JPS6334889Y2 - - Google Patents

Info

Publication number
JPS6334889Y2
JPS6334889Y2 JP8413580U JP8413580U JPS6334889Y2 JP S6334889 Y2 JPS6334889 Y2 JP S6334889Y2 JP 8413580 U JP8413580 U JP 8413580U JP 8413580 U JP8413580 U JP 8413580U JP S6334889 Y2 JPS6334889 Y2 JP S6334889Y2
Authority
JP
Japan
Prior art keywords
formwork
body plate
stress
tire
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8413580U
Other languages
Japanese (ja)
Other versions
JPS579505U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8413580U priority Critical patent/JPS6334889Y2/ja
Publication of JPS579505U publication Critical patent/JPS579505U/ja
Application granted granted Critical
Publication of JPS6334889Y2 publication Critical patent/JPS6334889Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【考案の詳細な説明】 本案はコンクリートパイル、コンクリートポー
ル、ヒユーム管等の遠心成型コンクリート製品の
製造用型枠に係るものである。
[Detailed description of the invention] This invention relates to a formwork for manufacturing centrifugally formed concrete products such as concrete piles, concrete poles, and humid pipes.

遠心成型コンクリート製品の製造用型枠には、
鉄筋篭に対する緊張力の反力による応力、型枠内
に投入される生コンクリートのアンバランス、及
び型枠の曲りによつて生起する振動による応力等
が型枠使用中に発生する。更に型枠には多数の補
強部材、フランジ、タイヤ等が溶着されているの
で溶接時の入熱量が大であり、従つて溶接による
残留応力が作用している。そしてこれらの応力値
が一定限の範囲を超れると、型枠の反覆使用によ
り型枠は比較的少ない使用回数で変形し、遠心成
型機上で円滑な回転ができなくなり、遂には使用
不能となる欠点がある。また型枠胴板には多数の
補強部材が溶着されるので、製作工程が多くな
り、製作コストが嵩むという欠点があつた。
Formwork for the production of centrifugally cast concrete products includes:
During use of the formwork, stress is generated due to the reaction force of tension on the reinforcing bar cage, imbalance of the fresh concrete poured into the formwork, and stress due to vibration caused by bending of the formwork. Furthermore, since many reinforcing members, flanges, tires, etc. are welded to the formwork, the heat input during welding is large, and therefore residual stress due to welding acts. If these stress values exceed a certain limit, the formwork will deform after a relatively small number of uses due to repeated use, and will no longer be able to rotate smoothly in the centrifugal molding machine, eventually becoming unusable. Another drawback is that many reinforcing members are welded to the formwork body, which increases the number of manufacturing processes and increases manufacturing costs.

本案はこのような欠点を除去するために提案さ
れたもので、溶接構造の遠心成型コンクリート製
品製造用型枠において、型枠胴板の補強部材を省
略し、且つ同補強部材を溶着した場合と同程度の
強度を有するように前記胴板を厚くするととも
に、半円環状のタイヤが、4m〜6mの間隔で前
記胴板に溶着されており、溶接による残留応力は
除去されていることを特徴とする遠心成型コンク
リート製品の製造用型枠に係るものである。
This project was proposed in order to eliminate such drawbacks, and in a formwork for manufacturing centrifugally formed concrete products with a welded structure, the reinforcing member of the form body plate is omitted and the reinforcing member is welded. The body plate is thickened to have the same strength, and semicircular tires are welded to the body plate at intervals of 4 m to 6 m, so that residual stress due to welding is removed. This relates to formwork for manufacturing centrifugally formed concrete products.

本考案者等が、現在汎用されている型枠の稼動
中における発生応力を測定したところ、発生応力
のみでは型枠を反覆使用しても変形を生起しない
ことが確認され、更に型枠変形は製作時に行なう
溶接によつて生じた残留応力の作用部に前記発生
応力が附加されることが原因であることが確認さ
れた。
When the inventors of the present invention measured the stress generated during the operation of the currently widely used formwork, it was confirmed that the generated stress alone does not cause deformation even if the formwork is used repeatedly, and furthermore, the formwork deformation does not occur even if the formwork is repeatedly used. It has been confirmed that the cause is that the generated stress is added to the area where the residual stress generated by welding during manufacturing is applied.

