plating type heating cylinder, since the boundary between the non-plated part and the plated part is thick, the plated part can be easily divided. In other words, generally, the entire heat generating cylinder is once plated using a shaving method, and then the unplated parts are carved out using a shaving machine, etc. However, if the parts to be scraped off are thick and protruding, only those parts can be easily removed. It can be scraped off.

考案の効果 以上の如く本考案によれば発熱集中をおこし易
いメツキ部と非メツキ部との境界部近傍の発熱筒
を相対的に厚肉とすることにより発熱量を低下せ
しめることが可能となりそれによりこの境界部の
劣化を防止することができるものである。
Effects of the Invention As described above, according to the present invention, by making the heating tube relatively thick near the boundary between the plated part and the non-plated part, where heat concentration tends to occur, it is possible to reduce the amount of heat generated. This makes it possible to prevent deterioration of this boundary area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発熱体を組み込んだ吸気加熱装置の典
型的な構造の一例を示す縦断面図、第2図は第1
図に示されるヒートインシユレータの斜視図、第
3図は分割メツキ型発熱筒の一例を示す斜視図、
第4A図、第4B図、第4C図は夫々第3図の
A−A,B−B,C−C線に沿つた断
面図、第5図は部分メツキ型発熱筒の一例を示す
斜視図、第6図は第3図の発熱筒に本考案を適用
した下面図、第7図は第5図の発熱筒に本考案を
適用した下面図、第8図は発熱筒の発熱量−筒厚
さ特性線図、第9図は第7図の変形実施例を示す
図。 6…発熱体、7…発熱円筒部、8…フランジ
部、9A,9B,10…電極メツキ、10C,1
3…非メツキ部、50,60…厚肉部。
Fig. 1 is a vertical sectional view showing an example of a typical structure of an intake air heating device incorporating a heating element, and Fig.
A perspective view of the heat insulator shown in the figure, FIG. 3 is a perspective view showing an example of a split plating type heating cylinder,
Figures 4A, 4B, and 4C are cross-sectional views taken along lines A-A, B-B, and CC in Figure 3, respectively, and Figure 5 is a perspective view showing an example of a partially plated heating cylinder. , Fig. 6 is a bottom view of the heat generating cylinder shown in Fig. 3 to which the present invention is applied, Fig. 7 is a bottom view of the heat generating cylinder shown in Fig. 5 to which the present invention is applied, and Fig. 8 shows the calorific value of the heat generating cylinder - cylinder. A thickness characteristic diagram, FIG. 9 is a diagram showing a modified example of FIG. 7. 6... Heating element, 7... Heat generating cylinder part, 8... Flange part, 9A, 9B, 10... Electrode plating, 10C, 1
3...Non-plated part, 50, 60...Thick walled part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 正温度特性を有する発熱筒の内外周面に相互に
異極を形勢する電極メツキを施すと共に少くとも
一方の極の電極メツキは非メツキ部分により分離
されたメツキ部分を具備して成る内燃機関用吸気
加熱装置であつて、上記非メツキ部分とメツキ部
分との境界部の発熱筒肉厚を部分的に大きくした
ことを特徴とする内燃機関用吸気加熱装置。
For an internal combustion engine, the inner and outer circumferential surfaces of a heating cylinder having positive temperature characteristics are plated with electrodes that form mutually different poles, and the electrode plating on at least one pole has a plated part separated by a non-plated part. An intake air heating device for an internal combustion engine, characterized in that the thickness of the heating cylinder is partially increased at the boundary between the non-plated portion and the plated portion.
JP10100383U 1983-07-01 1983-07-01 Intake heating device for internal combustion engines Granted JPS6010872U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10100383U JPS6010872U (en) 1983-07-01 1983-07-01 Intake heating device for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10100383U JPS6010872U (en) 1983-07-01 1983-07-01 Intake heating device for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS6010872U JPS6010872U (en) 1985-01-25
JPS6335183Y2 true JPS6335183Y2 (en) 1988-09-19

Family

ID=30238697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10100383U Granted JPS6010872U (en) 1983-07-01 1983-07-01 Intake heating device for internal combustion engines

Country Status (1)

Country Link
JP (1) JPS6010872U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342659U (en) * 1989-09-05 1991-04-23

Also Published As

Publication number Publication date
JPS6010872U (en) 1985-01-25

Similar Documents

Publication Publication Date Title
US4685437A (en) Intake air heater for internal combustion engine with perforated plate heater element partially traversing air passage
JPH0120303B2 (en)
JPS6335183Y2 (en)
US4593670A (en) Fuel evaporator for internal combustion engine
US4407254A (en) Intake heating apparatus of an internal combustion engine
JPS6237223B2 (en)
EP0477923B1 (en) Injection internal combustion engine with electrical spark ignition and heating unit
JPH08319908A (en) Heating module for internal combustion engine
JPH04350360A (en) Atomized fuel heating device
JPS5830089A (en) Heater utilizing ptc element
JPS632595Y2 (en)
JP2518242B2 (en) Fuel injection valve
JPS59226261A (en) Control of suction air heating device for internal- combustion engine
JPS6319587Y2 (en)
JPS59226262A (en) Control of suction air heating device for internal- combustion engine
JPH0238064Y2 (en)
JPS6027818Y2 (en) Internal combustion engine intake air heating device
JPS6027817Y2 (en) Internal combustion engine intake air heating device
JPS6137817Y2 (en)
JPH09144614A (en) Intake air heating device
JPS638848Y2 (en)
JPS6111496Y2 (en)
JPS581988A (en) Heater utilizing ptc element
JPS606059A (en) Heating device of internal-combustion engine
JPS608140Y2 (en) Internal combustion engine intake air heating device