本案はこのような知見に基いて提案されたもの
で、前記したように型枠胴板を厚くすることによ
つて、従来の型枠胴板に溶着されていた補強部材
を省略しても補強部材付きの前記従来の型枠胴板
と同程度の強度を具有せしめることができるとと
もに、補強部材取付のための溶接による入熱量が
なくなる。しかし、補強部材取付以外に、フラン
ジやタイヤ等を取付けるための溶接が必要であ
り、更に、型枠長さが一枚の鋼板長さでは、不足
するために、前記型枠胴板を作成するには、複数
枚の鋼板を溶接する必要がある。それ故、単に型
枠胴板を厚くしたのみでは、前記の色々な溶接に
よる応力が残留している。
This project was proposed based on this knowledge, and by making the formwork body plate thicker as described above, reinforcement can be achieved even if the reinforcing member that is conventionally welded to the formwork body plate is omitted. It is possible to provide the same level of strength as the conventional form body plate with members attached, and the amount of heat input due to welding for attaching reinforcing members is eliminated. However, in addition to attaching reinforcing members, welding is required to attach flanges, tires, etc., and the length of the formwork is insufficient for one steel plate, so it is necessary to create the formwork body plate. requires welding multiple steel plates. Therefore, if the form body plate is simply made thicker, the stresses caused by the various welding processes described above remain.

本案においては、単に型枠胴板を厚くするのみ
ならず、溶接による残留応力を除去したものであ
る。更にタイヤが4m〜6mの粗い間隔であるの
で、溶接個所は大変少くてすむ。
In this case, the form body plate is not only made thicker, but also the residual stress caused by welding is removed. Furthermore, since the tires are spaced roughly between 4 m and 6 m, the number of welding points is very small.

かくして本案によれば型枠の変形もなくなり、
型枠の耐用年限を大幅に延ばすことができるのみ
ならず、上下型枠の密着性がよくなり、セメント
ペースト漏れが減少し、良品質のコンクリート製
品を得ることができるとともに、タイヤの摩耗も
少なくなる。
Thus, according to the present proposal, there will be no deformation of the formwork,
Not only can the service life of the formwork be greatly extended, but also the adhesion between the upper and lower formwork is improved, cement paste leakage is reduced, high quality concrete products can be obtained, and tire wear is also reduced. Become.

従来この種の型枠の残留応力除去が行なわれな
かつたのは、型枠の変形の一因として溶接による
残留応力の存在が考えられてはいたが、実機によ
を応力測定及び理論解析はなされず、溶接による
残留応力が型枠の変形であるということを把握し
ていなかつたこと、並に型枠の構造上その残留応
力除去時に大きな歪が生起する惧れがあつたため
であるが、実験の結果、このような歪は実用上問
題のない歪であり、また残留応力の除去後、タイ
ヤの削正、回転バランスの調整等を行なうので、
この点は何等支障とならない。
The reason why this kind of residual stress removal from formwork has not been carried out in the past is thought to be due to the presence of residual stress due to welding as a factor in the deformation of the formwork, but stress measurement and theoretical analysis using actual machines have not been conducted. This was because they did not understand that the residual stress caused by welding was a deformation of the formwork, and because there was a risk that large distortions would occur when the residual stress was removed due to the structure of the formwork. As a result of experiments, this kind of distortion poses no practical problem, and after removing the residual stress, the tire is ground and the rotational balance is adjusted.
This point does not pose any problem.

以下本案を図示の実施例について説明する。 The present invention will be described below with reference to the illustrated embodiments.

第1図及び第2図は従来の遠心成型コンクリー
ト製品の製造用型枠及びその使用状態を示し、1
は半円筒状の上下型枠の型枠胴板で、夫々の接続
端部には締付フランジ2が溶着され、また長手方
向に亘つて所定間隔毎に半円環状のタイヤ3が溶
着され、更に同型枠胴板1には長手方向並に周方
向に延びる補強部材4,4′が溶着されている。
Figures 1 and 2 show the conventional formwork for manufacturing centrifugally formed concrete products and the state of its use.
is a form body plate of a semi-cylindrical upper and lower form frame, a tightening flange 2 is welded to each connecting end, and semi-circular tires 3 are welded at predetermined intervals in the longitudinal direction, Further, reinforcing members 4, 4' extending in the longitudinal direction as well as in the circumferential direction are welded to the frame body plate 1.

而して型枠組立時、相対する上下各型枠胴板1
のフランジ2,2に亘つて締付ボルト5が挿貫緊
締され、円筒状の型枠が組立てられるとともに、
円環状のタイヤ3が形成され、遠心成型時に同タ
イヤ3が遠心成型機の駆動ローラ6上に架乗し、
同駆動ローラ6によつて駆動回転されるようにな
つている。
Therefore, when assembling the formwork, the opposing upper and lower formwork body plates 1
The tightening bolts 5 are inserted and tightened across the flanges 2, 2, and the cylindrical formwork is assembled.
An annular tire 3 is formed, and during centrifugal molding, the tire 3 is mounted on a drive roller 6 of a centrifugal molding machine,
It is designed to be driven and rotated by the same drive roller 6.

前記型枠によつてコンクリート製品を遠心成型
する場合、2分割の状態にある上下両型枠の中、
下部型枠の型枠胴板1に鉄筋篭を挿入したのち、
上下両型枠胴板1を夫々のフランジ2に亘つて締
付ボルト5を挿貫緊締して型枠を組立て、鉄筋に
緊張力を加えたのち注入管を介して生コンクリー
トを型枠端部より型枠内に均等に注入し、同型枠
のタイヤ3を遠心成型機の駆動ローラ6に架乗
し、同駆動ローラ6を駆動回転して遠心力により
コンクリートを円筒状に成型し、しかるのち蒸気
養生を施して所定の強度に達すると脱型するもの
である。
When centrifugally forming a concrete product using the formwork, in both the upper and lower formworks, which are divided into two parts,
After inserting the reinforcing bar cage into the formwork body plate 1 of the lower formwork,
The formwork is assembled by inserting and tightening the tightening bolts 5 through the upper and lower formwork body plates 1 across the respective flanges 2, and after applying tension to the reinforcing bars, fresh concrete is poured into the ends of the formwork through the injection pipe. The concrete is poured evenly into the formwork, the tire 3 of the same formwork is placed on the driving roller 6 of a centrifugal molding machine, the driving roller 6 is driven and rotated to form the concrete into a cylindrical shape by centrifugal force, and then It is removed from the mold when it reaches a predetermined strength after steam curing.

しかしながら従来のコンクリート製品製造用型
枠には鉄筋篭に対する緊張力の反力による応力、
生コンクリートのアンバランス及び型枠の曲りに
よつて生起する振動による応力等が型枠使用中に
発生し、更に前記補強部材4,4′及びフランジ
2タイヤ3等の型枠胴板1に対する溶接時におけ
る入熱量が大きいため、溶接による残留応力が作
用し、これらの応力により型枠は反覆使用によつ
て比較的少ない使用回数で変形し、使用不可能と
なる。
However, in conventional formwork for manufacturing concrete products, stress due to the reaction force of tension on the reinforcing bar cage,
Stress due to vibrations caused by unbalance of fresh concrete and bending of the formwork is generated during use of the formwork, and furthermore, the reinforcing members 4, 4', flanges 2 tires 3, etc. are welded to the formwork body plate 1. Due to the large amount of heat input during the welding process, residual stresses from welding act, and due to these stresses, the formwork deforms after a relatively small number of uses due to repeated use, making it unusable.

第3図乃至第7図は本案に係る型枠の一実施例
を示し、半円筒型の上下型枠の型枠胴板1には補
強部材4,4′が省略され、後述のように十分な
厚さを有するように構成され、補強部材4,4′
を廃止しても、同補強部材付きの従来の型枠と同
程度の強度を有するように構成されている。
3 to 7 show an embodiment of the formwork according to the present invention, in which reinforcing members 4 and 4' are omitted from the formwork body plate 1 of the semi-cylindrical upper and lower formworks, and as will be described later, The reinforcing members 4, 4'
Even if the reinforcing member is removed, it is constructed to have the same strength as the conventional formwork with the reinforcing member.

なお、その他の構造は前記従来の型枠と実質的
に同一であり、使用方法も全く同一である。図中
前記従来の型枠と均等部分には同一符号が附され
ている。
In addition, the other structure is substantially the same as the conventional formwork, and the method of use is also completely the same. In the figure, parts equivalent to the conventional formwork are given the same reference numerals.

第5図に示すフランジ2,2と型枠胴板1と
は、第6図の溶接部wに示すように部分的に溶接
するのが好ましい。また、図中には型枠胴板の長
さ方向の溶接部は図示していないが、現実には、
溶接部が存在する。
The flanges 2, 2 shown in FIG. 5 and the form body plate 1 are preferably partially welded as shown in the welded part w in FIG. 6. In addition, although the welds in the longitudinal direction of the formwork shell are not shown in the figure, in reality,
There are welds.

本案においては、これらの残留応力がある型枠
を例えば、焼鈍装置によつて、焼鈍し、溶接によ
る残留応力を除去する。なお、型枠胴板の厚みが
従来の如く薄いと、焼鈍しにより、逆に応力が発
生することがあるが、本案においては、かかる心
配はなくなる。
In the present invention, the formwork with these residual stresses is annealed using, for example, an annealing device to remove the residual stress caused by welding. Note that if the thickness of the form body plate is as thin as in the past, stress may be generated due to annealing, but this problem is eliminated in the present invention.

第8図は型枠胴板の応力値に対する変形限度線
図を示し、横軸は複数の供試体の平均応力、縦軸
は供試体の各応力値付加状態において振動を賦与
した場合の応力振幅を示し、またσbは供試体の型
枠使用鋼材の引張強さ(41Kg/mm2)、σyはその降
伏点(23Kg/mm2)、σeはそのヘタリ限、σwは突合
せ溶接継手疲れ強さ(5Kg/mm2)を示し、型枠胴
板の応力値が斜線部分より超れると、型枠の反覆
使用によつて型枠は比較的少ない使用回数で変形
して使用不能になることを示している。
Figure 8 shows a deformation limit diagram for the stress value of the formwork shell plate, where the horizontal axis is the average stress of multiple specimens, and the vertical axis is the stress amplitude when vibration is applied to each stress value application state of the specimen. In addition, σ b is the tensile strength of the steel used in the formwork of the specimen (41 Kg/mm 2 ), σ y is its yield point (23 Kg/mm 2 ), σ e is its set limit, and σ w is the butt welding strength. It shows joint fatigue strength (5Kg/mm 2 ), and if the stress value of the formwork shell exceeds the shaded area, the formwork will become deformed and unusable after a relatively small number of uses due to repeated use of the formwork. It shows that it will become.

而して実機で測定した型枠胴板1のタイヤ3の
取付部の横のX点(第3図、第6図、及び第7図
参照)の型枠胴板応力は、第8図で示すA点(引
張側最大応力)B点(圧縮側最大応力)であり、
溶接による残留応力が零であれば型枠には何等の
変形も生起しないことが判る。
The stress of the formwork body plate 1 at point X (see Figs. 3, 6, and 7) next to the mounting part of the tire 3 of the formwork body plate 1 measured in the actual machine is shown in Fig. 8. Point A (maximum stress on the tensile side) and Point B (maximum stress on the compression side) are shown,
It can be seen that if the residual stress due to welding is zero, no deformation will occur in the formwork.

次に型枠溶接による残留応力が加わると応力発
生部はC,D点となり、C点は型枠の変形を防止
するためには溶接による残留応力を除くことが必
要であることが、前記実機による試験で判明し
た。
Next, when residual stress due to formwork welding is applied, the stress generation area becomes points C and D, and at point C, in order to prevent the formwork from deforming, it is necessary to remove the residual stress due to welding. It was discovered in a test by.

前記した実機による試験結果による知見に基
き、溶接による残留応力を除去するため、型枠を
焼鈍装置によつて焼鈍するか、または予荷重装置
により予荷重負荷を行つた結果、残留応力は13
Kg/mm2(引張側最大応力)−5Kg/mm2(圧縮側最
大応力)であつた。これに型枠使用によつて発生
する応力を加えると、応力発生部はE,F点とな
り、変形限度範囲内に入り、型枠を反覆使用して
も変形を生起しないことが判る。
Based on the findings from the test results using the actual machine mentioned above, in order to remove residual stress due to welding, the formwork was annealed using an annealing device or preloaded using a preloading device, and as a result, the residual stress was 13
Kg/mm 2 (maximum stress on tension side) - 5Kg/mm 2 (maximum stress on compression side). When the stress generated by the use of the formwork is added to this, the stress-generating parts become points E and F, which fall within the deformation limit range, and it can be seen that no deformation occurs even if the formwork is used repeatedly.

従つて本案による如く、型枠胴板1を厚くし
て、溶接構造の型枠に残留応力除去を行つた場
合、従来の型枠において生起する反覆使用による
変形は防止され、型枠の耐用年限が従来に比して
大幅に延びるばかりでなく、上下の型枠の密着性
がよくなり、セメントペースト漏れが減少し、良
品質のコンクリート製品を得ることができるとと
もに、タイヤの摩耗が防止される。
Therefore, when the formwork body plate 1 is made thicker to remove residual stress in the welded structure formwork as in the present proposal, the deformation caused by repeated use that occurs in conventional formwork is prevented, and the service life of the formwork is reduced. Not only is it significantly longer than before, but the adhesion between the upper and lower formwork is also improved, reducing cement paste leakage, making it possible to obtain high-quality concrete products, and preventing tire wear. .

なお本案における型枠胴板1の厚みは、下記の
要項の実験結果より8mm〜12mmとなる。
In addition, the thickness of the form body plate 1 in this proposal is 8 mm to 12 mm based on the experimental results of the following points.

(i) 溶接による残留応力発生を少なくするため、
従来溶着されていた各種補強材を廃止した場合
の強度上要求される厚みを有すること。
(i) To reduce residual stress caused by welding,
It must have the thickness required for strength when the various reinforcing materials that were conventionally welded are abolished.

(ii) 焼鈍による歪発生を実用上最小限に防止する
ために必要な厚みを有すること。
(ii) It must have a thickness necessary to practically minimize distortion caused by annealing.

(iii) 型枠の重量増加に基因する従来設備の変更を
必要としない経済的な厚みを有すること。
(iii) It has an economical thickness that does not require changes to conventional equipment due to increased weight of the formwork.

(iv) 遠心成型時、型枠に生起する応力を少なくし
て型枠の回転をより円滑にするためタイヤピツ
チを4m〜6mに粗くした場合、強度上必要な
厚みを有すること。
(iv) When the tire pitch is roughened to 4 m to 6 m in order to reduce the stress generated in the formwork and make the formwork rotate more smoothly during centrifugal molding, it must have a thickness necessary for strength.

次に型枠胴板厚、型枠長及びタイヤピツチの相
関関係について述べる。
Next, we will discuss the correlation among formwork body thickness, formwork length, and tire pitch.

(i) 型枠胴板とタイヤピツチとの関係は、タイヤ
と遠心成型機の駆動ローラとが常に接触してい
る場合、発生応力を一定にすると第9図に示す
ような関係となる。
(i) The relationship between the form body plate and the tire pitch is as shown in FIG. 9 when the tire and the drive roller of the centrifugal molding machine are in constant contact and the stress generated is constant.

(ii) タイヤと遠心成型機の駆動ローラとが常に接
触するようにするためには、型枠長15mの場
合、タイヤピツチと型枠の許容初期曲りとは第
10図に示すような関係となる。
(ii) In order to ensure constant contact between the tire and the drive roller of the centrifugal molding machine, when the formwork length is 15 m, the relationship between the tire pitch and the permissible initial bending of the formwork is as shown in Figure 10. .

従つてタイヤピツチを粗くする場合は型枠の
許容初期曲りが最大値をとる4.6mのタイヤピ
ツチが望ましいが、既設の遠心成型機を使用す
る場合、第11図に示すように同遠心成型機の
ローラピツチが2mであり、且つまた型枠長が
2mピツチであるため、そのタイヤピツチは4
m〜6mとなる。従つて型枠胴板厚は第9図か
ら明らかなように、8mm〜10mmとなる。
Therefore, when roughening the tire pitch, a tire pitch of 4.6 m is preferable, which maximizes the allowable initial bending of the formwork, but when using an existing centrifugal molding machine, the roller pitch of the centrifugal molding machine should be adjusted as shown in Figure 11. is 2m, and the formwork length is 2m pitch, so the tire pitch is 4m.
m to 6 m. Therefore, the thickness of the form body plate is 8 mm to 10 mm, as is clear from FIG.

このようにタイヤピツチを粗くした型枠は型
枠長に応じてタイヤピツチが4m若しくは6m
の組合せとなつており、第11図a,b,cは
型枠長11m,13m,15mの各型枠におけるタイ
ヤ配置状態を示すものである。この際、型枠の
発生応力を一定値以下にするため、オーバハン
グA′は一定値以下とするものである。
The formwork with rough tire pitch in this way has a tire pitch of 4m or 6m depending on the length of the formwork.
Figures 11a, b, and c show the tire arrangement in each formwork with formwork lengths of 11m, 13m, and 15m. At this time, in order to keep the stress generated in the formwork below a certain value, the overhang A' is kept below a certain value.

(iii) なお型枠径が増大すると型枠が負担する重量
が増大するが、同一板厚でも型枠径が増大する
と強度も増大するので、型枠径によつて型枠胴
板厚を変える必要はない。
(iii) As the formwork diameter increases, the weight carried by the formwork increases, but even if the thickness is the same, as the formwork diameter increases, the strength also increases, so change the formwork body plate thickness depending on the formwork diameter. There's no need.

このように本案によれば型枠胴板1の外周に配
設され、遠心成型機駆動ローラと接触して型枠を
回転させるタイヤ3のピツチが粗くしてあるの
で、各型枠タイヤは駆動ローラに確実に接触し、
型枠回転中の安定性が増大し、型枠タイヤと駆動
ローラとの衝突による衝撃力が減少し、型枠、駆
動ローラ共に悪影響の及ぼされることが少なくな
り、型枠の耐用年限がより増大し、タイヤ数の縮
減とタイヤピツチ粗化とによつて型枠の許容初期
曲りが大きくなり、製作精度が粗くてよいため、
製作コストが節減されるものである。
In this way, according to the present invention, the pitch of the tires 3, which are disposed around the outer periphery of the formwork body plate 1 and rotate the formwork by contacting the centrifugal forming machine drive roller, is made rough, so that each formwork tire is driven securely contacts the roller,
The stability of the formwork during rotation is increased, the impact force caused by the collision between the formwork tires and the drive roller is reduced, and there is less negative impact on both the formwork and the drive roller, which further increases the service life of the formwork. However, due to the reduction in the number of tires and roughening of the tire pitch, the permissible initial bending of the formwork becomes large, and the manufacturing accuracy can be rough.
This reduces manufacturing costs.

更にまたタイヤピツチを粗くした型枠を使用す
るので、遠心成型機の駆動ローラが少なくて済む
という利点がある。
Furthermore, since a formwork with a rough tire pitch is used, there is an advantage that the number of driving rollers of the centrifugal molding machine can be reduced.

なお一般の遠心成型機の駆動ローラ設備を使用
してタイヤピツチを粗くした型枠を稼動する場
合、タイヤピツチを一般に使用されているタイヤ
ピツチの整数倍とすれば実用できるものである。
In addition, when operating a formwork with a coarse tire pitch using the drive roller equipment of a general centrifugal molding machine, it is practical if the tire pitch is an integral multiple of the generally used tire pitch.

第12図及び第13図に示した実施例は、締付
ボルト5の代りに楔を使用した型枠に本案を適用
した場合を示し、上部型枠胴板1Aのフランジ2
A上面に固着された楔片7を、下部型枠胴板1B
のフランジ2Bに取付けられた楔受片8の楔面に
楔合して上下両型枠を緊締するものである。
The embodiment shown in FIGS. 12 and 13 shows a case where the present invention is applied to a formwork using a wedge instead of the tightening bolt 5, and the flange 2 of the upper formwork body plate 1A
The wedge piece 7 fixed to the upper surface of A is attached to the lower formwork body plate 1B.
The wedge is engaged with the wedge surface of the wedge receiving piece 8 attached to the flange 2B of the flange 2B, thereby tightening both the upper and lower formworks.

図示の型枠に本案を適用した場合、型枠の変形
がないため、上下型枠の密着が良好となり、型枠
変形のための楔力調整が不要となり、また使用す
る楔数が少なくてよいという利点がある。
When the present invention is applied to the formwork shown in the figure, there is no deformation of the formwork, so the adhesion between the upper and lower formworks is good, there is no need to adjust the wedge force to deform the formwork, and the number of wedges used can be reduced. There is an advantage.

第14図及び第15図は下部型枠胴板1Bのフ
ランジ2B上面にスペーサ9を配設し、上部型枠
胴板1Aのフランジ2Aと下部型枠胴板1Bのフ
ランジ2Bとをボルト5を介して緊締する際、前
記フランジ2A,2B間にガスケツト10を介装
するようにした型枠に本案を適用した場合を示
し、この場合型枠の変形がないため、上下型枠の
密着性が良好となり、ガスケツト10のシール性
がよくなり、セメントペーストの漏出がなくな
り、品質のよいコンクリート製品が得られる。
In FIGS. 14 and 15, a spacer 9 is arranged on the upper surface of the flange 2B of the lower formwork body plate 1B, and bolts 5 are used to connect the flange 2A of the upper formwork body plate 1A and the flange 2B of the lower formwork body plate 1B. A case is shown in which the present invention is applied to a formwork in which a gasket 10 is interposed between the flanges 2A and 2B when tightening through the flanges 2A and 2B. The sealing performance of the gasket 10 is improved, leakage of cement paste is eliminated, and a high-quality concrete product is obtained.

一方セメントペーストの漏出がなくなると、タ
イヤ3と駆動ローラ6との間にセメントペースト
が侵入しないので両者間の摩擦が減少し、型枠に
変形を生起しないことと相俟つて、耐久性の高い
型枠が構成されるものである。
On the other hand, when the leakage of cement paste is eliminated, cement paste does not enter between the tire 3 and the drive roller 6, so the friction between them is reduced, and the formwork is not deformed, resulting in high durability. This is what the formwork is made of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の遠心成型コンクリート製品の製
造用型枠の使用状態を示す平面図、第2図は第1
図の矢視−図、第3図は本案に係る遠心成型
コンクリート製品製造用型枠の一実施例を示す平
面図、第4図は第3図の矢視−図、第5図は
第4図の部分の拡大図、第6図は第3図の部分
の拡大図、第7図は第3図の一部拡大図、第8
図は型枠の応力値に対する変形限度線図、第9図
はタイヤピツチと型枠胴板との関係を示す図表、
第10図はタイヤピツチと型枠の許容初期曲りと
の関係を示す図表、第11図a,b,c及びdは
各種の型枠長の型枠におけるタイヤ配置状態並に
一般の遠心成型機のローラピツチを示す説明図、
第12図は本案に係る遠心成型コンクリート製品
の製造用型枠の他の実施例を示す要部正面図、第
13図はその縦断側面図、第14図は本案に係る
遠心成型コンクリート製品の製造用型枠の更に他
の実施例を示す要部縦断側面図、第15図は第1
4図の部分の拡大図である。 1……型枠胴板、2……フランジ、3……タイ
ヤ、5……ボルト。
Figure 1 is a plan view showing the state of use of a conventional formwork for producing centrifugally formed concrete products, and Figure 2 is a
3 is a plan view showing an embodiment of a form for manufacturing centrifugally formed concrete products according to the present invention, FIG. 4 is a view taken in the direction of arrows in FIG. 3, and FIG. Figure 6 is an enlarged view of the part shown in Figure 3. Figure 7 is a partially enlarged view of Figure 3.
The figure is a deformation limit diagram for the stress value of the formwork, and Figure 9 is a diagram showing the relationship between the tire pitch and the formwork body plate.
Fig. 10 is a chart showing the relationship between tire pitch and allowable initial bending of the formwork, and Fig. 11 a, b, c, and d show the tire arrangement conditions in formworks of various formwork lengths, as well as the relationship between the tire pitch and the allowable initial bending of the formwork. An explanatory diagram showing a roller pitch,
Fig. 12 is a front view of main parts showing another embodiment of the formwork for manufacturing centrifugally formed concrete products according to the present invention, Fig. 13 is a vertical side view thereof, and Fig. 14 is a manufacturing form for centrifugally formed concrete products according to the present invention. FIG.
4 is an enlarged view of the part shown in FIG. 4. 1... Form body plate, 2... Flange, 3... Tire, 5... Bolt.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 溶接構造の遠心成型コンクリート製品製造用型
枠において、型枠胴板の補強部材を省略し、且つ
同補強部材を溶着した場合と同程度の強度を有す
るように前記胴板を厚くするとともに、半円環状
のタイヤが、4m〜6mの間隔で前記胴板に溶着
されており、溶接による残留応力は除去されてい
ることを特徴とする遠心成型コンクリート製品の
製造用型枠。
In a formwork for manufacturing centrifugally formed concrete products having a welded structure, the reinforcing member of the formwork body plate is omitted, and the body plate is thickened so as to have the same strength as when the same reinforcing member is welded. A formwork for manufacturing a centrifugally formed concrete product, characterized in that annular tires are welded to the body plate at intervals of 4 m to 6 m, and residual stress due to welding is removed.
JP8413580U 1980-06-18 1980-06-18 Expired JPS6334889Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8413580U JPS6334889Y2 (en) 1980-06-18 1980-06-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8413580U JPS6334889Y2 (en) 1980-06-18 1980-06-18

Publications (2)

Publication Number Publication Date
JPS579505U JPS579505U (en) 1982-01-19
JPS6334889Y2 true JPS6334889Y2 (en) 1988-09-16

Family

ID=29446448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8413580U Expired JPS6334889Y2 (en) 1980-06-18 1980-06-18

Country Status (1)

Country Link
JP (1) JPS6334889Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154465U (en) * 1984-03-24 1985-10-15 松下電工株式会社 Connection structure of bathtub drain pipe to drain trap
JPS63112573U (en) * 1987-01-14 1988-07-20
JPH047261Y2 (en) * 1987-05-08 1992-02-26
JPS63181681U (en) * 1987-05-08 1988-11-24
JPS63181679U (en) * 1987-05-08 1988-11-24
JPH047260Y2 (en) * 1987-05-08 1992-02-26

Also Published As

Publication number Publication date
JPS579505U (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US4048776A (en) Steel column base member
JPS6334889Y2 (en)
CN102966093B (en) The prefabricated soldier pile of uneven arrangement of reinforcement and forming method thereof and moulding form
US3948010A (en) Reinforcing device for an element of prestressed concrete
CN107762145A (en) Girder construction prefab-form fixing component
CN109083401B (en) Template erection method and template structure for joint of cylindrical beam and frame beam
US4136811A (en) H-shaped steel column base member and welding thereof
US3316724A (en) Concrete pile joint and method of assembly
JPH11269871A (en) Composite pile for foundation pile
JPH08193421A (en) Deformation prevention device for column of filling type steel pipe concrete construction and construction method for column of filling/covering type steel pipe concrete construction
CN210421934U (en) Formwork structure of circular concrete adduction external stay
US4068436A (en) H-shaped steel column base member and welding thereof
JPH10100129A (en) Mold of pile fitted with prestressed high strength concrete node
JPS6125477B2 (en)
JP2754473B2 (en) Construction method of cylindrical reinforced concrete septic tank body
JP2533830B2 (en) Girder section stress improvement method
KR100433052B1 (en) Improved Construction Method and Devices of Preflex Composite Beam by Loading Control System
FI77590B (en) FOERFARANDE FOER MEKANISK FOERMINSKNING AV SPAENNINGAR.
JP2947736B2 (en) Concrete columnar structure
CN214006573U (en) A supplementary anchor clamps that is used for oblique concrete support steel mould to pour on shell
US3654968A (en) Steel wire cage wire for chemically prestressed concrete pipe
CN218375397U (en) Be applied to reinforcing bar locating template of embedded reinforcement construction
JPH05339911A (en) Construction of concrete arch
JPS6253323B2 (en)
CN109227885B (en) Prefabricated hollow square pile machining system and machining process